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Abstract. In the present work the dynamics of the system of a mass
moving on the beam is investigated in detail numerically in the case
of vibrations about a buckled state. The di�erential equation that
describes the motion is strongly nonlinear. Simulations are based on
the space-time �nite element method. It enabled us easily determine
the in�uence of the moving inertial particle. At the computational
stage it becomes a real problem when the mass particle traverses joints
of neighbouring elements. The results of representative and interesting
computer simulations are enclosed.

1 Introduction

Structural elements that work in nonlinear range behave in a way far from the known
for linear ranges. Well known jumps in trusses under �nite displacements, natural fre-
quencies varying under axial loads, buckling etc. are good examples. Modern systems
can �lter entering excitation and respond with selected and prescribed signals. Special
structures exhibit non-classical mechanical or rheological properties.These properties
can be predetermined to enable developing new metamaterials. Finally special struc-
tures that resist to increased loads, reduce the level of vibration or exhibit increased
durability. Nonlinear vibration of a compressed beam is here a good example.

The papers devoted to the Gao beam consider the formulation [1�3], analytical
and numerical solutions [4�6], contact problems with the Gao beam [7�9] etc. The
mathematical analysis of the problem with contact with the proof of the existence of
the solution can be found in [10]. Some particular dynamical problems with contact
were discussed in [4, 6, 8, 9], where the model, existence of weak solutions, and
computer simulations can be found. An interesting problem of the growth of a crack
in the Gao beam was studied in [7].

The motion of a point load travelling on a bending element is a typical problem
in transportation. Such systems were extensively investigated, however mostly in a
classical linear range. In our previous research the noninear Gao beam subjected to
a moving massless or inertial load was investigated. The contribution of a nonlinear
term together with a traction force exhibited properties unexpected in a linear range.

This paper continues the study of the vibrations of a nonlinear Gao beam that
is subjected to a moving mass [11, 12] by adding a oscillating axial force. Such
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problems arise naturally in transportation systems such as trains or trams. This
makes the model, which is a coupled system of the Gao nonlinear beam equation and
the motion of the mass, considerably more complex.

In the present work the dynamics of the system of a mass moving on the beam was
investigated in detail numerically in the case of vibrations about a buckled state. The
simulations are based on the space-time �nite element method. It enabled us easily
determine the in�uence of the moving inertial particle. At the computational stage
it becomes a real problem when the mass particle traverses joints of neighbouring
elements. The simple time integration method separated from the spatial discretiza-
tion results in complexity in matrix formulation of a resulting systems of algebraic
equations (see for example [13]). Moreover, both nonstationary discretization of the
doman and nonstationary location of parameters describing moving inertia or granu-
lated sti�ness can be applied with this approach relatively easily [14, 15]. The results
of representative and interesting computer simulations are enclosed.

2 Formulation

Let us consider the pair of di�erential equations that govern the motion of the Gao
beam (Figure 1)

h
w

v
y

P

m xp

Figure 1. The scheme od the Gao beam.

ρAwtt + EIwxxxx − EA(1 + ν)[((2− ν)w2
xwxx + wxxux] = (1− ν2)q(x, t) ,

ρAutt − EAuxx − EA(1 + ν)wxwxx = 0 ,

0 ≤ x ≤ L , 0 ≤ t. (1)

with boundary conditions

w(0, t) = w(L, t) = 0, wxx(0, t) = wxx(L, t) = 0 ,

u(0, t) = 0 , u(L, t) = 0. (2)

and initial conditions

w(x, 0) = 0 , wt(x, 0) = 0 and u(x, 0) = 0 , ut(x, 0) = 0 . (3)

The �rst equation in (1) describes the bending of the beam, similar to the Bernoulli-
Euler type, with a non-linear term proportional to the axial sti�ness and in general
to the de�ection. The second equation relates to the axial motion. q(x, t) is the
distributed external transverse load.

The classical form of the Gao nonlinear beam equation is extended with the cou-
pling of the beam motion with the moving transverse inertial load. The setting is as
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follows. w(x, t) and u(x, t) are transverse and longitudinal displacements, respectively,
ρ is the mass density, A � cross section area, I � inertia moment of the cross section,
E � Young modulus, and ν � Poissone coe�cient. The lengths of the beam is L.

A derivation of the Gao beam model can be found in [1, 16], and related models
can be found in the references in the introduction. The beam is clamped at both
ends (x = 0, L) and a horizontal traction p that may depend on time, acts at the
end x = L. When the traction is tensile (p < 0) the beam behaves essentially as
the Euler-Bernoulli beam. However, when the traction is compressive and su�ciently
large, say p > p∗ > 0, for some threshold p∗, the beam exhibits two buckled states
that are stable and the zero steady state that is unstable. This allows for vibrations
about each one of the two buckled states. For the sake of generality, in the formulation
we allow the traction p = p(t) to be time dependent and possibly periodic.

We can reduce the system (1) to a single equation. Moreover, the axial vibration
can be replaced with constant in length compression, however varying in time. The
term ρAutt was then put to zero. The given moving mass m, the traction p, the
point load P , the mass velocity v and the initial data w0 and v0, allows to write the
alternative single equation with the moving mass term in the following form

ρwtt + kwxxxx − (aw2
x − νp)wxx = δ(x− vt)P − δ(x− vt)mwtt(vt, t), (4)

w(0, t) = wx(0, t) = 0, (5)

w(L, t) = wx(L, t) = 0, (6)

w(x, 0) = w0(x), wt(x, 0) = v0(x). (7)

Here ρ is the mass density per unit length, k = 2h3EY /3(1 − ν2), ν = (1 + ν), and
a = 3hE, h is the heigh of the cross-section, ν and E are the Poisson ratio and the
Young modulus, respectively. P is the vertical point force, m is the inertia of the
material point accompanying the force, and v is the velocity of the travelling inertial
load (P,m).

We note here that the vertical acceleration of the mass particle is given by the
Renaudot formula [17],

wtt(vt, t) =
[
wtt + 2(v + v̇t)wxt + (v + v̇t)2wxx + (v̈t+ 2v̇)wx

]∣∣
x=vt

. (8)

where the derivatives on the right-hand side are evaluated at x = vt, and here and
below a dot above a function indicates its time derivative. For the sake of simplicity,
we assume that the velocity v is constant, hence, the expression reduces to

wtt(vt, t) =
(
wtt + 2vwxt + v

2wxx
)∣∣
x=vt

. (9)

The system is nonlinear and so it is natural to consider a weak or variational formu-
lation.

3 Numerical model

The di�erential equation (4) allows us to write the virtual work in the �nite element
as follows

Π=

∫
Ω

v∗
{
ρwtt+kwxxxx − aw2

xwxx + νpwxx+δ(x− vt)mwtt(vt, t)−δ(x− vt)P
}

dxdt,

(10)
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where the virtual velocity v∗ with the parameter α is given by

v∗(x, t) = δ(t− αh) (Nv∗)
T
. (11)

We use this form, chosen from the various possible functions of virtual velocity dis-
tributions, because of the simplicity of the time integration of the energy functional
Π and simple stability control. Here, α ∈ [0, 1] is a parameter that de�nes the
equilibrium point in the time layer (similarly to β in the Newmark time integration
scheme). It a�ects the accuracy and stability of the resulting time integrating scheme
(for details see [18]). Integrating, formally, by parts the virtual work expression (10)
leads to the following expression

Π =k

∫
Ω

v∗xxwxxdΩ +

∫
Ω

v∗
{
ρvt − aw2

xwxx + νpwxx

+ δ(x− vt)m(vt + 2vvx + v
2wxx)

∣∣
x=vt

− δ(x− vt)P
}

dxdt. (12)

To proceed with the numerical scheme, we need the following matrices: the element
mass and sti�ness characteristic matrices are given by

M = ρ



13b
35

11b2

210
9b
70

−13b
420

11b2

210
b3

105
13b2

420
−b3
140

9b
70

13b2

420
13b
35

−11b2

210

−13b2

420
−b3
140

−11b2

210
b3

105

 , (13)

and

K = k


12
b3

6
b2

−12
b3

6
b2

6
b2

4
b

−6
b2

2
b

−12
b3

−6
b2

12
b3

−6
b2

6
b2

2
b

−6
b2

4
b

+ νp


6
5b

11
10

−6
5b

1
10

1
10

2b
15

−1
10

−b
30

−6
5b

−1
10

6
5b

−11
10

1
10

−b
30

−1
10

2b
15

 . (14)

To deal with the nonlinearity, we use a term in which the nonlinearity is frozen at the
time t so that wt and vt are known,

Kn = a

∫ b

0

NT
[
Nxw

t + (α− 0.5α2)hNxv
t + 0.5α2hNxv

t+h
]2

Nxx dx. (15)

The explicit matrix form of Kn is provided in the Appendix.
The general matrices representing the moving mass were derived by using linear

shape functions as described in [19],

Mm = m


(1− κ)2 0 κ(1− κ) 0

0 0 0 0

κ(1− κ) 0 κ2 0

0 0 0 0

 , Cm =
2mv

b


κ− 1 0 1− κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

 ,

etm =
mv

bh


(1− κ)(wi+1

2 − wi2 − w
i+1
1 + wi1)

0

κ(wi+1
2 − wi2 − w

i+1
1 + wi1)

0

 . (16)
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The upper indices i and i+1 are the numbers of neighboring spatial elements traversed
by the inertial particle. The lower indices 1 and 2 correspond to left and right nodes
in each neighbouring element. The di�erences are equal to zero except the case the
mass travels from one element to another during the time interval ∆t. The moving
force vector is given as

Ft = P


1− κ

0

κ

0

 , (17)

where κ ∈ [0, 1] is parameter that describes current position of the moving load in
�nite element. Finally, the minimization of the functional in (12) and the above
matrices lead to our numerical scheme, which is of the marching in time type.

Computations were performed according to the algorithm: given wt and vt, as
well as etm and Ft, �nd wt+h and vt+h by solving the system[

M/h+ Mm/h+ αCm + 0.5α2h(K−Kn)
]
vt+h

− [M/h+ Mm/h− (1− α)Cm

−(α− 0.5α2)h(K−Kn)
]
vt

+ (K−Kn)wt + etm − Ft = 0 , (18)

and
wt+h = wt + h[(1− α)vt + αvt+h] . (19)

The data set for a steel beam used in the simulations was as follows:

L=100 [cm], β=0.015, E=2.07 [g/cm/µs2], ν=0.3, ρ = 7.7β
2L2

π =5.5175 [g/cm],

A=β2L2/π, I=β4l4/4/π3, k = 0.57β
4L4

4π3 =0.0233 [g cm3/µs2], v =
π
√
k/ρ

L αv =
0.002 αv [cm/µs], m = 100ρL =55175 [g], P = mg = 5.4071 ∗ 10−5 [g cm/µs2],
p∗ =0.71 [g cm/µs2], g=9.8·10−10 [cm/µs2].

4 Results

Numerous interesting results can be depicted since the response of the system depends
on several parameters, mainly the sti�ness and inertia, beam compression p, the
load velocity, its inertia, and �nally the resulting magnitude of de�ection. Figure 2
depicts displacements under the inertial load during the passage of a series of loads.
The distance between successive inertial loads was equal to the beam length. Four
passaged were depicted, each line with increasing compression p, constant in time. In
the case of zero compression the �rst stage exhibits signi�cant de�ection under the
load while in successive stages the inertia of the load stabilizes the trajectory and pulls
the beam toward zero de�ection. The increased p makes the beam soft and sensitive
to the initial stage of vibration. In the extreme cases the beam de�ects to the opposite
side to the load direction. It is visible in Figure 3. Signi�cant di�erences between
dynamical responses of the beam under constant and oscillating axial compression
is depicted in Figure 4. In the case of a moving load the oscillation of p reduces
de�ection under the load while the in�uence of a moving inertia increases amplitudes.
Di�erences in both diagrams in Figure 4 are signi�cant and the phenomenon should
be investigated further.
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Figure 2. Trajectory of the contact point with the Gao beam subjected to a sequence of
inertial forces for increasing p.
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Figure 3. Displacements in time for αv=0.05, β=0.15 for inertial load with p=4.5.

5 Conclusions

The compressed beam that works in a strongly nonlinear range and subjected to a
moving load exhibits new properties. The de�ection depends on several parameters,
mainly on the compressive force p and the contribution of the inertial part of the
load. The most important feature is the possibility of de�ection in opposite direction
to the transverse load. It can occur due to the rotational inertia of the part of the
beam just subjected to the inertial point load. The strongly compressed beam then
jumps out and is held in the upper position.
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A Appendix

Kn =



−2(b
2
(8q

2 − 3qs+ s
2
) + 3b(p− r)(3s− 4q) + 12(p

2 − 2pr + r
2
))/(35b

3
)

−(b
2
(3q

2 − 2qs+ s
2
) + 12b(p− r)(s− q) + 12(p

2 − 2pr + r
2
))/(140b

2
)

2(b
2
(q

2 − 3qs+ 8s
2
) + 3b(p− r)(3q − 4s) + 12(p

2 − 2pr + r
2
))/(35b

3
)

−(b
2
(q

2 − 2qs+ 3s
2
) + 12b(p− r)(q − s) + 12(p

2 − 2pr + r
2
))/(140b

2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (b

2
(139q

2 − 50qs+ 25s
2
) + 12b(p− r)(17s− 13q) + 396(p

2 − 2pr + r
2
))/(420b

2
)

(b
2
(2q

2 − qs+ s
2
) + 3b(p− r)(3s− q) + 18(p

2 − 2pr + r
2
))/(105b)

− (b
2
(q

2
+ 22qs− 53s

2
) + 12b(p− r)(11s− q) + 108(p

2 − 2pr + r
2
))/(420b

2
)

(b
2
(q

2
+ 2qs− s

2
) + 24bs(p− r) + 36(p

2 − 2pr + r
2
))/(420b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(b

2
(8q

2 − 3qs+ s
2
) + 3b(p− r)(3s− 4q) + 12(p

2 − 2pr + r
2
))/(35b

3
)

(b
2
(3q

2 − 2qs+ s
2
) + 12b(p− r)(s− q) + 12(p

2 − 2pr + r
2
))/(140b

2
)

− 2(b
2
(q

2 − 3qs+ 8s
2
) + 3b(p− r)(3q − 4s) + 12(p

2 − 2pr + r
2
))/(35b

3
)

(b
2
(q

2 − 2qs+ 3s
2
) + 12b(p− r)(q − s) + 12(p

2 − 2pr + r
2
))/(140b

2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(b

2
(53q

2 − 22qs− s
2
) + 12b(p− r)(s− 11q) − 108(p

2 − 2pr + r
2
))/(420b

2
)

− (b
2
(q

2 − 2qs− s
2
) + 24bq(r − p) − 36(p

2 − 2pr + r
2
))/(420b)

(b
2
(25q

2 − 50qs+ 139s
2
) + 12b(p− r)(17q − 13s) + 396(p

2 − 2pr + r
2
))/(420b

2
)

− (b
2
(q

2 − qs+ 2s
2
) + 3b(p− r)(3q − s) + 18(p

2 − 2pr + r
2
))/(105b)


,

where

p = w1 + (α− 0.5α2)hv1 + 0.5α2hv3 ,

q = ψ1 + (α− 0.5α2)hψ̇1 + 0.5α2hψ̇3 ,

r = w2 + (α− 0.5α2)hv2 + 0.5α2hv4 ,

s = ψ2 + (α− 0.5α2)hψ̇2 + 0.5α2hψ̇4 .
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