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Abstract

A novel type of pneumatic device filled with granular material is proposed in the implementation of a
switched control strategy to stabilize the vibration of slender structures. The analytically obtained control
law for the airtight, elastic, granular coupler is implemented in a test structure with a relay-type control
logic. In the experiment, the deformable granular coupler semi-actively damps an initially deflected pair of
adjacent, aluminum beams. Two cases of initial excitation are considered, showing an improvement of up to
33 percent in vibration abatement efficiency compared to the passive case. Although this semi-active device
is conceptually simple, its ease of operation and low cost should attract the attention of engineers who seek
solutions that can be used to build new structures and upgrade existing ones.
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1. Introduction

Typical damping techniques performed with
granular materials have been studied in the liter-
ature over the years. In these techniques, a pas-
sive vibration suppression is obtained with parti-5

cles placed in a container attached to the primary
structure or packed in structural voids [1, 2, 3]. As
the primary structure vibrates, the loose particles
collide with each other and against the container
walls. Non-conservative interactions such as mo-10

mentum transfer, frictional deformation, internal
energy dissipation, etc. facilitate the reduction in
kinetic energy [4, 5].
The damping method introduced in this paper
is notably different from that of typical granular15

dampers, which operate in a fully passive man-
ner. The main difference between them is the re-
stricted movement of the particles, which are no
longer loosely placed in a rigid container but tightly
packed in an airtight, elastic sleeve (Figure 1). The20
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construction of a hermetic sleeve made of natural la-
tex rubber allows controlling underpressure among
tightly bounded granules. Many parameters like
shape, size, material or mass ratio of the granules
and sleeve may affect the efficiency, thus the is-25

sue of optimal constructional parameters is open.
The dynamic control of the underpressure inten-
sifies the jamming mechanism, allowing transition
of the filling material from a fluid-like to a solid-
like phase and enhancing the global rigidity of the30

ensemble [6]. In this paper, the authors describe
the global damping properties of the granular cou-
pler applying phenomenological approach, rather
than analysing non-trivial particle interactions in
the jammed state.35

The proposed vibration mitigation system is
composed of electromechanically controlled vacuum
pump, displacement sensors and the granular dis-
sipator. The principle of vibration abatement is
based on a energy transmission controlled by se-40

quentially coupling parallel structures of different
dynamic characteristics to mistune their motion ac-
cording to a state-feedback control law. The granu-
lar coupler in practice is a semi-active, deformable
damper with time-dependant parameters of dissi-45

pation. The parametrical modification of the sys-
tem, is often referred to as ”switching times con-
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tFigure 1: Experimental granular coupler (length 150 mm,

φ8 mm) filled with cubic ABS granules ( 1.4 × 1.4 × 1.4 mm).

trol” [7] or ”prestress-accumulation-release” strat-
egy [8]. Usually, the switching takes place between
two extreme control values, as in the ”bang-bang”50

type of control, or between two states of the actua-
tor, as in on-off logic.

The controlled jamming of granular materials has
rather rarely been explored in vibration attenua-
tion, since morphing of the boundary walls of the55

container may be difficult to achieve. Author in
[9] discusses the use of a cellular structure, shape
memory alloys, or electromagnets to increase the
static pressure among the granules and force the
jamming transition. In [10] granules were placed60

inside a rigid container with an adjustable position
of the top lid that allowed compressing the gran-
ules and obtaining a variable stiffness. The use
of a pneumatic control to increase the static pres-
sure of a controllable granular structure covering65

steel beam was presented in [11]. In the following
work, the concept of a new type, deformable, damp-
ing device filled with granules is presented. The
obtained parametrical control policy of the pneu-
matically operated device is adapted for sequential70

coupling of slender beams, demonstrating the effec-
tiveness of vibration abatement obtained with the
prototype.

2. Investigated system

We will consider structures that can be repre-75

sented by a set of linear elastic slender beams, as
depicted in Figure 2. For each beam we assume
a constant rectangular cross-section A, length L1

and L2, cross-sectional inertia I, mass density ρ and
elastic modulus E. To capture the dynamics of the80

beams, subjected to bending, we select the Euler
model. This model provides high accuracy and is
relatively simple for the control purposes. The im-
posed assumption of linear elasticity indicates that
only small and moderate loads are considered.85

Figure 2: The investigated system of adjacent beams with
Kelvin–Voigt mathematical model of the granular coupler.

The granular coupler is located at the positions ξ1
and ξ2 and joins the adjacent beams. As we shall
demonstrate later, the selection of ξ1 6= ξ2 is re-
quired to provide high performance for the stabil-
ising controller. For the mathematical description,90

the granular coupler is represented by the Kelvin–
Voigt (K–V) model, which consists of a purely vis-
cous damper c and a purely elastic spring k. As
discussed in [12], the K–V model provides a good
approximation of the experimental data for a wide95

range of granular materials subjected to underpres-
sure, and is easy to adapt to control and optimisa-
tion problems. A variable stiffness k is assumed for
the control parameter and later denoted by u.

Let w1 and w2 stand for the transverse deflections
of the beams (which are later measured experimen-
tally). The system is governed by the following set
of partial differential equations:

ρAẅ1 + EIw′′′′1 + δ(ξ − ξ1) [cẇ1 + k(t)w1] +

− δ(ξ − ξ2) [cẇ2 + k(t)w2] + δ(ξ − L1)mẅ1 = 0,

ρAẅ2 + EIw′′′′2 + δ(ξ − ξ2) [cẇ2 + k(t)w2] +

− δ(ξ − ξ1) [cẇ1 + k(t)w1] + δ(ξ − L2)mẅ2 = 0 .

(1)

Here, dot and prime denote differentiation with re-100

spect to time t and the space coordinate ξ, respec-
tively. The ends of the beams that are fixed im-
pose the following boundary conditions: wi (0, t) =
w′i (0, t) = w′′i (Li, t) = w′′′i (Li, t) = 0, i = 1, 2. For
the initial conditions, we assume non-zero initial105

deflections w0 and initial velocities ẇ0: wi (ξ, 0) =
w0
i (ξ) , ẇi (ξ, 0) = ẇ0

i (ξ), i = 1, 2.

2
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tFigure 3: The reduced system of combined cantilever beams

represented by coupled oscillators.

3. Control design

The stabilising controller will be based on a prac-
tical state-dependent switching law. The control110

strategy design and synchronisation analysis will
be carried out employing the first modal approx-
imation to (1). The reduced size of the system will
enable us to perform the experimental tests with
the available equipment. The proposed general115

methodology can be implemented in multimodal
systems.

3.1. Model reduction

Let us consider the system depicted in Figure 3.
Referring to Figure 2 each beam is now repre-
sented by a simple oscillator, and joined by the
controlled pneumatic coupler. The parameters of
the oscillators mimic the dynamics of the first nat-
ural modes of the beams. Denoting by ω the first
natural frequency of the cantilever, the stiffness
and the mass of the reduced system can be com-
puted as: k1(ξ1) = 3EI/ξ31 , m1(ξ1) = k1(ξ1)/ω2,
k2(ξ2) = 3EI/ξ32 , m2(ξ2) = k2(ξ2)/ω2. By in-
troducing the state vector x = [x1, x2, x3, x4]T ∈ R4

and the matrices

A =


0 1 0 0

−k1/m1 −c/m1 0 c/m1

0 0 0 1
0 c/m2 −k2/m2 −c/m2



B =


0 0 0 0

−1/m1 0 1/m1 0
0 0 0 0

1/m2 0 −1/m2 0


(2)

the reduced system is governed by the following bi-
linear system

ẋ = Ax+ uB x , (3)

with the initial condition x(0) =
[w0

1(ξ1), ẇ0
1(ξ1), w0

2(ξ2), ẇ0
2(ξ2)]T . The control

input is assumed to be bounded by the minimum
and the maximum admissible stiffness, denoted
respectively by umin and umax):

u ∈ U = [umin, umax] ⊂ R≥0 . (4)

3.2. Derivation of the control law
Bilinear control systems such as (3) have always

had to struggle with finding efficient and robust
methods for the optimal policies. No generic meth-
ods like the Linear Quadratic Regulator (LQR) can
be applied here. In practice, only heuristic strate-
gies, like Skyhook or Groundhook [13], have been
successfully implemented in vehicle suspension sys-
tems or moving oscillator problems [14]. The idea
behind these concepts is to stabilize the vibration
by reproducing the damping forces as the system
was operating with an imaginary damper that is
fixed to the sky or to the ground. In practice,
Skyhook or Groundhook are realized by employ-
ing vibration sensors combined with active or semi-
active damping devices. Mohler in [15] presented
an iterative method which is analogous to LQR.
Due to the slow convergence of the procedure, the
method is not eligible for real-time applications.
Most of the optimal controllers for bilinear sys-
tems are implemented by using the switching times
methods. In [16, 17, 18], the authors developed
this method to suppress the vibration of structures
subjected to traveling loads. In the present pa-
per, a switched control strategy will be designed
based on the Lyapunov’s classical second method
for stability. It enables to derive an explicit, robust
state-feedback control law capable of real-time im-
plementation with the use of accessible state infor-
mation. Let us first introduce the energy function
corresponding to the system (3): V = 1

2x
T Qx,

Q = diag(k1,m1, k2,m2). The time derivative of
the energy function is

V̇ = xT QAx+ uxT QB x . (5)

By substituting the matrices (2) into (5) we obtain

V̇ = −c (x2 − x4)2 − u (x1 − x3) (x2 − x4) . (6)

Our goal is to design the control u∗, that pro-
vides the best instantaneous energy dissipation, i.e.,
u∗(t) = argminu∈U V̇ (x(t)) for all t. From (4) and
(6) we conclude that

u∗(t) =

{
umax if (x1(t)− x3(t)) (x2(t)− x4(t)) > 0 ,

umin otherwise .

(7)

3
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By analysing the structure of V̇ , one can observe120

that, for a sufficiently small umin, the control (7)
guarantees a permanent decrease of the energy, ex-
cept for the time instants when x2 = x4. Referring
to LaSalle’s Invariance Principle, asymptotic sta-
bility requires that the origin be the only invariant125

set where x1 = x3 and x2 = x4. For the considered
system this condition cannot be assured, since in
the case of identical oscillator parameters and iden-
tical initial conditions, the system remains conser-
vative. The other observation concerning (6) is that130

a greater desynchronisation provides a better rate
of the energy decrease. Thus, the key for a high
performance of the designed controller lies within
a proper selection of the system parameters so to
avoid the state synchronisation.135

A comprehensive analysis of the synchronisa-
tion of the system (3) driven by the controller (7)
has been presented in [19]. In the present work,
we will recall only the crucial facts allowing for
a proper design of the experimental stand. Let
ε = [ε1, ε2]T be the relative state vector, where
ε1(t) = x1(t) − x3(t) and ε2(t) = x2(t) − x4(t).
We can define the energy function Vε = 1

2ε
T Qε ε,

Qε = diag(k1 + k2,m1 + m2), associated with the
relative state dynamics:

ε̇1 = ε2 ,

ε̇2 = − k1
m1

x1 +
k2
m2

x3 − c
(

1

m1
+

1

m1

)
ε2+

− u
(

1

m1
+

1

m1

)
ε1 .

(8)

The time derivative of the function Vε can be writ-
ten as follows:

V̇ε = −(k1 − k2)(x1 + x3)ε2+[
k1

(
m2

m1
− 1

)
x1 + k2

(
m1

m2
− 1

)
x3

]
ε2+

− c
(

1

m1
+

1

m1

)
(m1 +m2)ε22+

− u
(

1

m1
+

1

m1

)
(m1 +m2)ε1ε2 .

(9)

Observe that under the control defined in (7), with
sufficiently small umin the sum of the terms on
the two bottom lines in (9) can be either nega-
tive or zero. By taking k1 6= k2 the first term
oscillates between positive and negative values. If140

we assume k1 > k2 and the initial condition such
that (x1(0) + x3(0))(x2(0)− x4(0)) < 0, then when

a) b)

Figure 4: Experimental test rig -a) and schematic diagram of
the system -b): 1–granular coupler, 2–displacement sensors,
3– underpressure sensor, 4–data acquisition, 5–controller, 6–
electrovalve, 7–vacuum pump.

k1 − k2 is large enough, for some time period we
have V̇ε > 0. In that period, due to the desyn-
chronisation of the states, the system’s energy V145

decreases very quickly. The latter change of the
sign of (x1(0) + x3(0))(x2(0) − x4(0)) does not re-
sult in a significant loss of performance. Analogous
conclusion can be drawn for the second term, when
m1 6= m2. In order to provide the best performance150

when applied to a real structure, the reduced stiff-
ness values k1(ξ1) and k2(ξ2) should be the resul-
tant of the expected initial condition. On the other
hand, in real structures, one can rarely predict the
direction of the external excitation, so a pair of155

controlled couplers instead of one is recommended.
Let k′1, k′2 and ξ′1, ξ′2 be respectively the reduced
stiffness and the fixation points of the additional
coupler. The fixation points should be selected to
provide that we have both k1(ξ1) < k2(ξ2) and160

k′1(ξ′1) > k′2(ξ′2) (or alternatively k1(ξ1) > k2(ξ2)
and k′1(ξ′1) < k′2(ξ′2)). In the experimental study,
we will assume a single coupler. Regarding the con-
sidered initial conditions the coupler will be located
at the position providing k1(ξ1) > k2(ξ2).165

4. Experimental results

The experimental configuration (Figure 4) com-
prises two parallel beams made of aluminum,
having Young modulus 69 GPa, mass density
2.71 gcm−3, shear modulus 26 GPa and Poisson’s170

ratio 0.30. The shorter beam A is 650 mm long,
and the slender beam B is 700 mm long. Both of
the beams have a rectangular cross-section with a
width of 25 mm and thickness 2 mm. The gap be-
tween the adjacent beams is 65 mm. One end of175

each beam is rigidly fixed and restrains all degrees

4
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Figure 5: Electric control signal and underpressure value
over time.

of freedom, while the other one is free. The tip of
each beam is loaded with the mass of 370 g. A
conventional natural latex rubber balloon of wall
thickness in the range of 0.1 to 0.2 mm was used180

to form the coupler. The coupler is 150 mm long
with an average outer diameter of 8 mm, and a
mass of 10 g (Figure 1). The u-shaped coupler is
fixed to beam A using a metal clamp at 600 mm,
and to the second beam at 680 mm. The u-shape185

allows the coupler to be deflected when beams are
approaching each other. When the beams are dis-
tancing, the coupler unbents, allowing the beams
to move away from each other without the risk of
being blocked by the straighten coupler. For no190

underpressure applied, the approximate stiffness of
the coupler is 3 Nm−1. For the 75 percent vac-
uum the stiffness was 21 Nm−1. The displacement
sensors were assembled to measure transverse dis-
placements of the beams tips. The switching al-195

gorithm was adapted to a computer with digital
input/output card and a programmable logic con-
troller, responsible for switching of the electrovalve.
The maximum stiffness of the coupler (umax) was
achieved for the activated solenoid of the normally200

closed valve. To minimise the time lag (delays be-
low 0.03 s) and achieve quick pneumatic response
an effective armature and underpressure accumula-
tor were used. The shape of the electrical control
signal and the underpressure value over time are205

presented in Figure 5.

4.1. Case I - single beam deflected

In the case I scenario, the longer beam B was ini-
tially deflected according to the shape of the first
natural mode, while the beam A served the ad-
joint purpose. The time-history dependencies of the
beams’ tip horizontal displacement component are
presented in Figure 6. Three operating conditions
have been considered: permanently compliant, per-
manently stiff, and controlled coupler.

The damping factor is calculated using the half-
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Figure 6: Vertical displacement of the tip of the beam A -a),
and the beam B -b) for the case I.

power bandwidth method and denoted ζA and ζB
for the respective beams (Figure 7 a and b). The
unitless amplitude represents relative strength of
the harmonic component of the source signal.
When the coupler is permanently compliant small

damping is present. The initially excited beam B
suffers from large amplitudes of displacement, as
only a part of the energy is transferred to beam A.
When the coupler is permanently stiff, the relative
displacement between the beams becomes nearly
zero. The rigidly connected beams behave like a
combined system, performing a synchronized vibra-
tion with large amplitudes of displacement and low
damping factor (ζA = ζB = 0.018).
When the controlled coupling is performed, vibra-
tions of the excited beam B are being damped in
the shortest time. During the first stage of motion,
the beams are out of synchronisation, and thus the
energy dissipation is very effective. Synchronisa-
tion takes place close to the origin, which is adverse
for the efficiency of the vibration abatement. The
damping factors ζA = 0.018 and ζB = 0.020 are
increased by 50 percent for beam A and 43 percent
for beam B when compared to the passive case.
To provide some general quantitative comparison,

5
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Figure 7: Frequency response and damping factor of the
beams for case I -a), and case II -b).

the value of the energy metric corresponding to the
potential energy of the beams is calculated:

Ĵ =

N∑
n=1

J(n) =
1

2

N∑
n=1

(
x21 (n) + x22 (n)

)
, (10)

where n is the sample number, and N is the total
number of samples across the 40 s interval. The
energy metric normalized to the value obtained for210

the compliant coupler is listed in Table 1 for case
I and II. The controlled coupling outperforms the
compliant case by 33 percent.

4.2. Case II - both beams deflected

In the second case tip of each beam was displaced215

by 15 mm in opposite directions and shaped accord-
ing to the first modal form. For the compliant cou-
pler, the vibration of each beam is slightly damped
over time. Since the state-space trajectories over-
lap (Figure 8), the lowest damping factor values are220

Table 1: Normalized energy metric.

Compliant Stiffened Controlled

Case I Ĵ 1.00 1.50 0.67

Case II Ĵ 1.00 0.30 0.27
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Figure 8: State-space trajectories of the considered system
for compliant -a), stiffened -b) and controlled coupler -c) for
case II.

noted (ζA = ζB = 0.010).
When the beams are joined by the permanently

stiff coupler and deflected in opposite directions,
a part of the energy is dissipated in the process of
deformation, as the beams are compressing the cou-225

pler when approaching each other. The system is
unsynchronized (see the orbits), so the performance
of the stiff coupler is now more effective than for
the case I. One can observe a minor presence of the
higher vibration modes for beam A (Figure 7b) with230

damping factor ζA2 = 0.091. Once again, the con-

6
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trolled system is the most effective one, as greatest
desynchronisation is observed. After several cycles
the trajectories of the controlled system converge
to the equilibrium. Note that the amplitude of the235

first peak for beam A is now lower than amplitude
for the second mode, as the second mode domi-
nates the vibration abatement. The damping fac-
tors are increased up to ζA1 = 0.023, ζA2 = 0.513
and ζB = 0.027. In terms of the assumed energy240

metric the controlled case outperforms the stiffened
case by 10 percent (Table 1).

5. Conclusions

Free vibrations of two adjacent beams connected
by a special granular damping interface were con-245

sidered. The obtained analytical model is capable
of capturing the features of this new type of simple
damping device. The experimental results confirm
the analytical computations and demonstrate that
switching stiffness of the robust granular coupler250

can be very effective in mitigating vibrations. The
best rate of the decrease of energy is provided when
the movement of the adjacent structures is kept un-
synchronized. Each of the controlled variants in the
experimental cases I and II outperformed the pas-255

sive solutions. A properly scaled device of this type
can support the existing damping solutions if spe-
cific constructional factors and fail-safe design are
taken into account. Depending on the scale of the
device and dedicated application, generation of the260

underpressure may be achieved utilizing or modify-
ing pumps and generators already installed in civil
structures or vehicles, allowing for an effective en-
ergy consumption.
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