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Abstract—Stress fields varying in time are typical for dynamic wave problems. Nonclassic problems

involve changing of structure properties, especially wave reflection zones or dissipative zones. Stress field

propagation requires a variable mesh that allows one to approach the phenomenon with the smallest error

in each time step. The space—time approximation of the differential equation of motion enables the

modification of the spatial partition into finite elements in a continuous way. Error estimation was the

reason to refine and coarsen the spatial partition, moving the nodes towards the zone of higher error.

Applying the simplex-shaped space—time elements one can gain the triangular form of coefficient matrix

directly in the element matrix assembly process. Consistent characteristic matrices are used. The approach

presented was successfully applied for bar, beam and plane strain analysis. The method is more powerful

for materially nonlinear cases for which element matrices should be calculated in each time step. Good

accuracy of the movable mesh approach was proved in several testing examples.

1. INTRODUCTION

Large scale transient problems of complex geometry

involve fine discretization into a multi-degree-of.

freedom system. Material and geometrical non-

linearities require the recalculation of the system in

successive time steps. Only a relatively short time

step enables accurate investigation in the case of

impact of shock waves on the structure, explosions,

shock interaction or interaction between media of

different density. Mesh refinement, if applied to entire

structure, results in time-consuming computational

schemes with simultaneous increase of the numerical

error. The adaptive mesh techniques developed to

date can be classified in two groups. In the first one

the mesh is locally refined by the addition of new

joints. In other regions joints can be removed to

coarsen the grid [1,2]. In this method new nodal

parameters must be interpolated for the set of new

joints while some information is lost when removing

superfluous joints. There is an inconvenience in

time-dependent problems, for example contact

problems in dynamics. The initial phase is important

and each approach accumulates the error. Stress

waves in transient problems enforce frequent and

total mesh modification so the procedure seems to be

expensive. Hierarchical procedure is based on the

same principle. In the case of higher order differential

equations, considering the time variable, such an

approach requires a backward step of recalculation

in a general case. Moreover, it does not increase the

accuracy in the nearest time of observation after the

change. In this kind of algorithm the number ofjoints

can vary in time.

The second group of methods contains algorithms

that assume a constant number of joints. Nodal

points are directly placed in order to minimize the

error giving the refined or coarsened regions of

the mesh. Such a method was frequently applied

to elliptic or parabolic problems [3—5]. In stress

analysis the refined zones can be moved together with

the stress field motion or other characteristic line

movements. Such problems are rarely mentioned in

publications.

The full space—time approximation gives a natural

way of mesh modification with a constant pattern of

the mesh and unvaried number of nodal points and

spatial elements.

In this paper the method of time-continuous mesh

adaptation for a vibration structure is described. In

successive time steps the spatial partition can be

changed with respect to the assumed error estimator.

The speed of mesh adaptation is limited by the

stability criteria. However, in practical cases, the

limitations allow almost arbitrary mesh modeling.

The presented technique was applied both to linear

and plane structures. An identical approach can be

used to 3-D strain.

Space—time approximation with nonstationary

representation of the spatial domain was treated in

[6—9]. To date no spectacular success was demon-

strated. To the contrary, negative opinions were

found [10]. The author hopes that some interesting

features of the full space—time approximation can be

useful in the investigation of selected nonclasic prob-

lems. There is a significant interest in the problem

presented in [11, 12]. However, hyperbolic problems

are rarely treated [13, 14].

2. APPROXIMATION IN SPACE AND TIME

Let us consider a bar split into finite elements. The

geometry of a finite element is described by two nodal
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Fig. l. Example of nonstationary partition of the bar.

coordinates, its displacements by nodal parameters.

Let us consider such an element in two successive

time steps (Fig. 1). We allow the element geometry

modification. The domain between spatial elements

in different moments, called the space—time element,

is now described by four nodes, being the function

of space and time. Displacements in any point of

the space—time element area q are given by the

interpolation

q = N(x, t)r (l)

where r is the vector of nodal parameters and N is

the shape function for a given quadrangle. Triangular

forms of space—time elements for uni-dimensional

structures are also available. Detailed formulae lead-

ing to the step-by-step integration scheme can be

found in [7]. Triangular, tetrahedral and hyper-

tetrahedral space—time elements (generally called

simplex forms) for linear, plane and 3-D structures,

respectively, give triangular coefficient matrices of

the resulting system of equations directly during the

global matrix assembly. This feature causes the

mentioned simplex-shaped elements to be chosen in

further applications.

2. l. Space—time formulation

In the subsequent text only concluding formulae

will be presented. The approximation in space and
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time is described by the shape functions N(x, t). The

arbitrary form of the space—time element is available

(Fig. l). The spatial x and time t variables cannot

be uncoupled in a general case. It can be done, how-

ever, for rectangular, multiplex forms. By integration

over the space—time element domain we obtain the

characteristic element matrices

K = [[DNYEIDN dV

M=l(Z—T)TR(§§>W
a

W=J(DN)T ~ DNdV
"a:

6

Z=jNTnza—tNdV (2)

where E is the elasticity constant matrix, |D(x) is

a specific difl‘erential operator, R is the inertia co-

efficient matrix and m, )1“. are damping coefficients or

damping matrices. Stiffness matrix K, mass matrix M,

internal damping and external damping matrices W

and Z are of the order equal to the number of degrees

of freedom in the space—time element. Then for one

time layer we have the equation

Z(K,+M,+W,+Z,)r=F or K*r=F. (3)

The sum is extended over all elements in the

space—time layer. r is a vector of nodal impulses. The

global matrix is assembled depending on the nodal

topology, as in the FEM (Fig. 2). Splitting the matrix

K“ for established layer i into four quarters denoted

by A,, 3,, C,, D, and considering the next element

layer we can write the force equilibrium equation for

one space—time layer

Ci—lri—l+(Di—l+Ai)ri+Biri+l=Fi (4)

 Fig. 2. Global matrix assembly.
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in which r,+l is the only unknown vector. The

equation is of the order equal to the total number

of d.o.f. in the spatial structure.

2.2. Velocity formulation

One can write the two point velocity formula of the

integration scheme [15]

ri+l = 3—180“ a)Fi+%aFi+l _Aiqi+ Mum]

"Mtbiilio‘ Ft " i0 “ “)Fmi

+ Ciqi+ Diri+ 1].

in]:

(5)

For a = 0 we obtain the identical scheme as in (4).

The incremental formula has a similar form, with

displacement and force impulse increments instead of

total values. MW,- and Mm),- are upper left and lower

right quarters of mass matrix (2).

2.3. Solution scheme

There are two possible numerical algorithms for

solution of the equation system with variable

coefficients.

The first: we assemble a single-layer equation,

holding the remaining matrices to be used in the next

step. We keep the following tables:

C1 Di+Ai+l

Ct+i

Bi+1

Di+l‘

Three of them are triangular (B and C) and two

quadrangular (A and D). We obtain r,“ from the

equation

Biri+l=Fi—Ciri+l_(Di+Ai+l)ri (6)

which is rather fast since Bi is triangular.

The second: we keep only one triangular matrix 3,,

one quadrangular D,- and one temporary vector t,-

which initially depends on the starting conditions.

We solve the equation

Biri+l =Fi-Airi—ti (7)

for n+1 and prepare ti +1 for the forthcoming step

ti+l =Ciri+Diri+l' (8)

Products Cr, and Air,- can be computed during

element matrix calculation. This two-step procedure

is similar to the velocity formulation (5). It is more

efficient than the first way of solution considering the

memory requirements but it needs more arithmetical

operations (multiplications) per step.

One characteristic and interesting property of

simplex-shaped elements must be mentioned here.

That is the limited speed of wave propagation in the

direction of slope edges. A regular mesh with slope

sides directed identically shows the anisotropy in
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time, that is the infinite wave speed in one direction

and finite speed in the other [7]. It can be useful

in some wave propagation problems, i.e. shocks

placed to a point. Isotropic propagation can also be

achieved by a special partition.

3. MESH ADAPTATION

3.1. Error indicator

Many different error estimators have been sug-

gested in the literature [1—3, 16—18]. It is not the

purpose of this paper to verify the error measures

proposed by the authors. However, we select those

satisfying the following requirements:

(i) high speed of error estimation;

(ii) dimensionless form and normalized value,

bounded 0 s e <1;

(iii) possibility of changing the feature that is to

be tested; error estimation without necessity of

stress calculation, based on the displacement,

can occur eificiently in motion investigation of

the structure.

In our case we must optimize the mesh distribution

for a fixed number of elements. Let us denote H as

a mesh size. The distribution of the error is given by

the integral over the spatial domain (for example [2]).

J H(uix + uf...) dx dy = constant. (9)

A

Modifying (9) due to the interpolation formulae we

obtain the error measure for a joint 1‘

an
j denotes joint numbers in an element m to which

node i belongs. ui is the displacement k of the

joint j. Since the shape functions Ngk are linear, the

derivatives N are constant and the form (10) can be

given explicitly increasing the efficiency considerably.

(10)

2 l,’2

zszmguidAfl .

Am]

3.2. Stability restrictions

The time integration scheme (4) can be tested

regarding the stability, when one of the joints is

moved in time. The following form of (4) is tested

{Tint}

where T is an amplification matrix. The suflicient

condition for (l l) to be stable is that any norm of T

should not be greater than 1+aAt, where a is a

positive number. In the paper we test the eigenvalues

1.,- of T, for which we assume the condition

(11)

(12)|,t,.|<1, i=l,...,n.
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Fig. 3. Stability domain for quadrangular and triangular bar

elements.

The first analytical attempt has been done for

a uni-dimensional axial vibration bar. In the

dimensionless coordinates

d ch

k = —, K = —, 2 = E 3b b c /p ( )

where b = the element length, d = spatial dislocation

of a joint in one time step, h = time step, c = wave

speed, we can determine the stability domain. k is the

Courant number and can be considered as the

mesh modification factor. Considering quadrangular

elements in space and time the stability area is

bounded by the curves

3k

1n2+k

2—k

3—

§k2<K2<k2 (l4)

 

The diagram in Fig. 3(a) presents this area while

Fig. 3(b) shows it for triangular elements.

An analogous investigation can be carried out

for tetrahedral plane stress/strain elements. The

analytical calculation is troublesome and results

given in Fig. 4 could be obtained by numerical

methods of analysis.

Some other cases being tested can be found in [8]. -

Presented results of stability investigation are not

absolute since they concern selected mesh patterns.

They are representative, however, and are helpful in

applications.

Czrszaw I. Bum
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Fig. 4. Stability domain for tetrahedral plane strain

elements.

3.3. Algorithm of mesh modification

The following steps describe the mesh geometry

modification:

1. Calculation of the nodal values of the error using

for example (10).

2. Normalization of nodal errors.

3. Calculation of movement components for a joint.

More details should be written about step 3. Concen-

tration of stresses in subjected or supported regions

is obvious. Mesh refinement, however, makes the

coefficient matrix singular. The condition number,

e.g. the quotient of the maximum eigenvalue by the

minimum one, becomes large. The solution error

grows and forces the successive mesh rearrangement.

In a feedback the displacements in some regions

(usually in corners) grow dramatically. However, not

only elliptic parts of the differential equation generate

instabilities. The element size decrease requires time

step reduction. If it is not being done or if the element

is allowed to be too small, the stability of time

marching scheme is lost.

New coordinates are computed as a position of

the center of gravity of all joints being in direct

connection with the considered joint. The distance of

a joint translation in one step counted in step 3 is

always shorter than the average element spatial size

h in surrounding elements. To avoid the loss of

stability we must correlate the joint movement

distance d with the time step At, wave speed c and

element edge b. To ensure the stability the movement

distance is multiplied by the parameter k taken from

the diagram (Fig. 2 or 3) for the applied time step At.

4. NUMERICAL EXAMPLES

Several test problems were solved to estimate the

accuracy of the described approach. Below three

examples composed of a great number of finite

elements are presented to prove the efiiciency in the

cases of axial vibrations of rods, flexural vibrations of

beams and plane strain structures. Uni-dimensional

tests are considered since the results can be verified

intuitively with case. However, restrictions are the

same as in the case of multidimensional structures.
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Fig. 6. Mesh evolution in the bar subjected to an impulse

placed at the end.

The system of 40 bar elements (Fig. 5) fixed at one

end is subjected to an impulse. Location of joints can

vary according to the error criterion. A time function

of the spatial partitions is depicted in Fig. 6. In the

same figure, one can find the displacement in time of

the free end. If we put the Heaviside force to the free

end point, the displacements ofjoints in the mesh are

as depicted in Fig. 7. In both cases we can notice the

wave path and reflections from the ends.

As the second problem, the beam split into 10

finite elements was investigated. It is not trivial to
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Fig. 7. Mesh evolution in the bar subjected to a Heaviside

load placed at the end.

  

find a correct error estimator. We can choose vertical

deflection or rotation as a feature to be tested. Joint

path is exhibited in Fig. 8. Figure 9 shows the

deflection in time for uniform partition (a), for mesh

modification with the deflection as an error feature

(b) and for the mesh modified with the rotational

error indicator (c). Here we can see, from the full

error analysis, that the error estimator should be

worked out more precisely to obtain better results.

Trajectories of joints can be related to the results

described in [19] for diffusion problem.

The third case is the cantilever-shaped plane

strain. A rectangular form with two right corners

fixed and the lower left one subjected to a Heaviside

vertical point force was computed with time step

At :02 (E = 1.0, v :02, p = 10,112: 0.1, n,.=0.l,

mesh modification factor k = 0.1). Initial mesh and

Time

 

Fig. 8. Mesh evolution in the case of a beam assuming (a) deflections and (b) rotations in the error

‘ estimation.
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Fig. 9. Displacements in time assuming (a) deflectional error estimator, (b) rotational error estimator.

' ‘ (c) constant spatial partition.

modified forms at times 40.0 and 70.0 are depicted in

Fig. 10. The comparison between the solution with

the mesh constant in time and the adjusted mesh

shown in Fig. 11- exhibits the magnification of the

higher mode vibrations.

5. CONCLUSIONS

The most important features of the proposed

approach are collected below:

0 Relatively higher cost of the element and global

matrix formulation. However, this effort is not
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Fig. 10. The mesh after :=o.0 (initial), t=40.0vand

- =70.o.

consumed for nothing. The full approximation in

space and time allows us to modify the spatial

formulation in time in a natural way. One can

notice that in the case of stationary discretization

matrices A, and D,- are equal. Also the symmetry

of stiflness and mass matrices results in identity

of coefl‘icients in B, and C,. Then the cost of

matrix formulation is comparative with the cost

of other time integration methods although the

order of space—time element matrices is equal to

the element number of degrees of freedom.

0 Low cost of computation of resulting vector

per step. Number of arithmetical operations is

decreased because of the triangular form of

matrices in the system of algebraic equations to

be solved.

oConditional stability, considering time step. In

the case of nonlinear problems we must apply

short time step ensuring required accuracy of

approximation.

oUnconditionally stable schemes are also avail-

able. The use of simplex-shaped elements makes

the formulation for arbitrary finite element

models diflicult. However, linear shape functions

seem to be good enough and can be successfully

applied also for bending structures. Much better

element approximation can be achieved when we

use multiplex-shaped forms.

0 Easiness of nonstationary adaptive mesh usage.

Simple algorithms allow one to adjust the mesh

edges with some characteristic lines, to move the

mesh along with the travelling load etc.

All the examples prove the efficiency of the

approach presented. However, the efl‘iciency depends

on the assumed error criterion. Assumption of an

appropriate error criterion is not a subject of this

paper. Some good indications can be found in

the literature and successfully applied. The present

approach, without increasing the computational cost,

can be applied to problems in which recalculation of

element matrices must be carried out anyway. In the

case of typical linear or even nonlinear problems with

the stationary mesh, the space—time element method

is expensive because of the greater number of d.o.f.

in the space—time element and greater number of



 

Adaptive mesh in dynamic problems by the space—time approach 325

Time
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Fig. 11. Vertical displacements in time of the subjected point in the case of constant mesh (A) and

modified mesh (B).

simplex-shaped elements used to describe one spatial

finite element.

Good error estimators should be used in the case

of each type of structure. This is well exposed in the

second example in which direct consideration of both

deflection and rotation does not allow one to obtain

good accuracy. The third example shows that tran-

sient higher frequency vibrations can be emphasized

by the use of a movable grid technique.

REFERENCES

1. R. Léhner, An adaptive finite element scheme for

transient problems in CFD. Comput. Meth. app]. Mech.

Engng 61, 323—338 (1987).

2. P. Devloo, J. T. Oden and T. Strouboulis, Imple-

mentation of an adaptive refinement technique for the

SUPG algorithm. Comput. Meth. apI. Mech. Engng 61,

339-358 (1987).

3. L. Demkowicz and J. T. Oden, Mesh optimization

method based on a minimization of interpolation error.

Int. J. Engng Sci. 24, 55—68 (1986).

4. K. Miller and R. N. Miller, Moving finite elements.

I. SIAM J. Numer. Anal. 18, 1019—1032 (1981).

5. K. Miller, Moving finite elements. [1. SIAM J. Numer.

Anal. 18, 1033-1057 (1981).

6. J. T. Oden, A generalized theory of finite elements, II.

Applications. Int. J. Numer. Meth. Engng 1, 247—259

(1969).

7. C. I. Bajer, Triangular and tetrahedral space-time finite

elements in vibration analysis. Int. J. Numer. Meth.

Engng 23, 2031—2048 (1986).

8. C. I. Bajer, Notes on the stability of non-rectangular

space-time finite elements. Int. J. Numer. Meth. Engng

24, 1721—1739 (1987).

9.

10.

ll.

l2.

l3.

14.

15.

l6.

l7.

l8.

l9.

T. J. R. Hughes and G. M. Hulbert, Space-time

element methods for elastodynamics: formulations and

error estimates. Compul. Meth. app]. Mech. Engng 66,

339—363 (1988).

J. H. Cushman, Diflerence schemes or element schemes?

Int. J. Numer. Meth. Engng 14, 1643—1651 (1979).

Z.-B. Kuang and S. N. Alturi, Temperature field due to

a moving heat source: a moving mesh finite element

analysis. J. app]. Mech. 52, 274—280.(l985).

R. J. On, Moving finite element analysis for the elastic

beams in contact problems. Comput. Struct. 24, 571—579

([986).

C. I. Bajer, Nonstationary division by the space-time

finite element method in vibration analysis. In Proceed-

ings of the Second International Conference on Recent

Advances in Structural Dynamics (Edited by M. Petyt

and H. F. Wolfe), pp. 161—170. lSVR Southampton

(1984).

R. Saunders, Moving grid method for nonlinear hyper-

bolic conservation laws. SIAM J. Numer. Anal. 22,

713—728 (1985).

Z. Kacprzyk and T. Lewinski, Comparison of some

numerical integration methods for the equations of

motion of the systems with a finite number of degrees

of freedom. Engng Trans. 31, 213—240 (1983).

D. W. Kelly, R. J. Milles and J. A. Reises, A posteriori

error estimates in finite difference techniques. J. comput.

Phys. 74, 214—232 (1988).

H. E. Febres-Cedillo and M. A. Bhatti, A simple strain

energy based finite element mesh refinement scheme.

Comput. Struct. 28, 523—533 (1988).

J. M. Bass and J. T. Oden. Adaptive finite element

method for a class of problems in viscoplasticity. Int. J.

Engng Sci. 25, 623—653 (1987).

S. Adjerid and J. E. Flaherty, A moving finite element

method with error estimation and refinement for

one-dimensional time dependent partial differential

equations. SIAM J. Numer. Anal. 23, 778—796 (1986).


	skanuj0093.pdf
	skanuj0094.pdf
	skanuj0095.pdf
	skanuj0096.pdf
	skanuj0097.pdf
	skanuj0098.pdf
	skanuj0099.pdf

