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FEATURE ARTICLE
tutorials and items of special interest

State-of-the-Art In the Space-TIme Element Method

C. Bajer' and C. Bonthoux²

Abstract.
(STEM), a computatlonal dlscrete method for the
space-tlme modellng of physlcal problems, is
descrlbed. The methodhạs mánypractical
advantages andcomplements existing solution
methods.

The space-tlme element method given. Advantages and disadvantages are exhib-
ihed. Further considerations, supportedby examples
of testing and real problems, are provided to enable
engineers to deterimine if the method is suitable for
their own professional practices.

HISTORICAL BACKGROUND
In recent years computational mechanics has
developed čonsiderably because of the progress in
the field of computatiönal tools. Fast supercom-
puters, matrix, and parallel processors enable
engineerstosolve problemsofincreasinglycomplex
structures. Static solutions, both linear and nonlin-
ear, do not cause any significant difficuties.
Eiğenvalue problems are solved also in a single-
stage process, and in this case even a highy
discretized domain can be treated.

Early approaches to the space-time modeling of
physical problemswere published in 1964 by Gurtin
12 and'HerreraandBielack[3]. Specialdefinition
of the functional to be mininized, based on the
convolution theory, allowed one to derive the
dependence between spatial and time variables in
objects that could be called "space-time elements."
Later, in 1969 Oden [4] proposed a generalization
of the finite element method. He extended the
interpretation of the structure for the time domain.
Unfortunately, nonstationary partition of the struc-
ture into discrete subdomaíns as suggested in his
work was not continued. Ainsworthy (5], Argyris,
Scharpf, and Chan [6-8] started to treat böth spatial
and time variables equaly during formulation of the
problem. However, eveni in the work of Kuang and
Alturi [9], the final discrete treatment was performed
separately in space and time. Still, thė dynamic
problems were solved by methods inwhich spatial
and time variableswere decoupled. Spatial domain
was discretized by a selected discrete method (finte
element, finite diterence) while the time derivätives
were integrated separately by another numerical
tool.

Onthe basis of the estimation of approximation error,
a new direction of research has been initiated. Aii
the so-called "adaptive processes" are to minimize
the error resuting from the replacement of the
continuous problem by a discrete one.
treatment mainly concerns non-evolutionary pro-
cesses.

Such a

1

True computational difficulties appear when the
integration of the diferential egquationof motion is to
be performed.
restriction, especially when nonlinearities are
included.
realistic material behavior, consideration of contact
between two deformable bodies, existence of
muti-phase media, and other advanced techno-
logical methods.

Time of calčulaton is the main

Nonilinear problems necessitate more

Many diferent computational discretemethods are
in use.
method (STEM) can be added. lt can be considered
as an extensión and generalization of the finite
element method (FEM). Although it was developed
for dynamic problems of structures, it can be easily
applíed to every time-dependent problem. Below a
short description of characteristics of the method is

Numerous papers appeared on the direct time
integration of the differential equation based on the
statíonary partition [10,11]. Uhconditional stability
in time, damping of high-frequency modes, and
efficiency in applications are the features required
commonly in practice. Classical time integration
methods have such advantages. However, there
are problems in which the exlsting methods fail, for
example, in problems with a moving boundary. In
such a case the approach to heat transmission was
described by Bönnerot and Jamet [12,13]. In

To this variety, the space-time element
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gainedwhen variablemesh is applięd. Recenty
developed simplex-shaped elemenits lead to highly
efficient numerical procedures.

successive works [14] time integration schemes
were still called by the term "space-time element"
although the distribution of spatial and time variables
was performed by diferent functions. The paper by
Kujawski and Dessai [15] is a good example of such
an approach.

The first complete and clear space-time approxi-
mation for strúctural dynamics was made by kacz-
kowski[16,171. Since then many papers have been
written on the subject of vibration analysis in the
space-time domain. New ideas replaced the old as
researchers found ways to better solve difficulties.
However, only some of these ideas have made a
Contribution to the present form of themethod. Only
these will be cited.

The space-time element approach, which is in the
scope of this paper, can be considered as a time-
continuous Galerkin method. It differs from the
time-discontinuous Galerkin method [26,27], which
leads to A-stable higher: order accurate O.D.E.
solvers, but in turn, gives uneconomicaly large
matrices.. Moreover, the generalization of the
time-continuous Galerkinmethod to elastodynamics
seems possible only in some circumstances.

Kaczkowski and Langer [18] expressed strains and
stresses in terms of spatial and time variables. Initial
conditions can be regarded as boundaryconditions
placed on the layer of constant time. The interp0-
lation (shape) functions are then written as N(x,),
and generally variables cannot be uncoupled. Only
suchaformulationcanbeunderstoodas afulSTEM
approach. A similar description was presented by
Riff and Baruch [19,20]. NewConstitutive equations
were considered by Podhorecki [21)investigationswerealso performe5 Accuracy

In this paperonly thecontinuous.in time space-time
finite element formulation is discuşsed. However, a
general approach is restrained by stability lirmita-
tions. Arbitrary node location in time space cannot
beappliedsuccessfully(this feature resuts from the
properties of the hyperbolic equation, of motion).
Stability criteria aregiven for,.selected structures
(28]. Numericalexamples prove the efficiency of the
approach in ditferent problems of structural dyna-
mics (29).

time
contact area

beam
plate

2
X

beamFigure 1. Subdivision of time step in the contact
region

plate
3-Ď 'bodyi?

Although the early papers concern uni-dimensional
structures, and conditional stability is still the main
disadvantage of the formulation, the space-time
finite element method improvedquickly. Space-time
elements of non-rectangular shapes were intro-
duced [23,24). A triangular beam element of arbi-
trary joint location was used to express a space-time
element approach to contact problems. A'decrease
in the integration time step for some spatial regions
with higher speed of displacement is possible with
the use of triangles (Figúre 1). A formulation of an
unconditionally stable variant of the method for
multiplex-shaped, space-time elements [25] can be
regarded as' a further improvement.
shaped elements applied to constant spatial mesh
leadsto one of the time integration methods because
separation of spatial and time variables can be
completed, Shape functions can be written then as
N(x.) = X() T(O. However, additional facilities are

Figure 2. Examplesofspace:-timefinite elements

rFUNDAMENTALCONCEPTSn0
In the space-time element method interpolation
functions are applied both to spatial. and. time
domains. Time variable is consideredas an addi-
tional variable of thecoordinatesystem [16,24]. The
object to be analyzedgains one additíonal coördi-
nate axis.That is why foruni-dimensional structuites
there are two-dimensional space-time elements.and
three-dimensional objects for; two-dimensional
problems. Somesample space-time elements are
depicted in Figure 2. The shape functións' Nthat are

Mutiplex-



used to interpolate displacements u inside the
space-time domain with nodal values ql are func-
tions of x and t:

i time

.

b 2243.67091012n4:siuu(a) = ENĜ)4;. D T(1) -

iisDetailed derivation oftthe fundamerntal relations.can
be found inworks by.Kaczkowski:[17], Kaczkowski
and Langer. [18], and Bajer [24. The resuting
element:matricesihave dimensions equal to the
number of degrees offřeedomHin'an element. The
assembly of the global matrix K* is performed in the
same wayas in theFEM;consideringthetopology
of the space-timemesh. The rèsuting matrixIs
composèd.ofstiffhéssiK,ineniaM,janddampingz

P w
Figure3. Assembly of a globalmatrtX for triángülar
space-time elemenits'

FEM+CD
Contributions

10K* E (K+M+Z) i (2)
10The final system of, algebraic equations has a

half-infinite forra:

number of joints
(0)] Figure 4.

method: the finite element method and central
diference method (FEM+CD)`anid the space-time
element method (STEM)

The cost of the space-time element
CD,tA,B,

C,
|4

D, tA, B, i
D,t+si BC

(0) BENEFITS OF SIMPLEX-SHAPED ELEMENTS
i

It the space-time elerments have tie shapes of
triangles, tetrahedrons, or hypertetrahedrons, con-
siderablė savings of compüiational effort çảñ be
gained. The efficiency is increased significantlýfor
severalreasons. Simplex-shapedelementslead to
triangularforms of coefficient miatrixB (Figure 3) with
reduced number of coefficients. Second, the sou-
tion of the algebraic system of equations cạn be
caried out joint-by-joint directly, siñice the resuiting
coefficient matrix is triangular (24,31]. Thus the
numberof arithmeticoperations per time step is
reduced. This is essential particularly in nonlinear
problems, when the system of equations has to be
soved in every step. The number of multiplications
perstep Mis giveri by therelation

(3

and can be,solvèd'stepwiseëwhen the initial dis-
placements q, are known:

8noo (4)
Zero initial velocities aré assumed automatically.
Non-zero values can'be expressed by thedifferenče
(q2 q,)/A,. In Equation '4 all the matrices have
dimensions equaltő the'fotal numberof degreesof
freedom in a real (spatjal) structure.

..The STẾM'enables themesti modifcationfneach
step ina nạtural wáy[301. Itmeansthatjoihts.of the
spatiafmesh täken in two sụccessiveintervals of
tifme atecorinected, and inthişwaythespace-time
Subdomains,canbe, dterminéd.Since the joints
have differentcoorginàtesirrdifferenttimeinteyals
ipitijngthetimelayeratthë topardthebottom,the
spacotime elementshávënọn-tectañgularforns.

M=25N(C+1)

where: a'::9 9GB:
nodalnumberofdegreesoffreedom 0!2si

N totalniumberofdegreesoftreedoni18lgiTiGa

S



C: numtberof joints adjacent toone joint in a spatial
mesh

m

It must be emphasized that the cost is independent
of the numbering of nodes, and terms such as the
bandwidth do not exist. A cost comparison between
the simplex-shaped STEM and the central difference
method is depicted in Figure 4. For larger structures
the STEM İs more economical than other methods
of direct integration of the motion equation.

1.
Figure 7. Intinite beam subjected to a rmovingmass
systemwith several, points of comact

time
Thedescribed propertyseems to behelptul inthe
solutionofprobleriswith travelingforce:Consder
an infinitelyong string orbeam onwhichthesystem
ofmassesmoveswith the speed cose to thewave
speed (Figure 7): In a typicalnurmericalsolutiona
imited numberof elements in adiscrete modelmust
beconsidered.In'suchacasethereflėctioniofwaves
from the endsof the structuredisturb's thesolution.
TheSTEM allows the problém to be reduced to only
a fewdegreesoffreedomáidavoidsthëinfluence
ofreflectiononthevibratingmasses. Evèna limited
speed of informationflow mákes the wậve unàble to
precede the mass system, arnd the reflection'from
the right end will never reach the movingmass [321.
Diferent dimensions between contact points do not
state the problernşince the värying 'spatialpartition
allowsone to adjust the nodal points of theinfinite
linearobject to the travelingvehicle. 'ad bsiik

10-

Figure5. Propagationof information inthe triangular
mesh

coupling

sO1 1O 2 11 3 12 13 5 14. 6 15 7 16 8 17 L
Figure 8.Domain of the load influence for a
two-dimensional object-i . Theproblem reduced to one with a small numberof
joints is convenient for stability testing: The coupling
of contact poits through the mass moving in a
Supersoniçrange generates growing ampliudes.
Thestepping scheme can be written in a förm:

200ii9
SFigure 6. Symmetricwavespeedfortriangularmesh

The next advantage concerns the physical property
ofthe simplex-based mesh. In such cases the limited

:Speed of, information flow can be determined
ậccording to the slope edges (Figures 5,6). This
Jeature js an improvement of the numerical solution
of thebyperbolicdifferentialequation. Inpractice
Gthe:wave speed should limit the speed of propaga-
9tion of:the numerical information in the discrete

Əoi0i 90i2ivs-e)

andthestabilityinvestigationįs redyced tohe
calculationof the spectralradiuspof T hesysem
isunstablewhenthe following çopdition-oçc!



P(T)>1 allowed, the exact adaptation strategyfor evolu-
tionary problems should'not be derived'from simple
error estimation, based on a state in a given moment.()

Eigenvectorsof Texhibit the form, of unstable
detormations.The ldenticalapproąch can be
applied to mułti-dimenslbnàlstructuressubjected to
a movingmass systemIn thiscasathenurgberof
finite elementstaken nto`açcountdependsbn the
shape ot the` strutuře.
dimensionsispresentedIn igure.Bi,

1.5

1.0

0.5
30.0
o.5:

w i A1.oMMN

tfme
Fhe exarnple for two 100

ESHADAPTATIÒN -1.5.

Adaptive techniques węredeveloped tó reduçe the
intepolation eror when-the computational cost
forcėsa limited rumber offinite elements ònwhich
the domain canbe divided: Thrëegeneraldirèctions
can beseen: h-adaptation,in whicha single element
isdivided into şmaler, elements,redücing themesh
dimensionH:p-adaptation,in whici theacčuracy
increasing the polynomial order-and r-adaptation is
improvedi and when nodal points arerelocated from
regions ofNowererrorpstimatiori to regions of higher
errorvalues s.Below tha third,kind ofadaptive
technjqueris; exhibitedsince the joint rekocatión is
very natural;in theSTEM[3),33-34)-

Figure 10. Bar subjected by an impulse -- dis-
placement for çonstant and adaptivemesh

The.first example (Figuré 9) shows the relocation of
joints -in time.for the barfixed in onė end. and
subjected to aHeáviside force. Thewave reflećtion
can be noticedfrom the fixėd end.The joints first
go towardthe wave force and then follow.it: For
uni-dimensional problems [30]the mesh adaptation
removes the higher order modes resulting from'the
reflection from the mesh nodes (Figure 10).

Variouserrorestimatorscanbeapþlied todetermine
the. ertor distribution(35-37). Basically thể rule is
fulfilledbelow iv 6 C!3

)2Sbe
(8)

WWWWWWW
WWWWWwwHaxdy = constant

WW
tfne

Figure 11. Mesh adaptation in the ròlling process

Aniother example presents the rolling cortact prob-
lem [38,39] and shows the mesh condensation in the
contactregion(Figure11). Such a techniqueallows
one to apply coarse mesh outside the contact
domain. Phenomena occuring on the contact face
(i.e. stresses, friction distribution) can be invest-
gated with a good accuracy while outer parts do not
require fine partitioning. In applying other methods
onė should refine the meshon the entire pathof the
roller, increasing the computational cost highly.

13 930sin . :
iiJOerieogo?
shutiçns

FUTUREDIRECTIỎNSenonT2930Sv 100
Figure 9. Mesh evaluation in the bar subjected to a
eaviside force

The STEM described_above,hạs many.practkćal
advantages.Itcomplementstheexisting3olừtion
mėthods.
restrictions in applications of the method. sCondi-
tional stability for simplex-shaped elementsis:one
of them. Higher order approximation of both space
and timeis not investigated sufficiently..he lim-
tation of the wave speed by algebraic means shòws

Future 'develöprients should reimove
Al the existingerrọrestimators.showthe,error
distribūtionin asinglestatic stąte.Indyrnamic
iTproblemstHe estímátlon is carřied ön globally; in the
tirmenterval-fn which thè stručture is observed.
Since quite arbitrary mesh modification is not

a7



12.r.Bonnerot, R. and Jamet, P., "ASecond0rder
FiniteElement: Method for theOne-Dimenslona
Stefan Problem,ilntl. J. Numer. Methods Engra.&

theopportunity to introduce the method into infinite
structure analysis. The whole range of h-adaptive
techniques cản be developed and applied suc-
cesstully to wave problems. Mixed h-r-adaptivity
could allow physically mutiphase mediums to betreated.i:1 :

pp811-820(1974). " e*ir
13. Bonnerot, R, and Jamet, P, "NumericalCom-
putation of theFree Boundary for the Two-
Dimensional Stefan Problem by Spače-TimeFinte
Elemeits,"J Oomp, Ptiys25, pp 163-181(197m),

In general the space-time element method is the
same convenlenit tool for dynamics as the finite
elementthethod isfokstatics.For vibrations itis the
tnastsduoationalnumericatmethod available based
entiedomain.discretization.aiak i$İ 14.. Kohler, W. and Pitr, J. "CalculatjonofTran-

sient Termperature,Flelds with FinteElementsin
Spàceand-Time pimėnsions,nt, Numer.
MethodsEngrg.,&. pp 625-631 (T974)38
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