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Abstract

The paper deals with the analytical solution of the string motion subjected to a
moving mass. Solutions published up to date do not exhibit sufficient simplicity and
can not be applied to a whole range of the mass speed, also in over-critical range. We
propose the analytical solution that allows us to reduce the problem to the second
order matrix differential equation. In the last stage it is treated numerically. The
solution is characteristic of all features of the critical, sub-critical and over-critical
motion. Results are compared with the finite element method analysis performed for
a rigid oscillator moving over the string.

1 Introduction
Nowadays inertial loads moving on strings and beams with the sub or super critical speed
are of the special interest. Theoretical solutions are applied to many practical problems:
train-track interaction, vehicle-bridge interaction, pantograph collectors in railways, mag-
netic rails, guideways in robotic solutions, etc. The problem was widely treated in litera-
ture. Attempts of the problem solution started in the middle of the 19th century. However,
till now we do not have the complete and closed analytical solution. The term describing
the concentrated mass motion is the reason of difficulties. Differential equations of variable
coefficients, which, except few cases, do not have analytical solutions, are serious limits in
closed solutions. These types of equations are finally solved by numerical means.

In literature numerous reviews concerning moving loads problem exist (for example
Panowko [1], Jakuszew ˆGÖ� Dmitrijew [31). In most cases the moving massless constant
force was considered as a moving load. This type of the problems results in closed solutions.
Unfortunately, the problem of inertial loads is still open. Saller in [4) considered the moving
mass for the first time. He proved, in spite of essential simplifications, significant influence
of the moving mass in beam dynamics. In thirties two contributions appeared, important
for the society working if the field of moving loads. The first one was written by Inglis [5].
Far simplifications were applied and the solution was expressed by only the first term of
the trigonometric series. The time function fulfilled the second order differential equation
of variable coefficients. This equation was derived considering the acceleration under the
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moving mass, expressed by the so-colled Renaudot formula. In fact it is the derivative with
the constant velocity, computed with the chain rule. The final solution of the differential
equation of variable coefficients was proposed by Inglis as an infinite series. It results in an
approached solution.

Schallenkamp [6Jproposed another approach to the problem of moving mass. However,
his attempt allows to describe the motion only under the moving mass. We recall that Inglis
solution is represented by the function in a whole range of spatial variable x. The method
of separation of variables by the expansion of the unknown function into a sine Fourier
series was applied. Boundary conditions in the beam were taken into account in a natural
way. The ordinary differential equation, which describes the motion under the moving mass
was expressed in generalized coordinates by using the second Lagrange equations. The
generalized force was derived from the virtual work principle. Schallenkamp consideration is
relatively complex and slowly converged since the final solution is expressed in terms of the
triple infinite series.

Inglis and Schallenkamp works can be considered as the base for the analysis of the prob-
lem of moving mass in successive works. Bolotin [7, 8], Morgajewskij [9] and others. The
excellent and important monograph in this field was written by Szczesniak [10J. One can
find there hundreds of references concerning moving load on beams and strings. Most solu-
tions, for example [l1J and [12Jbased on semi-analytical research of the beam under moving
mass. The major problem of existing solutions, besides their high complex is relatively small
computational efficiency. In [11) the authors consider a simply supported beam modeled by
Bernoulli-Euler theory. The equation of motion is written in the integral-differential form
with a Green function terms .. In order to compute this equation a dual numerical scheme has
been used. A backward difference technique was applied to treat the time parameter and
numerical integration was used for the spatial parameter. This way of the solution though
applied to higher velocities, still requires complex mathematical operations. Each solution
enables to determine displacements under the moving load only and does not give solutions
in a wide range of parameters x and t. Especially we can not calculate displacements in each
point of a string or a beam. Only one closed analytical solution can be found in literature.
Fryba [13Jproposed the solution for the inertial load, however, in the case of the massless
string only. Green function terms were introduced to the formulation.

In the paper we propose the analytical solution of the string subjected to a moving
inertial load. Final solution is proposed as a matrix differential equation of the second order.
Numerical integration results in the solution in a full range of the velocity: under critical
and over critical. Exactly the same approach can be applied to a beam with the moving
mass. Numerical examples of the analytical approach are compared with numerical solutions
obtained with the finite element method. The string is subjected to a moving oscillator. In
the case of the rigid spring we approach to the analytical solution. However, in the case of
higher speed (v > 0.2c) the accuracy of the FEM solution is poor. Analytical solution or
at least analytical formulation of the final governing equation of the motion of the string or
beam is required for mathematical investigation and optimization of the control of vibration
for power receivers in railway engineering.
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2 Analytical solution
Let us consider a string of the length L, cross-sectional area A, mass density p, tensile force
N, subjected to a mass m accompanied by a force P (Fig. 1), moving with a constant speed
v. The motion equation of the string under moving inertial load with a constant speed v has
a form

N 82u(x, t) + A 82u(x, t) = r(x _ vt) P _ r( _ t) 82u(vt, t)
- 8x2 P 8t2 a a X v m 8t2 . (1)

u(O,t) = 0 u(l, t) = 0 (2) N N
We impose boundary conditions

and initial conditions

( ) 8u(x, t) I -_0u x,O = 0
8t t=O

. (3)

In order to reduce partial differential equa- Figure 1: Moving inertial load.
tion to ordinary differential equation, we ap-
ply Fourier sine integral transformation in a finite range (i.e. finite length of the string) (4),
(5)

V(j, t) = l'u(x, t) sin j~X dx

u(x, t) = ~ f V(j, t) sin j~X .
;=1

(4)

(5)

We can present each of the function as a infinite sum of sine functions (5) with respective
coefficients (4). Then the expansion of the moving mass acceleration in a series has a form

82u(vt, t) = ~ ~ [V(k ) . bvt 2k1rv V(k) k1rvt _ k
2
rr2v2 V{k ) . hvt]

8 t 2 Z ~ , t sm l + 1 ' t cos 1 Z2 ' t sm 1
k=1

(6)
The integral transformation (4) of the equation (1) with consideration of (6) can be performed

i7r2 •• 'j7rct 82u(vt t) t jrrxNT V(j, t) + pA V(j, t) = P sin "T' - m 8t2' io 8(x-vt) sin -l-dx. (7)

The integral with delta Dirac function in the above equation is as followsr . jrrx . j7rvtio 8(x - vt) sin -l- dx = sm -Z- ,

Let us consider now (6) and (8):

p7r2 .
N T V(J, t) + pAV(j, t) =

(8)

j7rvt 2m ~ .. . k7rvt . j7rvt
P sin-- - -~ V(k t) sm-- sm-- -

I Z k=l' Z 1

2m Eoo
2k7rv V·(k) hvt. jrrvt- -- t cos-- sm-- +

1 Z ' 1 Z
k=l

2m ~ k27r2
V

2 V(k ) . krrvt . j7rvt+ -l-~-l2- ,t sm-Z- sm-Z-·
k=l

(9)
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Finally, the motion equation after Fourier transformation can be written
00 00

V(j, t) + a EV(k,t) sinWkt sinwjt + 2a EWk V(k,t) cosWlct sinwjt +
10=1 10=1 (10)00 P

+ 02 V(j,t) a Ew~ V(k,t) sinw"t sinw,t - sinw·t
10=1

pA J

where

k1rv j1rV
02 N j21r2 2m

(11)Wk = "T' , Wj = rt: = pAT a pAL'

The analytical solution for this problem does not exist. We must solve this equation numer-
ically. The equation (10) is written in a matrix form, where matrix M, C and K are square
matrices (j, k = l...n),

[tg:!~] [tg:!~] [~g:g]M : +C : +K : =P
, , ,

V(n, t) V(n, t) V(n, t) .

MV+CV+KV=P,
or

where

1 [
sin l!!:!!1 sin l!!:!!1 sin l!!:!!1 sin 2".ut ,,'o I I I I

o sin ~ sin l!!:!!1 sin aJ!!1 sin aJ!!1 ,",+a I I I I
, , ., . .
1 sin !!!!:!!!'sinl".ut sin n".ut'sin~

1 I 1 I

[

1,... " sin l!!:!!1 cos l"utI I I

!l!!! sin ~ cos ~C=2a I I I

!!:!! sin n1futcos l!!:!!1
I I I

2;" sin 1~"t cos 2~
~sin~cos~I I 1

~sin!!!!:!!!cos~I I. I

["., N 0rr pA

0 22,,2 Nrr pA

0 0

[

12,,2,,2 sin 1"..ut sin l!!:!!1 22,,2,,2 , 1".,,: ' 2".ut~ I I ~sm-,-sm-,-
12".2,,2 , 2"vt ' but 22,..2,,2 , 21fut' 2""t_ a ~ sm-,-sm-,- ~ sm-,-sm-,-

12".2,,2 sl'n!!!!:!!!sin.!?!!!! 22,,2,,2 sin!!!!!!sin 21fut
~ I I ~ I I

(12)

(13)

sin 1~ut sin n~ut]

sin ~ sin !!!!!!
I I ,(14)

sin n~vtsin n~ut

!!l!.!! sin but. cos !!!!:!!!]I I I

n;v sin 2~ut cos n~"t

nr sin n~vtcos n~vt ,

(15)

(16)

n2
".2,,2 , l1fut ' ",rut]--p- sin -,- sm -,-

n :11,..2,,2 • '27rvt . n1rvt--p- sin -,- sm -,- ,
n211'2v2 • ft7rvt • n1rvt--p- sm -,- sm."T"
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[

sin~lP sin 2:vtp=_ I
pA : .

sin n7't
When coefficients V(j, t) are computed, displacements of the string (5) can be appointed as
a solution of (1). It is the solution in a full range. We can calculate displacement in each
point of string and and for all values of v.

First we present the convergence rate
of the series which constitutes the solution.
The expected property of fast convergence
of the trigonometric series was observed
(Fig. 2). We denote the wave speed in
the unloaded string as c (c2 = N/ pA).
Furher diagrams exhibit vertical deflection
of the string u related to the deflection in
quasi-static mass motion in the middle of
the span U(j. We can notice that the first Figure 2: Trigonometric series convergence for
term is already close to the exact solution. v = O.2e.
Three or five terms are sufficient for the accurate result. We must emphasize here that higher
speed of the mass, for example equal to O.ge or e requires even hundred term and short time
step for time integration of the differential equation, since the solution exhibits small jumps.
Final plot for different velocities v is given in Fig. 3.

3 Results

(17)
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Figure 3: Displacements computed analytically.
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Figure 4: Displacements under the mass for different mass values at the speed v = 0.2c.

Let us look at the diagrams of displacements of the string in the point under the mass.
Diagram for various mass related to the string mass, for the speed v = O.2c is depicted in
Fig. 4. More detailed presentation of the string motion is given in Fig. 5. We can notice the
sharp edge of the wave and reflection from both supports. Moreover, the wave reflection from
the travelling mass is well visible, especially for the case v = 1.2c. Both the mass trajectory
and waves are depicted. Detailed solution for the last stage of the mass motion is depicted
in Fig. 6. Supersonic motion of the mass results in zero displacement. In the diagram
obtained numerically this value oscillates with low amplitude. The amplitude decreases with
the increase of the number of terms in a sum (Fig. 7).

Analytical results are compared with numerical solutions obtained by the finite element
method. The string was discretized by a set of 100 finite elements. It was subjected with an
oscillator moving over the span. Two separate systems were considered: a string subjected
to a contact force between the oscillator spring and the string, and the oscillator itself,
subjected to a force P applied to a mass and displacements determined from the string
motion, applied to a spring. The oscillator spring stiffness was assumed to be high enough,
to simulate a rigid contact of the mass with the string. Results are depicted in Fig. B.

Let us compare analytical solution for a massless string subjected to a moving mass given
by Fryba (Fig. 9) with the analytical one (13).

4 Conclusions
In the paper we present a global analytical solution of the vibration problem for the string
subjected to a moving mass. The solution is relatively simple and is valid for the whole range
of the speed v (sub-critical, critical and over-critical). The problem is reduced to the system
of the differential equations of the second order, which finally must be solved numerically.
High convergence rate of the solution allows us to apply only few terms of the Fourier series.

The analysis of results exhibits a jump of the mass in the neighborhood of the end
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Figure 5: Simulation of the string motion under the mass moving at v=O.2c, O.3c,O.5c, 1.0c
1.2c and 1.5c.
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Figure 6: Last stage of the mass motion at v=O.2c, O.5c, l.Oc and l.2c.

0.02

0 , ...... _ ...

-0.02

~
-0.04

......(.." .:. ,+ .

I. s-; •." ..;"' ...../;~}:::t)

-o.~L-~ __~ __-L __J_ __ L-~ __ -L __-L__J_~

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
vVL

Figure 7: Convergence of displacements under the mass at the speed v=l.05c.
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Figure 8: Finite element solution - displacements of the string under the oscillator.
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Figure 9: Massless string subjected to a moving mass.
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support. The force acting on the mass is, however, limited to the tensile force N. The mass
can not be accelerated to the appropriate vertical velocity to arrive directly at the support
in a smooth way. Discontinuity of the solution at x = L exists in the case of v > 0 (for each
non-zero moving speed, ie. 0 < v < c, v = c and v > c). It can be proved analytically in the
case of massless string.
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