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Abstract—An adaptive technique for the solution of the dynamic elastic-viscoplastic problem has been

developed. The mesh modification is performed by the use of the space—time element method according

to error estimation. The number of joints is preserved and the mesh is refined in regions of high stress

gradients. This enables the size of the problem to be reduced and increases the speed of computations.

The incremental procedure in the case of a small time step allows the nonlinear path iteration to be

associated with the time marching scheme. The remesh and remap problems related to stresses are

described. Numerical examples of a plane strain rolling contact problem and collision of the plane strain

object prove the efficiency of the approach.

1. INTRODUCTION

If one wants to treat a phenomenon in a numerical

manner with a required accuracy several compu-

tations problems must be solved. The fundamental

one is the mesh condensation required particularly in

the zone of great stress gradients to investigate

processes occurring. The traveling load, shocks, and

contact problems are characteristic of fast varying

stress fields over the domain. Mesh condensation is,

among others, a convenient method by which to

achieve the increase of the accuracy. However, a

technique with a fixed fine mesh is time consuming,

especially if applied to nonlinear problems. Large

plastic deformations and flow of the material

occurring in some regions can destroy the mesh if it

is assigned to the material points. From these reasons

moving mesh methods were developed (see for

example [1, 2]). In this approach the condensed grid

moves with the feature of interest, leaving the coarse

mesh in the remainder of the structure.

The group of problems in which moving mesh

methods could be successfully applied are contact

phenomena in the case of a traveling contact zone.

Since contact forces or reactions of considerable

value are applied to nodal points it is necessary to

reduce the distances between the joints that are in

contact over the entire path of the load, which

strongly increases the computational effort involved.

It should be emphasized that contact problems

require a sufiiciently small step of the time integration

of the motion equation. .

Adaptive generation of the mesh is assumed for the

described approach. The approximation error is

estimated in each time step and, depending on its

value, the mesh is modified. So called r-adaptation

preserves the number of joints and moves the nodal

points towards the domains of higher stress gradients.

Adaptive techniques are known and commonly

applied mainly to parabolic and elliptic problems. In

the presented approach the mesh adaptation is

performed by the space-time element method

(STEM) and is applied to structural dynamics.

Simplex-shaped elements are applied. This allows one

to obtain directly the system of separated algebraic

equations that can be solved with the joint-by-joint

scheme [3, 4]. The STEM enables mesh modification

in each step in a natural way [5]. This means that

joints of the spatial mesh taken at two successive

times are connected and in this way the space—time

subdomains can be determined. Since the joints have

different coordinates at times that limit the time layer

at the top and the bottom, the space—time elements

have non-rectangular forms. However, the method is

conditionally stable considering both the time step

and the speed of mesh modification [6]. In the class of

problems treated in the present paper neither of the

limitations are reached.

The space—time element approach can be

considered as a time-continuous Galerkin method. It

differs from the time-discontinuous Galerkin

method [7, 8] which leads to A-stable higher order

accurate ordinary differential equation solvers but in

turn gives uneconomically large matrices. Moreover,

the generalization of the time-continuous Galerkin

method to elastodynamics seems possible only in

some circumstances.

2. SPACE—TIME ELEMENT APPROXIMATION

A typical time integration procedure applied to a

nonlinear problem requires force balance in every
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time step. Especially when the plastic flow is taken

into account, the exact evaluation of the contact

stress state is essential. When the time step is large the

iterative procedure is necessary to evaluate the

equilibrium state of the nonlinear process [9]. When

the time step is small enough, the residual forces are

also small and the whole iteration can be reduced to

only one step, preserving the negligible error.

Since the method described below was originally

developed for the contact problem in which the

contact zone can vary and a small time step is forced

by the contact phenomenon, the one-step procedure

was assumed to determine the strain increments.

However, although the full iteration can be applied,

it increases the computational time considerably. In

problems of large deformations the element matrices

must be recalculated at each time step. This effort can

be simultaneously spent for mesh adaptation.

The time marching procedure for nonlinear

problems is described below. The elastic—viscoplastic

material model assumed can be simply replaced by

any other.

2.1. Incremental procedure

Let us consider the time layer 2,. < t s t, + A! =1”,

(Fig. 1). The equation of virtual work can be written

in the form

J‘ (Sq(t)8€tl + pufit,(t)6un)an = RU)

V”

S,1(t)= second Piola—Kirchhofl‘ stress tensor in time

1 related to configuration t,

6,, (t) = Green—Lagrange strain tensor

p“. = mass density in time t,-

R(t) = virtual work of the external forces

RU) =J. ff’(t)5u.<dV,f f.-5(!)5uid5u
V, S,

f .4’0) and f f(t) are components of the externally

applied body and surface forces in time t. Equation

(1) can be integrated over the time interval [1,, t,-+ I].

The incremental decomposition

S!,(’) = Sti(ti) + AS = II.- + AS

6,1. (t) = A6 (2)

u... (t) = u... (t) + Au

ti+At

ti

X

Fig. l. Non-rectangular space—time element of uni-dimen-

sional object.
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and the constitutive relation

AS = C" Ac (3)

are also assumed. Finally eqn (1) has the form

I, + A!

J J‘ r,l,6(Ae)dV,, dt

’1' VI,

1, + A:

+J J AS¢5(Ae)dV,idt
1,- V"

t. + Ar

+ J I p, a,(z,.)¢s (Au) dV,, dt

'1' VI]

1, + A:

+J I p“. All 6(Au) dV,', dt

'1’ VI,

I,- + A:

= J R(t) dt. (4)

The double integral I?“ L,” can be replaced by

the integral over the space—time domain

9,: {x, t: xe V,, tis t s t,-+At}. The strain A5 is

split into a linear and nonlinear part

A6 = Ae + An. (5)

Applying eqns (3) and (5), neglecting higher order

small terms and integrating by parts, we obtain

J r,,.6(Ae)dn,+ I c,,Aea(Ae)dn,

n- n-r I

— J 9;, I'I,(t)5(AI'I) in - J PI, AI'I 5(AI'I) d9.-
n~ n,

=Q.- —J r1,-5(A'1)dQ,-- (6)

Hi

Let us denote the nodal displacements in the

space—time element by q,., The vector q, couples

displacement increments at times that bound the time

layer i from the bottom and the top. The

displacements in the interior are expressed by the

interpolation

u = N(x, t)q = N(x, t) - (7)

This leads to the relations

e=Du S=Ce e=DNu. (8)

D(x) and DN(x) are the linear and nonlinear differen-

tial operator, respectively. The force equilibrium
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equation

U (DN)TCDN do, + I (DNNVtDNN d0.-

9, Qt

6N T 6N ,.

6N T m

{Liflpaid‘m ‘9’
can be written in a short form

(K2 + KS”, + M')Aq' = AF — (F3, + Miq’ — F’), (10)

where

K; =J (DN)TCDN do,

0:

Kin = J‘ (DNN)TTDNN (in:

9:

6N T 6N

M=_ _ _ .

' Li(6t>p6tdfl‘

FN=J (DNVT‘ mi. (11)

0/

We must emphasize that the load vector F in eqn (10)

exactly represents impulse components, the

dimension of which is Nsec. Hence the linear KL and

nonlinear KNL stiffness matrices have a dimension of

Nsec/m and the mass matrix M is in kg/sec.

The step-by-step algorithm is described by the

following formula:

Ci- 1 Aqi—l + (Di—l + A1)Aqi

+B,Aq,-+, =AF,.+F,-—F!‘—F§”- (12)

Index idenotes the number of the time step, Aq, is the

incremental displacement vector in time t,.. F!‘

accumulates the internal forces and Ff” accumulates

the increments of nodal forces contributed by inertia

and damping. These vectors are described below

Ff: Z [Cf—ZAqn—Z

"=1

+ (DnK—Z + AnK— l)Aqn-l + 35—1 13%] (13)

Fill: z [Cy—ZAqn—Z

n-l

+(DrIIM—2+Ar]il—1)Aqn—l +BnM—1Aqni- (14)

Matrices A, B, C and D are the upper left, upper

right, lower left and lower right submatrices,

respectively, related to the ante and post moments [3].

Superscript K indicates the stiffness matrix

contribution and M indicates the inertia and damping

contribution.

2.2. Viscoplasticity

The elastic—viscoplastic property of the material

behaviour is assumed. The formulas primary

described in [10, 11] and then applied for numerical

purposes by Zienkiewicz (for example [12]) will be

presented in brief below.

The velocity of viscoplastic strain can be written as

'"P— as 5 6F 15E -l’ 6y ( )

y is a linear creep coefficient (y =10‘5—10‘3). The

flow function for the plane strain F = (312)“2 — ay (try

is a yield stress). The function a) is assumed as an

exponential one

F F N

¢(—> = (~> . (16)

0y 0y

Depending on the flow function F the expression <-)

is equal to

F 0: - = 0

< < > . (17)
F 2 0: (~> = (D

The stress increment Aa which is accumulated can be

solved by the relation

A6 =EDNAu—EA5’WAI. (l8)

3. MESH ADAPTATION

3.1. Error estimation

The formula engaged in the error estimation

procedure should be rapid. Otherwise since it is

applied in every computational step it would strongly

increase computational times. If we denote by h the

dimension of the mesh, the distribution of the error

is given by the integral

J h(u§x+u§y)dx dy =const. (19)

A

Applying the interpolation formulas to eqn (19) we

obtain the value of the error in a joint.

2 1/2

REC; A ZkaN{kuI,dAm>] . (20)

j denotes the number of the joint in the element m to

which the joint i belongs. k is the x or y coordinate.

The shape functions are linear, the derivatives NJ. are

constant and in such a case formula (20) can be given

explicitly. This considerably increases the speed of

calculations. In further applications we use eqn (20)

as the error estimator.
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Another approach is presented by Zienkiewicz et

al. [13—15]. Theerror is estimated by the energy norm.

The difference between the accurate and received

stresses a—a‘ is replaced by the estimate difference

a*—é, where 0* is a good approximation to the

accurate solution. It can be obtained by a chosen

averaging procedure. Thus the error distribution is

related to finite elements. The given formulation can

be applied alternatively.

3.2. Remeshing

The modification of the mesh is described in the

following steps.

1. Evaluation of nodal errors.

2. Normalization of nodal error values.

3. Calculation of joint components of movement

toward points of high errors. The nodal point that

is considered is placed in the center of gravity of

adjacent joints weighted with the nodal errors.

4. Verification of the mesh distortion. Dubious joints

are relocated to construct the correct mesh in the

neighborhood.

An additional requirement is that the contour must

be preserved. The node lying on the boundary should

remain there after remeshing. It is obvious that

corners must be untouched. Two stage of operations

allow the adapted and deformed mesh to be

prevented from distortions and non-proportional

element dimensions.

First we must select the nodes that are placed in

regions where the faults in the mesh were detected,

the relocation of which improves the mesh properties.

A simple and efficient algorithm was published by

Benson [16]. It detects the shear and volumetric

distortion. Results are assigned to joints. Although

the relations given by Benson are determined for a

quadrangular mesh, they can be successfully applied

for a triangular mesh taking into consideration its

quadrilateral form based on couples of triangles.

Volumetric distortion R, is determined as the

quotient of the smallest area to the largest area of the

quadrangle surrounding the node (Fig. 2).

_ min(Al,A2,A3,A4)

"— max(A,, 212,143, A4)

(2|)

 

Fig. 2. Quadrilateral mesh tested for distortion.
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A1=lev2’ A2=v2xv3s

A3=v3xv4, A4=v4><v.. (22)

Shear distortion is determined by calculating the

minimum sine of the angles formed by the comers of

the elements surrounding the node

, A

0' =“nu1| iv. n
, A

“2 = butM iv. u
_ A

93 =WM iv. u
A

s"“"=‘—uv.uin” (23’ ~

R9 = min(sin 61, sin 62, sin 9,, sin 04). (24)

Comparing the sine of angles we prevent the elements

from having both acute and obtuse angles. This helps

to avoid inverting the elements.

The following restrictions must be checked in every

step to avoid mesh degeneration and loss of stability.

1. Maximum value of nodal movement [1mx in one

step (c is the wave speed)

dmx = c At/lil. (25)

2. Minimum element size bmin

bmm = [32c At. (26)

3. Volumetric distortion

R3“ > R2. (27)

4. Shear distortion

Rani“ > R3. (28)

The safety factos B1, [32 should be greater than 1; R2

and R3 can be assumed as 0.5.

3.3. The remap problem

The generation of a mesh which is different from

the mesh in the previous step that allows one to

continue calculations with smaller approximation

error is the first stage of calculations based on the

mesh with modified geometry. The second stage, to

be discussed below, is the projection of stress

components to new domains.

There are several fundamental requirements that

the remap algorithm should meet.

0 The remap procedure must be efficient since it is

applied in every step.

e Remapping must be accurate.
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0 The remap algorithm should be conservative. The

integral of any quantity over the spatial domain

should remain unchanged after remapping.

o The stability criteria limit the distance of the node

movement in a time step.

0 The algorithm should be consistent. This means

that if the new mesh is identical to the original one

then the projection cannot change the quantities.

In our case the stress vector is the only quantity to

be remapped. If we had point forces, the remapping

would be trivial. However, the stresses that cannot be

concentrated in joints and after remeshing

redistributed back over element areas complicate the

problem.

We assume that the distance of joint movement

is much smaller than the spatial size of the triangle.

This allows one to compute the required values with

the error of the lower range. The approximate

formula was admitted to shorten the computational

time

A -+ I

3

of“ =i[0,~‘A,-‘ + 2011-” —af)AAj—]. (29)

l ‘= 1

AA,7 denotes the area increment in the former mesh

which is equal to zero when it covers the element

domain in new geometry A f" and is positive in

another case (see Fig. 3). It is placed between two

elements and is taken into account once. It can be

noticed that near the corners the computations are

not accurate. However, the influence of this simplifi-

cation on the final results is negligible. We can see

that when the subareas determined by the crossing

edges of triangles are considered with accuracy (that

may be troublesome) formula (29) is accurate,

efficient, conservative and consistent.

4. NUMERICAL EFFICIENCY

The numerical efficiency is one of the fundamental

features that must be taken into consideration in the

solution of nonlinear problems. Calculation of one

time step in every space—time finite element solution

consists of two stages: formulation of global matrices

after modification of the geometry as well as material

properties and the solution of the system of algebraic

 

Fig. 3. Area increments in the remapping.
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equations. Consideration of the form of the mass

matrix and the method of damping is essential to the

cost of the solution. The diagonal mass matrix and

numerical damping enable fast calculation of the

resulting displacement vector. The equations in the

system can be decoupled if the explicit method of time

integration is applied. However, in some problems

the consistent mass matrix, and consequently

described damping, is required. In such a case the full

solution of the system of equations increases the

computational cost.

Looking at the algorithm we can estimate the

number of arithmetical operations per computational

step. The number of multiplications M for the

solution of displacements only (without evaluation of

coefficients) depends on the required storage

capacity. It is

M = 2sN(c + 1), (30)

while 3.5sN(c +1)+1.53N numbers are held and

M = 3sN(c +1), (31)

while 1.5sN(c + 1) numbers are held. c is the number

of adjacent joints in the mesh; N is the total number

of degrees of freedom and s is the nodal number of

degrees of freedom.

The cost comparison of the space-time solution

with the general numerical method of time

integration is discussed below. The following

assumptions define the general time integration

method:

I. The element matrices exhibit

symmetry.

2. The regular band of the global matrix is held.

3. The consistent mass matrix that forces, among

others, the solution of the system of equations.

4. Damping is not considered.

5. There is optimum joint numbering for the

minimum band width.

6. Multiplications by zero in the band are not

eliminated.

7. The central difference scheme was assumed as a

solution procedure.

and global

The cost relation is depicted in Fig. 4. The slope of

the cost of STEM is smaller than the cost slope for

the central difl‘erence method. For a greater number

ofjoints the crossing point of the two curves exhibits

the higher efficiency of the STEM. The Gauss

procedure engaged in the CDM gives the greatest cost

contribution. In the case of other time integration

procedures the comparison can be less optimistic.

However, it must be emphasized that the cost of the

solution by the STEM is linearly dependent on the

number ofjoints (with no respect to the dimensional-

ity of the structure).
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Fig. 4. The cost of the space—time element method: the finite

element method + central difference method (FEM + CD)

and the space—time element method (STEM).

5. NUMERICAL EXAMPLES

Several numerical examples prove the efficiency of

the applied approach. At first simple testing problems

were solved to exhibit the phenomena accompanying

the numerical algorithm. This is more important

especially when we cannot distinguish the numerical

instability effects from the physical ones. The

influence ofdamping coefficients can be simply shown

when non-complicated structures are solved.

Examples of real engineering problems are

presented below. Material non-linearities and unilat-

eral contact are considered together with the adaptive

mesh modification technique.

5.1. Elastic—viscoplastic rolling

In this example rolling of the plane strain strip by

the rigid roller was considered (Fig. 5). The contact

condition was realized by the force penalty function.

The Coulomb friction was assumed in the contact

zone. The following numerical data were assumed in

the example: E = 2.05, v = 0.3, p = 7.83, n, = 0.2

(external damping coefficient), y = 5 x 10“, u = 0.5

(Coulomb friction factor), N = 1, 0y =0.0042.

Results are depicted in Figs 6—8.

5.2. Bar collison

We consider a symmetric rectangular plane strain

object made of elastic—viscoplastic material (Fig. 9)

moving with a speed v toward the rigid wall. First

computations were performed to show the influence

of the mesh and the time step on the results. The

horizontal displacement of the end point placed on
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Fig. 5. The plane strip in the rolling process.
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Fig. 6. The mesh before and after remeshing (‘+’ denotes

the position of the centre of the roller).

  

the symmetry axis was investigated. Figure 10

exhibits the influence of the )1 factor on the solution.

Figure 11 shows the influence of the time step when

y is equal to 5 x 10”. Results for successively con-

densed mesh (4 x l, 8 x 2 and 16 x 4 squares divided

into triangles) with y = 5 x 10‘4 and At :01 are

depicted in Fig. 12. In all these tests the constant

mesh was applied. The very strict difficulty appeared

when the large plastic deformation of the face of the

body approached nodal points too closely. In such a

case the only solution. was to coarsen the mesh or to

reduce the time step. The mesh adaptive technique

seems to be appropriate.



In addition, the evolution of the collision
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0.0 cm

1.0 cm

 

‘5‘oo.o 2.0 4.0 0.0 3.0 10.0 12.0 14.0 16.0

2.0 cm

 

3.0 cm

           

. 0.0 2.0 4.0 6.0 0.0 10.0 12.0 14.0 16.0

Fig. 7. Second invariant of stresses in successive stages.

6. CONCLUSIONS

process was investigated based on the constant

and adaptive mesh discretization. Comparison of

displacements in time for the constant meshes and

the adaptive one shows the improvement in

results when the adaptive technique is applied

(Fig. 13).

The application of the adaptive technique to the

solution of dynamic contact problems was presented.

The use of the space—time element method is expens-

ive since a great number of coefficients has to be

determined in one computational step. Here we gain
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0.0 cm

1.0 cm

2.0 cm

 

Fig. 8. Deformations (magnified by 50) in successive stages.

E=2.05, u=o.3, p=7.83
ay=0.0042, N=1.0

 

Fig. 9. Collison of the bar—example.

the possibility of simple mesh modification in time.

Since the coarse mesh can be applied the total

numerical cost decreases in the resulting algorithm.

The total cost is a linear function of the number of

joints for the arbitrary dimensionality of the structure

and this feature may be attractive. In the case of large

plastic deformations we can protect the mesh against

distortion or approaching of joints. Several testing

x.
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Fig. 10. Comparison of horizontal displacements of the free

end in time for: (A) v = 5 x 10"; (B) y = 5 x 10"; and (C)

y = 5 x 10".
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3.25

 

0 so 100 150

time

Fig. 11. Comparison of horizontal displacements of the free

end in time for different time steps.

4.00

3.90

3.80

 

0 so 100 150

time

Fig. 12. Comparison of horizontal displacements of the free

end in time for selected mesh densities.

solutions prove the efficiency of the presented

approach in selected problems.

The appropriate error estimator is still a separate

problem. Applied formulas should provide the mini-

mum error not in a single step, as it is in elliptic

problems, but in a considered time interval that

contains a great number of steps. Experience on this

subject is limited. -‘ ’ '

 

time

Fig. 13. Displacements in time of the free end for constant

and adapted mesh.
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