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Abstract7

In this paper an online adaptive continuous-time control algorithm will be studied in the vi-8

bration control problem. The examined algorithm is a Reinforcement Learning based scheme9

able to adapt to the changing system’s dynamics and providing control converging to the op-10

timal control. Firstly, a brief description of the algorithm is provided. Then, the algorithm11

is studied by the numeric simulation. The controlled model is a simple conjugate oscillator12

with sudden change of its rigidity. The effectiveness of the adaptation of the algorithm is13

compared to the simulation results of controlling the same object by the traditional Linear14

Quadratic Regulator. Because of the lack of constraints for a system size or its linearity, this15

algorithm is suitable for optimal stabilization of more complex vibrating structures.16

Keywords: vibration control, adaptive control, optimal control, policy iterations, Hamilton-17

Jacobi-Bellman equation.18

1 Introduction19

The problem of steering objects subjected to vibrations is present in many branches of20

the modern engineering. Bridges vibrate under moving vehicles and side winds, this21

type of motion can result in the damage of a construction. The need of achieving a22

high spatial accuracy of robotic manipulators is often unreachable because of robotic23

arms vibration induced by moving relatively large masses.24

There exists a rich literature concerning the vibration control, which can be di-25

vided into the development of a specific hardware (i.e., actuators and sensors) and26

control algorithms. The ways of steering vibrating systems consist of active, pas-27

sive and semi-active types of control. Brief description of this three types of control28

systems was provided in (Symans and Constantinou, 1999).29

Passive control systems are described as systems which do not need a power30

supply to operate. The control in passive systems is developed by a utilization of a31
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structure’s motion. Overview of passive control systems was provided in (Soong and32

Constantinou, 1994). Active systems require a large power supply to operate force33

actuators (e.g., electrohydraulic or electromechanical), which attenuate system’s vi-34

brations. Review of active systems was presented in (Soong and Constantinou, 1994)35

and (Fujino et al., 1996). Semi-active control systems may be defined as systems36

requiring a small external power source and which control is developed based on37

feedback from sensor and/or response of the structure. Overview of a semi-active38

control was provided in (Spencer Jr, 1996).39

A semi-active attenuation of vibrations in structures can be performed by using40

piezoelectric sensors and actuators. Piezoelectric elements are an attractive choice for41

vibration control because of their low mass, high bandwidth and low cost (Peng et al.,42

2005). Because of the reversibility of a piezoelectric effect, piezoelectric elements43

work as an actuators and sensors as well. The possibility of the efficient control44

of the vibrating plate by the thin layer of piezoelectric sensors and actuators was45

proposed in (Tzou and Tseng, 1990) and (Hu and Ng, 2005). In (Youn et al., 2000)46

the authors used the piezoelectric actuator to control vibrations of composite beams.47

The actuator placement optimization for a vibrating plate control was presented in48

(Peng et al., 2005).49

Magnetorheological (MR) dampers are used in the field of a vibration suppression50

as well. In (Dyke et al., 1996) the authors developed the model of the MR damper51

and studied its effectiveness in a control of a three-story building. Structural vibration52

control of a building utilizing MR damper was also presented in (Sakai et al., 2003).53

In (Pisarski, 2011) and (Pisarski and Bajer, 2010) vibration control of 1D continuum54

under a travelling load using MR dampers was presented.55

Apart from hardware development, algorithms for vibration control are also in56

great research attention. The Input Shaping scheme is utilized in57

(Hillsley and Yurkovich, 1991), (Tzes and Yurkovich, 1993), (Mohamed et al., 2006)58

and (Singhose, 2009). The optimal controllers for vibrational systems were used in59

(Li et al., 1994), (Kucuk et al., 2013), (Pisarski and Bajer, 2010) and (Pisarski, 2011).60

As well as open-loop algorithms, the field of vibration suppression utilizes feedback61

controllers. Close-loop robust controllers based on H∞ control are presented in (Kar62

et al., 2000b) and (Kar et al., 2000a).63

An additional impediment which may occur in a control of systems exposed to a64

vibration is a change of its dynamics. Robots may move loads of varying unknown65

masses, a structure of bridges changes its shape depending on a temperature. There66

also may occur sudden damages in systems, e.g., shot aircraft acts differently under67

the control and has different air resistance, a bridge after breaking up of one of sus-68

pension wires has different dynamics. An effective controller designed to work in69

vibrational systems has to have an adaptive property.70

One type of adaptive optimal controller is a Model Predictive Controller. This71

controller solves an optimal control problem on each iteration by predicting the sys-72

tem response on finite horizon. The efficiency of the algorithm is achieved by the73
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prediction of the future states of the controlled system. The knowledge of system74

dynamics is crucial for this controller. The adaptive property is achieved for Model75

Predictive Controller by linking with the system identification algorithm.76

The aim of this paper is to study other type of controller suitable for problems of77

vibrations in mechanics. The algorithm, known in literature as Generalized Policy It-78

eration (GPI) was firstly presented in (Vrabie and Lewis, 2009). This algorithm orig-79

inates from GPI algorithms based on the Reinforcement Learning (RL), the branch of80

machine learning science. Roots of Reinforcement Learning are based on a biologi-81

cal observation of animals in their natural environment. Reinforcement Learning was82

firstly introduced in (Sutton et al., 1992). This technique was basically used for find-83

ing optimal control for Markovian discrete systems. The continuous version of this84

scheme was given in (Baird, 1994). The basic idea of RL is that successful control85

should be remembered and more likely used (reinforced) a second time.86

The algorithm provides optimal control and learns system dynamics in indirect87

way, both actions are executed in parallel. The GPI learns optimal control policy88

by interacting with the system. This type of acting is characteristic for dual control89

methods.90

The GPI algorithm shows its main advantage in the presence of the change of91

the dynamics, e. g. mentioned above. It detects this change and after fulfilling few92

conditions it provides control converging to optimal control. In contrast to LQR and93

MPC regulators, the GPI has no need to know the system dynamics. General form of94

the algorithm works for nonlinear problem, what also distinguish GPI form LQR and95

MPC.96

In the Section 2. the problem definition in mathematical manner is formulated.97

The derivation of the GPI algorithm is presented in the Section 3. The next sec-98

tion presents the way of neural network adaptation of this algorithm is made. The99

Section 5. presents simulation results of control generated by the GPI algorithm in100

comparison to the LQR case.101

2 Problem formulation102

Fig 1. Examples of considered structures: a) sandwich beam, b) simplified model, c)
model reduced to control analysis.

Layered structures are commonly applied as elements in complex structures. Thin103

beams or plates with a filling material (Fig. 1 a) exhibiting properties that can be104
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controlled have greater strength to dynamic load than structures with constant param-105

eter filling material. Unfortunately, the elaboration of the control strategy is complex106

and we have to reduce the continuous structure to more simple system with a single107

element being controlled (Fig. 1 b). Moreover, we can reduce our considerations to108

the first mode that in practice dominates in vibrations. In such a case the spring-mass109

system can sufficiently reproduce the continuous structure. This reduced scheme of110

the structure with a suddenly varying system parameter, for example sudden damage111

of structure element, will be assumed to our analysis (Fig. 1 c). The taken action112

can be performed in various ways: by the damping control, the force control or the113

stiffness control. In our work we assume the force action.114

Throughout this work we will consider a controlled vibrating system defined by115

the linear dynamic equation and initial value:116

ẋ = Ax+Bu, x(0) = x0 (1)

with x ∈Rn is the state of the system, A ∈Rn×n is the system matrix, B ∈Rn×m is the117

control input matrix, x0 is the initial state and u ∈U ⊂ Rm is the control input. The118

set of admissible control U conforms to physical constraints of the control device,119

e.g., extreme forces possible to execute by actuators. We assume that the system is120

controllable on Ω ⊆ Rn, i.e., the system can be steered from any initial state to any121

other final state in finite time interval by the control u(t) ∈U . Recall from (Kalman122

et al., 1960) that the linear system (1) given by the pair (A, B) is controllable iff123

rank
([

B AB · · · An−1B
])

= n.124

Classical approaches use the control that minimize integral objective of the form:125

V (x(0)) =
∞

∫
0

(
xT (τ)Qx(τ)+uT (τ)Ru(τ)

)
dτ (2)

where Q ∈Rn×n and R ∈Rm×m are positive semi-definite and positive definite matri-126

ces, respectively. Such form of the objective means that both system energy (related127

to quadratic form of the state) and control (often referred to the energy supplied to128

the system) are the aim of the minimization. The R matrix is usually selected by a129

trial and error to provide that the optimal control belongs to the admissible set.130

The control policy minimizing quadratic objective (2) for linear dynamics is re-131

ferred to as linear-quadratic regulator (LQR). The optimal control is given in the state132

feedback form133

u =−Kx, K ∈ Rm×n (3)

and for the assumed infinite time horizon problem (2), the K matrix is time invariant134

and given by135

K = R−1BT P (4)

Here P is the solution of the algebraic Riccati equation136

AT P+PA−PBR−1BT P+Q = 0 (5)
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The described system controlled by the LQR is governed by the closed loop dynamics137

of the form138

ẋ = Ax+Bu = (A−BK)x (6)

Naturally from (5) the feedback matrix K can be computed only if the system matri-139

ces, A and B are fully determined.140

Now let us assume that the system controlled by the LQ regulator changes its141

dynamics at time t1 > 0, e.g., because of mass added to system, fatigue, loss of142

rigidity, etc. The change of the system can be represented by the unknown change of143

the system matrix from A to . Assuming that the state of the system at time t1 is x1,144

evolution of the modified system is now governed by:145

ẋ = (A+∆A−BK)x, x(t1) = x1 (7)

It can be shown that the feedback matrix K calculated by (4) for the system (1) does146

not provide the optimal control for the system (7). It may also occur that the control147

given by (3) destabilizes the system (7). The sufficient condition for the system to148

be unstable is that at least one eigenvalue of the matrix has a real part greater than 0.149

Such situation will be studied in the Section 5.150

The aim of this work is to study the control algorithm minimizing (2) without151

any knowledge of the system matrix disturbance .152

The algorithm was firstly presented (Vrabie and Lewis, 2009). In the next section,153

we will recall the crucial results.154

3 The GPI algorithm155

In this section we give the short derivation of the algorithm of adaptive optimal con-156

trol for linear mechanical systems. The algorithm was firstly formulated in (Al-157

Tamimi and Lewis, 2007) for discrete-time systems, where the convergence proof158

is also presented. The continuous-time version is presented in (Vrabie and Lewis,159

2009).160

3.1 Preliminaries161

Let us concern a dynamic system defined by (1) and an objective to minimize by (2).162

The cost-to-go associated with the control input u at time t is defined by:163

V u (x(t)) =
∞

∫
t

(
xT (τ)Qx(τ)+uT (τ)Ru(τ)

)
dτ =

∞

∫
t

F (x(τ) , u(τ))dτ (8)

The value of (8) is associated with the value of the objective which will be obtained164

for every future moments starting from the t.165

Definition 1. (Beard et al., 1997) Stabilizing policy µ is such policy that con-166

trol µ (x) is stabilizing with respect to (8) on Ω, denoted by µ ∈ Ψ(Ω), if µ (x) is167

continuous on Ω, µ (0) = 0, µ (x) stabilizes (1) on Ω and V µ (x0) is finite ∀x0 ∈Ω.168
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The objective function V associated with any admissible policy µ ∈Ψ is169

V µ (x(t)) =
∞

∫
t

(
xT (τ)Qx(τ)+µ(x(τ))T (τ)Rµ (x(τ))

)
dτ (9)

By differentiating (9) by time we have170

0 = xT (t)Qx(t)+µ(x(t))T (τ)Rµ (x(t))+(∇Vµ
x )

T (A+Bµ (x)) , V µ (0) = 0 (10)

It is important to see that171

V µ (x(t)) =
t+T
∫
t

(
xT (τ)Qx(τ)+µ(x(τ))T (τ)Rµ (x(τ))

)
dτ +V µ (x(t +T )) (11)

The optimal control problem is then formulated (Vrabie and Lewis, 2009): Given the172

continuous-time system (1), the set u ∈Ψ(Ω) of admissible control policies, and the173

infinite horizon objective functional (2), find an admissible control policy such that174

the objective index (2) associated with the system (1) is minimized.175

By the definition of the Hamiltonian:176

H (x, u, ∇Vx) = xT (t)Qx(t)+µ(x(t))T (τ)Rµ (x(t))+(∇Vx)
T (A+Bµ (x)) (12)

the optimal objective function satisfies the Hamilton-Jacobi-Bellman (HJB) equation:177

0 = min
u∈Ψ(Ω)

H (x, u,∇V ∗x ) (13)

Assuming that the minimum of (13) exist and is unique then the optimal control178

policy is given by:179

u = µ (x) =−1
2

R−1BT
∇V ∗x (14)

After inserting (14) to (9)180

0 = xT (t)Qx(t)+∇V ∗
T

x A− 1
4

∇V ∗
T

x BR−1BT
∇V ∗x , V ∗ (0) = 0 (15)

one can see that (15) is equivalent to the Riccati equation (5) and can be solved to181

obtain the optimal control. Analogically to the LQR case, solving (15) also requires182

complete information about the system dynamics.183

3.2 Iterative solution of HJB equation184

In this section the exact form of the iterative algorithm is presented. The conver-185

gence proof is provided both in (Al-Tamimi and Lewis, 2007) and (Vrabie and Lewis,186

2009). If µ(0) (x(t)) ∈Ψ(Ω) and T > 0 such that x(t) , x(t +T ) ∈Ω, then the itera-187

tion between: 1. the value function evaluation:188

V µ(i)
=

t+T
∫
t

(
xT (τ)Qx(τ)+µ

(i)(x(τ))T (τ)Rµ
(i) (x(τ))

)
dτ +V µ(i) (x(t +T ))

(16)
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and189

2. the policy improvement:190

µ
(i+1) = arg min

u∈Ψ(Ω)

[
H
(

x, u, ∇V µ(i)
)]

=−1
2

R−1BT
∇V µ(i)

x (17)

converges to the optimal control policy µ∗ ∈Ψ(Ω) with the corresponding objective191

V ∗ (x0) = min
µ

(
∞

∫
0

(
xT (τ)Qx(τ)+µ(x(τ))T (τ)Rµ (x(τ))

)
dτ

)
.192

As one can see, the need of knowing the system dynamics for this algorithm re-193

duces to the knowledge of the matrix B. This allows to use this algorithm in situation194

where the state matrix A is unknown and changing in time.195

It should be emphasized that this algorithm can be derived for more general case196

with nonlinear dynamics:197

ẋ = f (x)+g(x)u, x(0) = x0, f (0) = 0 (18)

but in this article only the linear case is concerned.198

Application of the algorithm needs to use any approximation structure for (16).199

The most common choice is a neural network structure because of its simplicity and200

effectiveness.201

4 The neural network adaptation202

In order to solve (16) one needs to use any approximating structure for the value203

function V µ(i)
(x). In this algorithm the simple one-layered neural network will be204

used, but it should be emphasized that any approximating structure that allows to205

calculate the gradient of the function can be used.206

4.1 The neural network topology207

In general, a neural network can have multiple layers with complex topology and208

activation functions can be non-linear. Below, we will show that for the special case209

of linear quadratic problems the neural network can be much simpler.210

Let us consider that the value function V µ(i)
can be approximated for x ∈ Ω by211

one-layered network:212

V µ(i)
=

L

∑
j=1

wµ(i)

j φ j (x) =
(

W µ(i)
)T

ϕ (x) (19)

and213

∇V µ(i)

x =

((
W µ(i)

)T
∇ϕx (x)

)T

(20)
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where W µ(i) ∈ RL is a vector of constant (constant in each iteration) weights, ϕ (x) ∈214

RL is a vector of activation functions and L denotes number of neurons in layer.215

For linear-quadratic problems with infinite horizon it is widely known that216

V ∗ (x) = xT Px, where P is the solution of (5) (Kalman et al., 1960). If V ∗ (x) is a217

quadratic form of vector x =
[

x1 x2 · · · xn
]T , then it is the linear combination218

of functions of the form:219

φs (x) = xd
i x2−d

j , d ∈ N, d 6 2 (21)

so it is sufficient that the activation functions of the neural network approximation220

will have form (19), e.g., x2
1, x1x2, x2x4, etc. It is easy to show that number of221

neurons is equal to L = Cn
2 =

(
1 + n

2

)
, where Cn

k denotes the number of k-222

combinations with repetition of the set of n objects.223

4.2 The teaching algorithm224

It is easy to conclude from (16) that the residual error of the neural approximation of225

value function has the form:226

εµ(i)
=V µ(i)

(x(t +T ))−V µ(i)
(x(t))+∫ t+T

t

(
xT (τ)Qx(τ)+µ(i) (x(τ))

T
(τ)Rµ(i) (x(τ))

)
dτ =

(
W µ(i)

)T
(φ (x(t +T ))−φ (x(t)))+∫ t+T

t

(
xT (τ)Qx(τ)+µ(i) (x(τ))T (τ)µ(i) (x(τ))

)
dτ

(22)

In general way, multi-layered networks need to evaluate weights using iterative227

gradient-based algorithms (back-propagation algorithms) but the special simple form228

of neural network described in this paper allows us to use quick, non-iterative algo-229

rithm, introduced in (Vrabie and Lewis, 2009). The algorithm calculates best weights230

in the least-square meaning by:231

W µ(i)
=−Φ−1 (ϕ (x(t +T ))−ϕ (x(t))) ,

t+T
∫
t

(
xT (τ)Qx(τ)+µ(i)(x(τ))T (τ)Rµ(i) (x(τ))

)
dτΩ

(23)

where Φ= (ϕ (x(t +T ))−ϕ (x(t))) ,(ϕ (x(t +T ))−ϕ (x(t)))
Ω

and f (x) ,g(x)
Ω

de-232

notes inner product for Lebesgue integral on Ω. More elaborate derivation and the233

proof of convergence is located in (Vrabie and Lewis, 2009).234

4.3 The online algorithm235

In this section the ultimate algorithm structure is derived with the concern on the236

practical use.237
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Let us assume that the object to be controlled is an autonomic (i.e., not time-238

dependent) linear dynamic system with known at least B matrix and that the controller239

can measure state x(t) of the system in any time.240

T denotes time-interval after which the control policy µ and value function ap-241

proximation V will be updated. Let us also assume that the controller is able to242

calculate or approximate the cost function243

J =
t2
∫
t1

(
xT (τ)Qx(τ)+µ(i)(x(τ))T (τ)Rµ(i) (x(τ))

)
dτ with the sufficient accuracy.244

One iteration of the algorithm described in 4.2. on the interval (0, T ) takes the form:245

Initialization: Initialize values of the weights W µ(0)
. The control policy used on the246

first interval (0, T ) is denoted by µ(0) =−1
2 R−1BT ∇V µ(0)

x .247

1. At the time intervals (0, t1), (t1, 2t1), . . . , ((i−1) ti, it1),..., ((n−1) t1, T ) (T =248

nt1, n ∈ Z) the local objective is measured:249

Ji =
it1
∫

(i−1)t1

(
xT (τ)Qx(τ)+µ

(0)(x(τ))T (τ)Rµ
(0) (x(τ))

)
dτ (24)

2. At time T, 2T, . . . matrices Φ̂ and Ψ̂ are built:250

Φ̂ =−
[

ϕ(x(t1))
T −ϕ(x(0))T

ϕ(x(t2))
T −ϕ(x(t1))

T

· · ·ϕ(x(T ))T −ϕ(x((n−1) t1))
T

]T

, Φ̂ ∈ Rn×L, (25)

251

Ψ̂ =
[

J1 J2 · · · Jn
]
, Ψ̂ ∈ Rn (26)

3. The next set of weights are calculated:252

W µ(1)
= Φ̂

+
Ψ̂ (27)

where Φ̂+denotes a pseudoinverse of rectangular matrix Φ̂.253

On the following intervals (T, 2T ), (2T, 3T ), etc. the algorithm works the same254

way.255

Implementation of this algorithm differ from the one used in (Vrabie and Lewis,256

2009) by stop and start conditions:257

• The algorithm should stop if error of approximation of V is small enough, i.e.258 ∥∥∥εµ(i)
∥∥∥< δ1 where εµ(i)

is denoted by (22).259

• The algorithm should restart if the dynamics has changed, i.e., the present ap-260

proximation of V has big enough error:
∥∥∥εµ(i)

∥∥∥)> δ2, δ2 ≥ δ1.261

• It is essential that when the change of dynamics occurs and the procedure starts262

again, the initial weights are such that the initial policy µ is stabilizable. This263

condition appears because the change of the dynamics can be such significant264

that old, then-optimal policy could destabilize the new system. In the case of265
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control of mechanical systems, to ensure that initial weights provide stabilizing266

policy control, one can assign 0 to all weights but that associated with veloci-267

ties, which should be set to positive values. In this case initial control policy µ268

resembles damping forces, because it depends linearly on velocities. Damping269

is of course a stabilizable type of control, because it dissipates energy in the270

system. More elaborate description of initial set of weights is provided in the271

Section 5.272

The algorithm procedure273

Initialization. Choose the quadratic objective V =
∞

∫
0

F (x(τ) , u(τ))dτ intended to274

be minimized. Choose the set ϕ (x) of activating function. Set i = 0. Set weights275

W µ(i=0)
to ensure that policy control µ(0) is stabilizable. Choose duration time T of276

each iteration and the number n ∈ N+ of measurements of the objective function in277

each iteration. Choose the value δ1 of the stop condition and the value δ2 of the restart278

condition.279

Step 1. Steer the object utilizing the policy control u = −1
2 R−1BT ∇ϕx(x)

TW µ(i)
.280

Measure the objective function Jl =
tl+1

∫
tl

F (x(τ) , u(τ))dτ and the state xl = x(tl) at281

the time interval (iT, [i + 1]T), where l = 0, 1, . . . , n and tl = (l/n)T .282

Step 2. Build matrices hatΦ and Ψ̂ using according to (25) and (26).283

Step 3. Calculate error of approximation εµ(i)
=
[

ε1 ε2 · · · εn
]T , where εl =284

V µ(i)
(x(tl))−V µ(i)

(x(tl+1))+ Jl .285

Step 4. If
∥∥∥εµ(i)

∥∥∥ < δ1 then don’t change weights, i.e., W µ(i+1)
= W µ(i)

set i→ i+ 1286

and jump to the Step 1. If
∥∥∥εµ(i)

∥∥∥≥ δ1 then proceed to the Step 5.287

Step 5. If
∥∥∥εµ(i)

∥∥∥> δ2 then restart algorithm, i.e., set next weights as the initial ones288

W µ(i+1)
= W µ(0)

, set i→ i+ 1 and return to Step 2. If
∥∥∥εµ(i)

∥∥∥ ≤ δ2 then set next289

weights according to (27), i.e., W µ(i+1)
= Φ̂+Ψ̂, i→ i+1 and return to the Step 1.290

In the real-life implementations, where any measurement has disturbance, choos-291

ing δ1 and δ2 will be a trade-off between sensitivity of the change of the dynamics292

and robustness to disturbances. It is good to point out that the integral Ji (24) has a293

property of a downpass filter and that small changes of dynamics should not change294

significantly the effectiveness of the controller.295

5 Illustrative example - conjugate oscillators under sudden296

loss of stiffnes297

In this section the real-life case of control problem is presented: vibration control298

of the system with jump damage (breaking off the spring). Numerical simulation of299
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the vibrating system is conducted with control provided by the GPI regulator. The300

example is provided with comparison of the LQR regulator.301

The controlled system is composed of two masses m1 and m2, linked to the rigid302

bases by springs k1 and k3 and joined by spring k2. The object is controlled by the303

input force u applied to the mass m2. The scheme of the object is presented in Fig. 2.304

Fig 2. Scheme of the example object. Two masses linked by three springs.

The local coordinates are chosen in such way that the system has equilibrium at305

the point (x1, ẋ1, x2, ẋ2) = (0, 0, 0, 0). The system dynamics is represented by306

ẋ =


ẋ1
ẍ1
ẋ2
ẍ2

= Ax+Bu =


0 1 0 0

− k1+k2
m1

0 k2
m1

0
0 0 0 1
k2
m2

0 − k2+k3
m2

0

x+


0
0
0
1

u (28)

with initial point x(0) = x0, where x0 reflects the displacement of the first mass by307

10−1 m in the direction of the x axis:308

x0 =
[

10−1 m 0 0 0
]T (29)

We assume the following set of model parameters:309

k1 = k2 = 1 [N/m], m1 = m2 = 1 [kg], k3 = 30 [N/m] (30)

For the objective function defined by (2) we assume:310

Q = I, R = 1 (31)

where I stands for the identity matrix. The choice of the parameters (31) means that311

all states and the control will be minimized with the same weight.312

The simulation is divided into three parts. At the time interval t ∈ [0, 30[s]) both313

regulators the LQR regulator and the GPI regulator are tested for control of dynamic314

system denoted by (28) with the initial point (29). The feedback matrix K for the315

LQR regulator is calculated by (4) with the assumption of full knowledge of the316

system matrices and the GPI regulator starts with initial weights. At the time t = 30[s]317

the structural damage is simulated by the instantaneous drop of k3 to k
′
3 = 0.3[N/m]318
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and the system state is set again to x0. The change of the spring stiffness is represented319

by the change of the system matrix by ∆A:320

ẋ = (A+∆A)x+Bu (32)

At the time interval (30, 60] the simulation of the damaged system is conducted.321

Both the feedback matrix K for the LQR algorithm and weights for the GPI regulator322

are not explicitly changed.323

5.1 GPI regulator setup324

Because x ∈ R4, sufficient number of activation functions for the GPI algorithm is325

equal to C4
2
= 10:326

ϕ (x) =
[

x2
1 x1ẋ1 x1x2 x1ẋ2 ẋ2

1 ẋ1x2 ẋ1ẋ2 x2
2 x2ẋ2 ẋ2

2
]T (33)

Gradient of the activation functions has then below form:327

∇ϕy =


2x1 ẋ1 x2 ẋ2 0 0 0 0 0 0
0 x1 0 0 2ẋ1 x2 ẋ2 0 0 0
0 0 x1 0 0 ẋ1 0 2x2 ẋ2 0
0 0 0 x1 0 0 ẋ1 0 x2 2ẋ2


T

(34)

We assume initial weights W µ(0) ∈ R10 as follows:328

W µ(0)
=
[

0 0 0 0 0 0 0 0 0 4
]T (35)

Then initial policy equals to:329

u0 (t) = µ(0) (x(t)) =−1
2 R−1BT ∇V µ(0)

x =

−1
2 BT

(
W µ(0)T

∇φy

)T
=−1

2 BT


0
0
0

8ẋ2

=−4ẋ2 (t)
(36)

The control u0 (t) is the force proportional to the velocity of the second mass with330

the opposite direction to it, so u0 (t) has damping nature which ensures that u0 (t) is331

a stabilizable control.332

The choice of numerical coefficients δ1 for the halt and δ2 for the fire of the GPI333

algorithm was run by the trial and error and these coefficients ultimately equals 10−10
334

and 1, respectively.335

The choice of the duration T and the number n of measurements in each iteration336

is a tradeoff between the speed of convergence of the algorithm and the level of the337

numerical error in calculation of the weights. For the accuracy of the computation it338



Adaptive Stabilization of Partially ... 13

is important to ensure that measurements are applied to as wide as possible range of339

the state values, so for the systems with relatively small time constant, T can be set340

to a smaller value. The adaptation of T to changing system dynamics, i.e., extending341

interval between measurements if the state change is not big enough is workable,342

but this development of the algorithm is not in the scope of our work. It is natural343

to expect that the number n of the measurements should be greater or equal to the344

size of the weights vector which in our case equals 10. The values T and n for the345

simulation conducted in this work are selected by the trial and error and equal 6.6 [s]346

and 30, respectively.347

5.2 Numerical results348

Fig 3. The simulation of the control of the system; a) - displacements of the masses under
the LQR control; b) - displacements of the masses under the GPI control; c), d) - velocities
of the masses under the LQR and GPI control. Blue dotted line indicates the time when
dynamics of the model has changed.

Below, the results of the numerical experiment are provided. In Fig. 3. the states349

of the system is presented. In Fig. 4. shapes of the controls produced by both al-350

gorithms is provided. Fig. 5. Shows objective functionals J (t) =
t
∫
0

x(τ)T Qx(τ)+351

u(τ)T Ru(τ) dτ achieved by both algorithms. One can see in the first part of simula-352
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tion (when k3 = 30 [N/m]) that the best results is provided by the LQR regulator. It353

happened of course because the feedback matrix K was calculated before simulation,354

with exact knowledge of the system dynamics. In the other hand, the GPI algorithm355

presented in this paper starts with no knowledge of the system and begin with the356

safe but not optimal "damping-like" control. From t = 1.8[s] to t ≈ 12[s] one can357

distinguish transition phase of the GPI algorithm where weights are not in the steady358

state. It is important to point out that after this transition phase, the algorithm achieve359

the same effectiveness as the LQR algorithm. One can deduce then the main advan-360

tage of using the GPI algorithm - its effectiveness converges to the effectiveness of361

the LQR algorithm, but it does not need the full knowledge of the system dynamics.362

After 30 seconds, when dynamics is changed and simulation starts from x0 the363

LQR regulation causes instability of the system. All system variables gain values,364

energy is added to the system, the envelope of the control is increasing.365

Response of the GPI algorithm is dramatically different. As presented in Fig. 4.366

b) the change in dynamics is detected almost immediately. The weights are set to367

initial, stabilizing values. The system is taken to the equilibrium state at about 15368

seconds of the control.369

These observations are validated by the chart presented in the Fig. 5. At the tran-370

sition time the objective functional for the GPI control is quickly increasing but after371

the control policy converges, the difference between both objectives became steady.372

At the part of the simulation responding to the change of the system’s dynamics the373

GPI control quickly converges and steers the system to its origin. In the contrast,374

objective of the LQR simulation became superlinear and evidently means that the375

system is unstable. Considering only the second part of the simulation, the final ob-376

jective functionals achieved by both algorithms are 0.1258 for the LQR algorithm377

and 0.0554 for the GPI algorithm, which is the 55% better result than for the LQR.378

Although, it is hard to compare these values because only the GPI control simula-379

tion achieves steady state within the duration of the simulation. The value of JGPI do380

not change after increasing the final time, but the JLQR do, so this comparison is not381

definitive.382
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Fig 4. The simulation of the control of the system; a), b) - control generated by the LQR
and GPI algorithms. Blue dotted lines on the GPI control chart point to times when the
weights are updated, the red ones point to the times when change of the system is detected
and the weights are set to its initial values.

Fig 5. The objective functional for both the GPI and the LQR control case. In the first
part of the simulation, minimization of the objective by the GPI control is worse than by
the LQR control because of the time required to achieve convergence of the control policy.
After that time the disparity between both objectives is steady. In the second part of the
simulation, the objective of the GPI algorithm quickly became constant, i.e., the system is
quickly steered to its origin. The second objective is superlinear, i.e., the LQR controller
made the system unstable.

6 Conclusions383

In this paper optimal adaptive controller of vibrational mechanical systems was stud-384

ied. The algorithm works efficiently without exact knowledge of system dynamics.385

It evinces rapidity of achieving optimal control. Simulation results shows that this386

algorithm successfully controls systems for which classic LQR approach results in387

instability. The studied algorithm requires that first control policy to be admissible.388

For mechanical problems this requirement is particularly easy to fulfill, because pre-389
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dominantly they have velocities of their parts explicitly located in the state vector,390

and the control proportional to velocities of the elements will eventually dissipate391

energy of the system.392
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