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FEATURE ARTICLE

tutorials and items of special interest

State-of-the-Art In the Space-Time Element Method
C. Bajer' and C. Bonthoux?

Abstract. The space-time element method
(STEM), a computational discrete method for the
space-time modeling of physical problems, Is

escribed. The method has many practical
ad%r;tgges and complements existing solution
me S.

In recent years computational mechanics has
developed considerably because of the progress in
the field of computational tools. Fast supercom-
puters, matrix, and parallel processors enable
engineersto solve problems of increasingly complex
structures. Static solutions, both linear and nonlin-
ear, do not cause any significant difficulties.
Eigenvalue problems are solved also in a single-
stage process, and in this case even a highly
discretized domain can be treated.

Onthe basis of the estimation of approximation error,
a new direction of research has been initiated. All
the so-called "adaptive processes" are to minimize
the error resulting from the replacement of the
continuous problem by a discrete one. Such a
treatment mainly concerns non-evolutionary pro-
cesses.

True computational difficulties appear when the
integration of the differential equation of motion is to
be performed. Time of calculation is the main
restriction, especially when nonlinearities are
included. Nonlinear problems necessitate more
realistic material behavior, consideration of contact
between two deformable bodies, existence of
multi-phase media, and other advanced techno-
logical methods.

Many different computational discrete methods are
in use. To this variety, the space-time element
method (STEM) can be added. It canbe considered
as an extension and generalization of the finite
element method (FEM). Although it was developed
for dynamic problems of structures, it can be easily
applied to every time-dependent problem. Below a
short description of characteristics of the method is

given. Advantages and disadvantages are exhib-
ted. Further considerations, supported by examples
of testing and real problems, are provided to enable
engineers to determine if the method is suitable for
their own professional practices.

HISTORICAL BACKGROUND

Early approaches to the space-time modeling of

hysical problems were published in 1964 by Gurtin
1,2] and Herrera and Bielack [3]. Special definition
of the functional to be minimized, based on the
convolution theory, allowed one to derive the
dependence between spatial and time variables in
objects that could be called "space-time elements.”
Later, in 1969 Oden [4] proposed a generalization
of the finite element method. He extended the
interpretation of the structure for the time domain.
Unfortunately, nonstationary partition of the struc-
ture into discrete subdomains as suggested in his
work was not continued. Ainsworthy [5], Argyris,
Scharpf, and Chan [6-8] started to treat both spatial
and time variables equally during formulation of the
problem. However, even in the work of Kuang and
Alturi [9], the final discrete treatment was performed
separately in space and time. Still, the dynamic
problems were solved by methods in which spatial
and time variables were decoupled. Spatial domain
was discretized by a selected discrete method (finite
element, finite difference) while the time derivatives
;Ne:e integrated separately by another numerical
ool.

Numerous paﬁers appeared on the direct time
integration of the differential equation based on the
stationary partition [10,11]. Unconditional stability
in time, damping of high-frequency modes, and
efficiency in applications are the features required
commonly in practice. Classical time integration
methods have such advantages. However, there
are problems in which the existing methods fail, for
example, in problems with a moving boundary. In
such a case the approach to heat transmission was
described by Bonnerot and Jamet [12,13]. In
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successive works [14] time integration schemes
were slill called by the term "space-time element"
althoughthe distribution of spatial and time variables
was performed by different functions. The paper b
Kujawski and Dessai [15] is a good example of suc
an approach. - -

The first complete ‘and clear space-time approxi-
mation for structural dynamics was made by Kacz-
kowski[16,17]. Since then many papers have been
written on the subject of vibration analysis in the
space-time domain. New ideas replaced the old as
researchers found ways to better solve difficulties.

sHowever, only some of these ideas have made a
contribution to the present form of the method. Only
these will be cited.

Kaczkowski and Langer [18] expressed strains and
stresses interms of spatial and time variables. Initial
conditions can be regarded as boundary conditions
Placed on the layer of constant time. The interpo-
ation (shape) functions are then written as Ng :
and generally variables ¢annot be uncoupled. Only
suchaformulation canbe understood as a full STEM
a?#roach. A similar description was presented by
Riff and Baruch [19,20]. New constitutive equations

were considered by odhoreckid[21]. Accuracy
investigations were also performed [22].
K time
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?igufe 1. Subdivision of time step in the contac't
region

_Although the early papers concern uni-dimensional
structures, and conditional stability is still the main
disadvantage of the formulation, the space-time
Finite element method improved quickly. Space-time
‘elements of non-rectangular shapes were intro-
.duced [23,24]. A triangular beam element of arbi-
Arary joint location was used to express a space-time
-element approach to contact problems. A decrease
‘in the integration time step for some spatial regions
with higher speed of displacement is possible with
the use of triangles (Figure 1). A formulation of an
unconditionally stable variant of the method for
multiplex-shaped, space-time elements [25] can be
regarded as a further improvement. Multiplex-
shaped elements applied to constant spatial mesh
leadsto one of the time integration methods because
separation of spatial and time variables can be
completed. Shape functions can be written then as
N(x,H) = X(x) « T(f). However, additionalfacilities are

#

gained when variable mesh is applied. Recently
developed simplex-shaped elements lead to highly
efficient numerical procedures.

The space-time element approach, which is in the
scope of this paper, can be considered as a time-
continuous Galerkin method. It differs from the
time-discontinuous Galerkin method [26,27], which
leads to -A-stable higher: order -accurate O.D.E.
solvers, but in turn, gives -uneconomically large
matrices. Moreover," the -generalization of the
time-continuous Galerkinmethod to elastodynamics
seems possible only in some circumstances.

il 5.8 VAN

In this paper only the continuous.in time space-time
finite element formulation is discussed.. However, a
general approach is restrained, by stability limita-
tions. Arbitrary node location in time space cannot
be applied successfully (this feature results from the
properties of the hyperbolic equation,of motion).
Stability criteria are given.for:selected structures
[28]. Numerical examples prove the efficiency of the
approach in different problems of structural dyna-
mics [29].
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Figure 2. Examples of space:time finite elements
- FUNDAMENTAL CONCEPTS . o1
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In the space-time element method interpolation
functions . are - applied . both to spatial. and. time
domains.  Time variable is considered as an addi-
tional variable of the coordinate system[16,24). The
object to be analyzed gains one additional, coordi-
nate axis. That is why.for uni-dimensional structure
there are two-dimensional space-time efements:an
three-dimensional objects’ for - two-dimensional
problems. Some sar{\_ﬁle' space-time eléments are
depicted in Figure 2. The shape functions Njthatare



used to interpolate displacements v inside the
space-time domain with nodal values g’ are func-
tions of x and t: o
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Detailed derivation of the fundamental rélations can
be found in works by.Kaczkowski{17], Kaczkowski
and Langer [18], and Bajer [24]. . 'The resulting
element’ matrices 'have dimensions equal to the
number of degrees of freedontin‘an element. The
assembly of the global matrix K* is performed in the
same way as in the FEM, considering the topology
of the space-time-mesh. - The resulting matrix is
composed of stiffness K, inertia M, and damping Z
contributions - e

DS IR

K* = TK+M+Z)" £l

TR E R DPRR O s (2)

The final gystem of algebraic equations has a
half-infinite form: A .
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and can be.Solvad stepwise when the initial dis-
placements q; are known: %

DI
Qus=B"[F;- Ciy iy !(Cu"”lulcﬂ @)

b # . .
Zero initial velocities’ are assumed automatically.
Non-zero values can’be expressed by the difference
(q - q,)/As. In Equation 4 all the matrices have
dimensions eqialito the fotal number-of degrees of
freedom in a real (spatial) structure.
The STEM ‘enables the mesh modification in‘each
stepina natural'way [30]. It means that joints of the
spatial mesh 'taken in two successive intarvals of
time are connected, and in-this way.the space-time
subdomains. can be. determiried. Since the joints
‘have different coordinates'im different time interyals
'J[mitlngtr?]e time layer atthe top and the bottom, the

spacertime glements have, non-fectangular forms.
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Figure 3. Assembly of a global matrix for tiangular
space-time elements ' - o Rl

FEM#CD

number of multiplications

10 T ST h e
number of joints . 1
Figure 4. The cost of the space-time element
method: the finite element method and central
difference method (FEM+CD) and the space-time
element method (STEM) :

BENEFITS OF SIMPLEX-SHAPED ,ELEMENT#

If the space-time elements have the shapes of
triangles, tetrahedrons, or hypertetrahedrons, con-
siderable savings of computational effort can be
gained. The efficiency is increased significantly:-for
several reasons. Simplex-shaped elements lead-to
triangular forms of coefficient matrix B (Figure 3) with
reduced number of coefficients. Second, the solu-
tion of the algebraic system of equations can be
carried out joint-by-joint directly, since the resulting
coefficient matrix is triangular [24,31]. Thus the
number of arithmetic operations per time ‘step is
reduced. This is essential particularly in nonlinear
problems, when the s#'tem of equations has to be

solved in every step. The number of multiplications
per step Mis given by the relation 3 j_;
M =25N(c +1) e By

4l SIS I3 FAL X'
where: . SN S DGER Y
s - nodal number of degrees of freedom ,ﬂ“;q

lgmen

N - total number of degreeg';m"f.re."é!d@g'nf ot Y,

]




¢ = number of joints adjacentto one jointin a spatial
mesh |

jroe

It must be emphasized that the cost is independent
of the numbering of nodes, and terms such as the
bandwidth do not exist. A costcomparison between
the simplex-shaped STEM and the central difference
method is depicted in Figure 4. For larger structures
the STEM Is more economical than other methods
of direct integration of the motion equation.

1 time
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F‘gure 5. Propagatuon of information inthe triangular
mesh

- aninfinitely long stri

-speed (Figure 7). Ina
 limited number of elemen
' beconsidered. In'suchacasethe refléctionofwaves
from the ends of the structure disturbs the solution.
- The STEM allows the problém to be reduced-to only

s
8

3
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Figure 7. Infinite beam sub]ected to a movmg mass
system with several poims of contact

The described rty seems to be helpful in the
solution of prob ems wnh travelirig force’ ~“Consider
orbeam on which the system
ith the ‘speed close to the wave

vical nurmerical solution a
nts in‘adiscrete model must

of masses moves wit

a few degrees of freedom’and’avoids the influence

of reflection on the vibrating masses.: Evenra limited

speed of information flow makes the wave unable to
precede the mass system, -and the’ réfléction from
the right end will never reach the moving'mass[32].
Different dimensions between contact points do not
state the problem since the varying'spatial partition
allows one to -adjust the nodal points of the lnﬂnne
linear object to the traveling vehicle.- D&
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zFigure 6. Symmetricwave speed fortriangular mesh
A T
The next advantage concerns the physical property
ofthe simplex-based mesh. Insuchcasesthe limited
..speed of information flow can be determined
,1 awording 1o the' slope edges (Figures 5,6). This
}eature is an improvement of the numerical solution
“of the hyperbolic differential equation. In practice
v the:wave'speed should limit the speed of propaga-
stion of-the numerical lnformation in the discrete
7!aystém vil ;
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Figure 8. Domam ot the load influenoe for a
two-dimensional ob]ect AHHITE

The problem reduced to'one wnh a small number of
joints is convenient for stability testing: The coupling
of contact pomts through the mass: moving in a
supersonic range generates growing amplitudes.
The steppmg me can be wntten Ina form:

G| _ b q; o
{ q } e 'I{%r- } WA sve drett @ 9,..‘,_. 3

3301 3GiciNA ‘

and. the' stabnlrty mvestngaﬁon is 1
calculation of the spectral radius p otqlsﬁtfhéﬁﬁém

is unstable when the following pondiﬂqnaocctﬁ

a0t etBGE 5T 9oMm3



p(T) > 1
)

Eigenvectors of T-exhibit the form_of unstable
deformations. - “The_Identical . approach can be
applied to multi-dimensional structures subjected to
a moving mass system.".In this case the number of
finite elements taken-into agcount depends on the
shape of the strutture. e example for two
dimensions is presented in Figure.8.. - ,

"MESH ADAPTATION
aqiof og of amhes s vhI o, :
Adaptive techniques were developed to reduce the
interpolation ,error when- the  computational cost
forces a limited-number of finite elements on which
the domain canbe divided. Three general directions
canbeseen: h-adaptation,in which a single element
is divided:into smalier. elements, reducing the mesh
dimension: H; p-adaptation,in which the accuracy
increasing the polynomial order-and r-adaptation is
improved; and when nodal points are relocated from
regions of jower-error estimation to regions of higher
error valiesy - Below, the-third- kind of adaptive
technique; is; exhibited since the. joint relocation is
very natural:in the STEM [30,33-34]. i A
Various errorestimators canbe applied to determine
the error distribution [35-37]. Basically the rule is
fulfiledbelow:: i o v o cig, . -
j(u:,-i-u;)dedy = constant
A YL T . S
Rt (8)

s

Figure 9. Mesh evaluation in the bar subjected to a
-Heaviside force £ j

_All_the existing error estimators.show the, error
_'distribution in a sifigle ‘static state. “In'dynamic
"‘problems the'estimation is carried on globally, in the
time Jdnterval ©in which the structure is observed.
Since quite arbitrary mesh modification is not

0.0

. w0 1 O
_=0.5 S e m0s
-1.0 ] , Gl
-1.5 .

Figure 11. Mesh adaptation in the r‘o'llin'g'

allowed, the exact adaptation strategy.for evolu-
tionary problems should not be derived from simple

error estimation, based on a state in a given moment.

1.5
1.0

0.5 time

Figure 10. Bar subjected by an impulse -- cijis-
placement for constant and adaptive mesh "~

The first example (Figure 9) shows the relocatich of
joints in time for the bar fixed in one-end and
subjected to a Heaviside force.  The wave reflection
can be noticed from the fixed end. The joints first
go toward the wave force and then follow.it. For
uni-dimensional Rroblems [30]the mesh adaptation
removes the higher order modes resulting from the
reflection from the mesh nodes (Figure 10).- -~

h —

e

process

Another example presents the rolling contact prob-
lem [38,39] and shows the mesh condensation in the
contact region (Figure 11). Such atechnique allows
one to apply coarse mesh outside the contact
domain. Phenomena occurring on the contact face
(i.e. stresses, friction distribution) can be investi-
gated with a good accuracy while outer parts do not
require fine partitioning. In applying other methods
one should refine the mesh on the entire ‘of the
roller, increasing the computational cost highly.

~

* FUTURE DIRECTIONS ., - "

The STEM described above "has many .practical
advantages. It complements the ‘existing solution
methods. Future ‘developments should” remeve
restrictions in applications of the method. sCondi-
tional stability for simplex-shaped elements-is:one
of them. Higher order approximation of both space
and time is not investigated sufficiently. ;The lim-
itation of the wave speed by algebraic means shows

’

a7



the opportunity.to introduce the method into infinite
structure analysis. The whole range of h-adaptive
techniques can be developed and applied suc-
cessfully to wave problems. Mixed h-r-adaptivity
could- allow physically multiphase mediums to be
treated.: . ¢ ~ - & 3 we SgbL ) Je
it DI UGH Y- Tt BU L o oo is g
In general the space-time element method is the
same convenient tool for dynamics as the finite
elemiént method is fokstatics. -For vibrations it.is the
mast educationalnumericalmethod available based
onthedomain discretization. - 2.~ or s
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