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STATE-OF-THE-ART IN TRUE SPACE-TIME FINITE ELEMENT METHOD

FEATURE ARTICLE:

Hems of special interest,
tutorials, and surveys

C.1.Bajer* MO C.6. Bonthoux®

Abstract. The space—time finlte element nethod
Is rarely wsed In solutions of eng ineer Ing
Sysamic problems. Classic time integration
methods are ussally Included In computational
procedures. However,
discretization cannot be 2ssumed when spatial
and time domains are separated. Pecent devel-
opments of the finite space—time element nethod
aliow 2pplication of zpproximation technliques
To *he spatial a2nd time domains. Speclal
schemes lead fo highly efficlent algorithas
That comsider Both memory requirements and
number of arithmetical operatlons. Recent work
In the fleld of space—tIime elements 2ppllied to
structural dynmamics are described In the artl-
cle. Some comparisons and relztions to other
computational methods are made.

"ecent advances Im structural dynamics, sSup~
sorTed Dy the development of faster and larger
Computers, enzble engineers to solve problems
of increasingly complex structures. Dynamic
behavior of highly discretized three—dimen-
sional obJects does not cause any signlficant
protliems bBecause stationary solutions are
2ssamed In resolving dynamic problems. Inte-
gration of the differential equation of mction
‘s ws2lly performed by simple or selected +ime
integration procedures. Spatial varizbles are
separated fram the time varliable. Solution In
space (s searched by any discrete method and a
Cifference scheme Is applied to the time do~
s2ir. The primary design of a structure Is

consicdered throughout the entire investigation.

Such an approach | imits possibilities of arbi-
frary model ing of geanetry and the appl ication
of boundary conditions or other spatial data In
time. I[f problems with variable coefficlents,
material nonlinearities, and contact effects
are consicered computational effort Increases
rapidly. Om the ofher hand, new technological
problems reguire more complex solutions. Be-
C2use microcompufers are now In common use, the
numer ical efficliency of algorithms must be
careful ly examined.

Wew possibilifies are obtained by the true
space~-Time finite element method., The +time
gomain Is regarded In the same way as are

' Labo;'a‘tolre“de Wches dmhpprlcaflms en Macanique Assl|stee _par Ordinateur,

spatial varlables. Recent achlevements In
space~time technology are described In thls
article. Some examples prove the efficlency of

the method In solutlions of atyplical problems.
HISTORICAL BACKGROUND

Early 2pproaches to the space~time model Ing of
physical problems were published In 1969 by
Oden [1], Fried [2], and Argyris and Sharpf
[3J. In the first paper readers can fiInd an
attempt of gereral Ization of the finite el ement
method over the time domaln. Unfortunately,
The suggestion of arbitrary partition of time
space was not continuved. More papers appeared
on the simple time Integration of dilfferent!al
equations based on the statlionary partition.
Fried [2] Indicated simpl iflcations that can be
gained when noncontinuous time boundary cond|-
tions are considered. Formulations were sup~-
ported only by the example of a one-degr ee-

of-freedom vibrating system and a heat conduc—
tion example In which the time varlable was
still Independent of space. At the same +Ime
Argyris and Sharpf [3] formulated a similar
approach. Although time Is Included In derlva-
tions of baslic quantities, all of the papers
treat the problem by Hamilton's princlple.

Alturi [4] gave a more general approach In
197 3.

More advanced description In space and tIme was
given by Bonnerot and Jamet [5,6] for heat
transfer problems. New Ideas In model Ing a
movable edge should be noted. In successlve
work [7,8] time Integration schemes were sti} |
c2lled by the term space-time element. Bo+th
spatial and time variables were approximated by
different and separated functions. The paper
by Kujawskl and Desal [9] Is a good example of
such an approach. Three time level procedures
described can be unconditlionally stable when
some constant parameters are properly chosen.

Simultaneously considerable progress In numer |-
cal methods of direct integration of dlfferen-
tial equations for stationary problems was
made, Fundamental work was publ Ished for
statlonary problems [10-20]. Faster, more
efficient, and unconditional ly stable methods
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wvere competing for accuracy 21-27. In each
case & space discretizing method was appl led to
the structure and then »a difference method was
used for time Integration. In structural
dynamics static mass and stiffness matrices
al lowed consideration of contlinuus var latlon
In time boundary conditions or spatial domaln,
Some review papers show high performance In
stabil Ity and accuracy analysis [28-33).
However, In many systems one or a few conce n-
trated masses were used to prove the effliclency

of the methods, Contlnuous obJects are rarely
found !r these papers.

The first complete and clear space-time ap-
proximation for structural vibrations was made
Oy Koczkowsk! and Langer [34-36]. Stralins and
stresses are approximated In the space-tIime
domaln., There Is no dlfference between spatial
and time varlables. Inltial condltions can be
regarded as boundary condltions on the constant
time layer. Only such a formulation can be
understood as an extension of the finlte ele-
ment method. A similar approach was presented
by RIff and Baruch [37,38]. Although the ear|y
papers descr Ibe uni-dimensional structures and
although a condltional stabillity Is stil| the
main disadvantage of the formulation, the
Space-time finite element method qulickly Im
proved. Space-time elements of non-rectanqular
shapes were Introduced [39,40]. A triangular
beam element of arbitrary Joint location was
used to present a space-time element approach
to contact problems. A decrease In the Inte-
gration time step for scme spat!al regions wlth
higher speed of displacement Is possible wlth
The use of triangles. A formulation of an
unconditional ly stable varlant of the method
for multiplex-shaped space-time elements [41]
can be regarded as a further Improvement.
However, In this case the method Is a time
Integration scheme because separation of spa-
tial and time varlables Is possible. Recent|y

developed simplex-shaped elements lead t0
highly efflcient procedures.

Some recent applications of the space-time
finite element method are described below.
However, a general formulation Is restralned by
stabll ity limitations. Arbitrary node location
In time space cannot be successful ly appl led.
Stabil ity criterla are gqlven for selected
structures, Numerical examples prove the

efficlency of the approach In dlfferent prob-
lems of structural dynamics.

FUNDAMENTAL CONCEPTS

In the space time finite element method
(STFEM), Interpolation functions are applled
both to spatial and time domains. That Is why,
for uni-dimenslonal structures, there are two
dimenslonal space-time elements and three-d|-
mensional objects for two-dImensional problems.

The assembly of global

Some sample space-time elements are depicted In
Filgure 1, Note that shape functlions have one

found In the classical finlte element method
Element matrices are |larger because In
STFEM a greater number of JoInts are cons!dered
In the element, The assembly of the gl obal
matr Ix (44] Is performed In the same was as In
the FEM, Element matrix K* |s composed of
stiffness K, Inertia M, and damping matr ices W

and Z, depending on the rheological mode! of
the body

KE = K+ M+ Z+ ¥

(1)

Figure 1. Examples of Space-TIme Elements.

matrix leads to the
hal f=-Infinlte form
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that can be solved stepwlse when the Initlal
displacements &, = 8,.are known:




C&_,+D{+By,,~F
(3)

In equation (3) all matrices have dimenslons

equal to the total number of degrees of freedom

In a structure. Inltlal speed can be Included,
assuming for example

b= = [-p280 4] 04B

(4)

In early formulations space~-time finlte ele-
ments were of multiplex (quadrangular) sh ape.
Interpolation functions were constructed by
multiplyling spatial and time terms

NI(X,T) = M;(x) s Tl(f)
(5)

Mltx) wvere the same functlions as In FEM, T,(-r)
were assumed as
Ti(4) = 1/, (4,-4)
1
To(t) = /p (t=1y)
2 h 1
(6)
or In |local coordlinates
T(0)=17,(1+11)
(7)

Apply equation (7) both to real and v irtual
displacements to obtaln a conditional ly stable
formula. Modification of equation (7) by third

power terms [41] leads to the unconditional ly
stable variant of the method

Ti(t)= '/2 ( I+t1.i) tay (rs-t)
(8)

The system described with the use of equation
(8) Is unconditional ly stable for = 1.25.
However, In the case of | Inear problems cond|-
tlonal stabil ity does not cause any substantial
difficulty. Each second |ayer of Jolnts can be
el iminated; the result Is a space-time super

element [42]. Then the system of equations has
the fol lowing coefficlents:

A-BD'8  -BD''B A grc:‘.
-CD'C  D-CD'B-BD°'C  -BD'B v TS
: N
' -co’'c D-CO'B-B0°'C -BO'B| |4, |F;
b - 4 4 J

(9)

Successive eliminations allow solutions for
each 2" Instants. Although equation (9) s
expressed In even moments, |t Is possible +o
el Iminate odd layers so that the d¢!splacement
vector Is In even moments. Such 2 technigue
passes stabll ity |imitations for a2 super ele-
ment of sufficlently high order. Unfortunate-
ly, this procedure cannot be applled tc
problems with variable coefficlents. The super
element technique can be applled to each ex-
plicit time integration method, not cnly to the
space~-time el ement method.

A range of possibilities for the simultanecus
discretization In space and time was utll] ized
In the fol lowing work., Nonstaticnary spatial
discretization was used In a detalled Investi-
gation of the stability problem In which not
time stability but Instabl] 'ty caused Dby
changeable jJoint location in successive +ime
layers was considered.

EXAMPLES OF RESOLUTION WITH NONSTAT |ONARY
PARTITION OF A STRUCTURE

The method s especlial ly useful when +he geame-
try of a structure is changed In time, as In
the fol lowing group of problems:

® In robotics, where large disiocation of
masses and changing geametry are assumed

® In jet plane design when changeable ¥ ing
geometry Is al lowed

® In satellites while cpening arms of +he
antennas

The second group of problems for STFEM includes
problems of Infinite structure subjected to a
travel ing load:

e rolling problems
¢ contact wheel-rail problem
¢ stress wave propagation under moving load

Consider space-time elements wlth nodes pl 2ced
In different coordinates In each +ime step
(Figure 2). Different time steps can be ap-
plied to chosen spatial parts of a structure.
When both the stiffness of the system in the
zone of Interaction and the speed of displ ace-
ments of two elastic bodies Is high, the +ime

partition in such a region can be condensed
(Figure 3).

Approximation of the contact area wi+h the
element either entirely In or out of contac+
was used to Investigate displacements in +lme
of a beam placed on a unilateral Winkler foun-
dation. The unilateral case was solved w!+h
the use of quadrangular beam elements suppor ted




eral cese was solved wlith the use of only
triengular elements; constant Joint locat!ion
was assumed. Results can be seen In Flgure 4,

X3 X1 e X3

Flgure 2. Nonstationary Division at Fach Time
Step.

Figure 3. Time Division Condensation in Re-
gions of Higher Stiffness.

U - eadateral loundation

| B - bilateral! foundatiea

Filgure 4. Vibration of a Beam Placed on Unl=
{ateral and Bilateral Foundations.

The next test problem was concerned wlth ax|al
vibrations. The length of the bar was changed
periodically along with the function 1($) =
2.5-1.5 cos (0.5t). Motlon was exclted by the

Inertia effects. A In Figure % preeehte die-
placements In time of selected polnte and wae
made for the Initial peried, B Feprsepide
later time. The Inltlal dicorders were damped

by @ small damping coefficient. Nots ihe
regularity of displacemente,

"

= >»mw
[ B A O
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Flgure 5. Displacement of the End of a Bar
with Changeable Length,

The greatest savings can be achleved when
movable load or contact zome Ie& cohsldated,
The mesh Is reflned In the reglon of slgnlfl=
cant Influence of forces, leav Ing the rough net
In remote parts. Inflinite ends of the band can
be cut off (Figure 6). All nodal polhts of the
mesh assumed only In | Imited dlstance from the
load are dlisplaced with the travel Ihg force,
The local travel Ing coordinate system allows
the mesh geametry to be descr |bad Independent|y
of time. Up to now, when the stationary meeah
has been glven, the Identical partition In the
entire range of contact had to be aseimed, |n
Such a case same spurlous effects can be ob -
served when the body In contact goes from one
finite element to another one. The method
proposed In this article simpl |fles tha caloy

lations. Wave phencmena can be observed mor e
easl|ly,
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Flgure 6,

However, the arbitrary JoInt locatlion cannot be

Il Imitations are Imposed on
the coeffliclent {, which Is the speed of

displacement related to the wave speed c
d !

¢, B Vs 1)
s (10)

d = displacement of the Joint position In

successive time steps (Figure 7)
h = time step

C = wave speed, ¢ = E/p

time

Figure 7. A Part of the Analyzed Space-TIme
Band for Study of Stabll ity,

V.
i

where a

est

?‘%j

Movable Mesh In Surface Problems.

Investigations were done only
structuraes,

for selected

for selected
The maximum values of parameter ¢

structures are | |sted below:

® a2 bar In longltudlinal vibrations, modeled
by quadrangular elements, (</3

* Jlongltudinally vibrating bar model ed by
triangular elements, {</2

® beam element (Quadr angular and
trlangular) t<1.5

These values can serve as Indlicators

In other
cases. In englineering practice the rate { |Is
not reached, even In wave problems,
Unforfuna‘rely, In general +the slmplex-shapod

(triangular) elements |ead to

ally stable schemes. The virtual shape func-
tion cannot be Improved In a simple way,
Analytical conslderations are compl lcated and
were successful ly done only for the case of an
axlally vibrating bar element. Unconditional
stabll Ity can be reached with the fol low Ing
functions of area coordinates of triangle L s

time condition-

Nl = Ll3-3/2L|2+3/2L]-L1L2L3

il 1)

s a function of the
Courant number K = ch/b [10]

spatial length of the el ement,
accuracy we assume [40)
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(13)
BENEF ITS OF SIMPLEX-SHAPED ELEMENTS

If the Space~time elements have the shapes of
trlangles, tetr ahedrons, or hyper-tetr ahedrons,
considerable savings of computational effort
can be galned. Efficlency Is signlficantly
Increased for several reasons:
elements |ead to triangular forms of matrices
(Figure 8) with smaller number of coefficlents;
second, triangulation of the coefflicient matrix
IS unnecessary; so the solution can thus be
carrled out joInt by joiInt [43,44]). The number
of arithmetic operations per time step Is
reduced. A short analysis of efficlency for
| Tnear and nonl Inear solutions Is given below.
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Figure 8. Space-Time Net for One Space-Time
Layer and Its Global Matrix.

Number of multiplications M per step both for
the | Inear and nonl Inear variants of the method
Is described by the Inequal Ity

M < 2 sN(p+1)
(14)

total number of degrees of freedom
nodal number of degrees of freedom
number of jolnts connected with any
given joint

n - n n

N
S
P

For Instance, consider a regular square mesh
composed of 10x10 joints wlith one degree of
freedom In a joint. The Newmark method re—
Quires 4,700 arithmetical operations. The
present method needs only 1,500 or three times

less.

Another reason for the Incresse In efficliency
Is that, because of the trienguliar forms of
matrices and possidbil ity of dlrect solution of
the system of equations, only nomzero coeffli-
cients must be held. In other me thods appl Ted
to band matr ices some zero coefficlents de ! Oow
the threshold become nonzero during solution,
Increasing the capacity requirements. In the
present approach a large reduction of consumed
memory and computational time Is galned.

Storage requirements In the case wlth constant

coefficlients L. and In the case with variable
Coefficients L, are, respectively:

Le € 2 sN(p+1) + N
(13)

Ly < 775 sNipe1) + 3/, oy
(16)

For these reasons smali computers can be used
for calculations, especial ly microcomputers.

Finally, this interesting simplex-shaped ele-
ment mesh has other advantages Iin nonl Inear
problems but must be used careful ly. An Inves-
tigation of the form of triangular matrices
shows the time anisotropy of the solution
scheme [44]. When a regular triangular mesh is
used and the force Is appliled In a Joint, the
speed of the Information flow Is dlfferent in
both directions in successive *ime | ayers
(Figure 9). The unique speed of wave propaga-
tion is reached when special partition of the
space-time layer Is assured (Figure 10)., It
should be emphasized +hat the 2ppl ication of
simplex-shaped elements does not affect the
accuracy of results, but may be used 1f the
anisotropy of propagation Is to be conspicuwous.

information Flow
Successive Numbering.

Figure 9. in the Case of
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Figure 10, Isotroplc Information Propagation.
A static three-dImensional problem descr | bed by
Zlenklewlicz [45] can be simply resolved In
dynamics with this method. A scheme of the

test problem Is glven In Figure 11. The system
consists of 125 jolnts and 384 +tetrahedral

spatial elements. It Is subjected by a heavi-
side force of the value 1. In Figure 12 dils-

placements of joints under the load are drawn,
Note the colnclidence with the static results
glven by Zlenklewicz. Calculations were car-

ried out on a microcomputer compatible with
IBM-PC (8MHz, 8087). After an assembly of

global matrices that |asted about flve minutes,

one step took four seconds of the computational
time,

Figure 11, Static Three-Dimenslional Problem of
Zienkiewlcz [4].

FUTURE DIRECT IONS

Several dlirections can be Indicated for +the
future. Higher order simplex space-time ele-
ments, with higher order approximation both In
space and in time can be developed. Space-time
element models of simplex shapes can be Im
proved to obtaln unconditional ly stable schemes

with respect to the time step. Element models
can be developed to allow the arbitrary partl-
tion of the space-time layer. Parameters can
be Introduced dependent on the time step,
element geametry, material constants, and
others as has been shown [15]. A good approach
to that kind of problem |Is avallable [16].
Broad development of element mode!s for dl ffer-
ent dynamic problems; e.g., robotics, mater!al

processing, should be undertaken. Large nu-
mer |cal problems should be solved, and error
analysls should be developed. The method

should be applied to the analysis of Infinlte

structures (movable mesh, Inflinlite space-time
elements),

Figure 12, Response of Static Three-Dimen-
slonal Problem of Zlienkiewicz [4].
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