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FEATURE ARTICLE: ramming”

flAlE-N-M-m II we: SPAQ-TIIE UNITE ELEKNT Km

C.l.BaJer' m 6.6. Bonthoux’

Abstract. The space-tine flnlte element settled
is rarely used in solutions of engineering
Cynic preclus. Classic tine integration
m are usually included in coupu'tatlonal
procedures. ibwever, mestatimary spatial
discretlzatloe cannot be asst-ed when spatial
and tine doualns are separated. Pecent devel-
op-eats at the finite space-tile elaaent method
allow application of approxioatlon techniques
to the spatial and tine domains. Special
schemes lead to highly eftlclent algorithms
that consider both lea-cry requirements and
tuber of arithmetical operations. Recent work
in the field of space-tine elements applied to
structural dyna-lcs are described in the arti-
cle. Sane ocapalsons and relations to other
co-prtatlonal lethods are eade.

Racer? acnal‘ces in structural dynamics, Sup-
porter: by tire development of faster and larger
saucers, arable engireers to solve problems
of T'c'eas'ngiy complex structures. Dynamic
beraficr of rigiy discretlzed three-dimen-
sicral cc;ects does rot cause any significant
probe-us because statlcrary solutions are
assmec {r resolver dynamic problems. inte-
grr'cr of tee cffferential equation of motion
Is ‘.S'2E 37 performed by simple or selected time
irtegat'cc procedures. Spatial variables are
sepa'a‘ed fran tre time variaie. Solution in
space '5 searched by any discrete method and a
differe'ce scale is applied to the time do-
sain. T-e primary design of a structure is
cccs'cerec trrc'.ghc'.rt the entire investigation.

Such ar approach limits possibilities of arbi-
trary model 'ng of gecrxetry and the application
of boxcar; ocrcltlcns or other spatial data in
time. t prociems with variable coefficients,
mater'ai 'crlinearities, and contact effects
are ccrs'Cerec empatatioml effort increases
rapidly. Cr: rre otter hand, new txhnological
problems rec-?re tore canpiex solutions. Be-
cause nfcrocarputers are no: in cannon use, the
runerfcal e‘ticfenq of algorithms must be
carefJ Iy enmired.

Ne: :css'bil :‘tles are obtained by the true
space-foe firite eieeent method. The time
dona?n is regarded in the sane way as are

 

spatial variables. Recent achievements in
spawtlme technology are described in this
article. Some examples preve the efficiency of
the method in solutions of atypical problems.

HISTle SAW

Early approaches to the space-time modeling of
physical problems were published in 1969 by
Oden [l], Fried [2], and Argyrls and Sharpf
[3]. in the first paper readers can find an
attenpt of general lzatlon of the finite element
method ever the time domain. Unfortunately,
the suggestion of arbitrary partition of time
space was not continued. l’ore papers appeared
on the simple time integration of differential
equations based on the stationary partition.
Fried [2] indicated simplifications that can be
gained when nonoontlnuous time boundary condi-
tions are considered. Formulations were sup-
ported only by the example of a one-degree-
ot-freedom vibrating system and a heat conduc-
tion emmple in which the time variable was
still independent of 5 Ge. At the same time
Argyrls and Sharpf [3 formulated a similar
approach. Although time is included in deriva-
tions of basic quantities, all of the papers
treat the problem by Hamilton‘s principle.
Alturl [4] gave a more general approach in
1973.

More advanced description in space and time was
given by Bonnerot and Janet [5,6] for heat
transfer problems. New ideas in modeling a
movable edge should be noted. in successive
work [7,8] time integration schemes were still
called by the term space-time element. Both
spatial and time variables were approximated by
different and separated functions. The paper
by Kujawski and Desal [9] is a good example of
such an approach. Three time level procedures
deserlbed can be unconditionally stable when
some constant paraneters are properly chosen.

Simultaneously considerable progress in nuneri-
cal methods of direct integration of differen-
tial equations for stationary problems was
wade. Fundamental work was published for
stationary problems [10-20]. Faster, more
efficient, and unconditionally stable methodsH“
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were competing for accuracy 2l-27. In each
case a space dlscretlzing method was applied to
the structure and then a difference method was
used for time Integration. In structural
dynamics static mass and stiffness matrices
ail0wed consideration of continuous variation
In time boundary conditions or spatial dmaln.
Some review papers show high performance In
stability and accuracy analysis [28-33].
Howlever, In many systems one or a few concen-
trated masses were used to pr0ve the efficiency
of the methods. Continuous objects are rarely
found in these papers.

The first complete and clear space-time ap-
proximation for structural vibrations was made
by Koczkowskl and Langer [34-36]. Strains and
stresses are approximated In the space-time
domain. There Is no difference between spatial
and time variables. initial conditions can be
regarded as boundary conditions on the constant
time layer. Only such a fOrmulation can be
understood as an extension of the finite ele-
ment method. A similar a proach was presented
by Riff and Baruch [37,38 . Although the early
papers describe unl-dlmenslonal structures and
although a conditional stability is still the
main disadvantage of the formulation, the
space-time finite element method quickly im-
proved. Space-time elements of non-rectangular
shapes were Introduced [39,40]. A triangular
bean element of arbitrary Joint location was
used to present a space-time element approach
to contact problems. A decrease in the inte-
gration time step for sane spatial regionswith
higher speed of displacement Is possible with
the use of triangles. A fOrmulatlon of an
unconditionally stable variant of the method
for multiplex-shaped space-time elements [41]
can be regarded as a further improvement.
However, in this case the method is a time
integration scheme because separation of spa-
tial and time variables ls possible. Recently
developed simplex-shaped elements lead to
highly efficient procedures.

Some recent applications of the space-time
finite element method are described bel0w.
However, a general formulation ls restrained by
stability limitations. Arbitrary node location
in time space cannot be successfully applied.
Stability criteria are given for selected
structures. Nunerical examples pr0ve the
efficiency of the approach In different prob-
lems of structural dynamics.

FUNDAAENTAL CONQPTS

in the space time finite element method
(STFEM), interpolation functions are applied
both to spatial and time domains. That is why,
for uni-dimensional structures, there are two
dinenslonal space—time elements and three-di-
mensional objects for two-dimensional problems.

Sane sample space-time elements are depicted In
Figure 1. Note that shape functions here one
more variable -- the time variable -- than that
found in the classical finite element method
(FEM). Element matrices are larger because In
STFEM a greater nunber of Joints are considered
in the element. The assembly of the global
matrix [44] is performed in the same was as in
the FEM. Element matrix K' is composed of
stiffness K, inertia l, and damping matrices I
and 2, depending on the rheological model of
the body

K'IIKtIItZtI

(I)

 

Figure 1. Examples of Space-Time Elements.

The assembly of global matrix leads to the
hal f-lnflnlte form
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(2)

that can be solved stepwise when the initial
displacements 6. " bloare known:
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(3)
In equal’lon (3) all mafrlces have dlmenslons
equal to fhe total nunber of degrees of freedom
In a sfruclure. lnlflal speed can be Included,
assunlng for emmple

e ‘ \

6°= E [um-zoo Ml] mu
(4)

In early formulations space-flme flnlfe ele-
men‘ls were of mul‘llplex (quadrangular) shape.
lnferpola‘l’lon funcflons were conslruc‘led by
mulflplylng spaflal and flrne farms

Nl(x,f) = MHX) ' T'(1’)

(5)

Ml(x) were fhe same funcllons as In FEM. Tl(+)
were assuned as

- 1T1(+) — /h (+2-+)

1T (r) = / (+41)
2 h (6)

or In local coordlnafes

Iy(:)='/2( 1011‘)

(7)

Apply equaflon (7) both ‘lo real and vlrfual
dlsplacemenfs fo obfaln a condlflonal ly sfable
formula. Modlflcal‘lon of equaflon (7) by Thlrd
power ferms [41] leads Io ‘Ihe uncondl‘l’lonal ly
sfable varlanf of ’rhe mefhod

Ti(t)=I/2(l*t1‘-) 0 at, (13-!)

(8)

The system descrlbed wl’rh fhe use of equa‘l‘lon
(8) ls uncondlflonally sfable for > 1.25.
However. In (he case of Ilnear problems condl-
flonal s’rabll Hy does no? cause any subsfanflal
dlfflculfy. Each second layer of Joln’rs can be
ellmlna‘l’ed; Ihe resulf Is a space-flme super
elemenf [42]. Then The sysfem of equaflons has
The fol low Ing coefflclenls:

Juan‘s -BD"B 7‘!
l-co“c o-co"a-ao‘lc -an"a ‘
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(9)

-l'0' ' I‘0‘” '1

’1' ' Fl'md'l-l’m-r'lel I ‘ 2.4.6,. ..

Successlve ellnlnaflons allo- solu-rlons for
each 2" Instams. AthOugn equavlon (9) ls
emressed In even mnfs, I? Is pcsslble +c
el lmlnafe odd layers so the? rhe dIsplacemen?
vec‘lor Is In even manenfs. Sud) a ?echrlcue
passes slabll Hy llml‘ra’rlons for a Super ele-
menf of sufflclenfly hlgh order. Unforfunafe-
ly, fhls procedure canno? be eppl led to
problems wlfh varlable coefflclen‘rs. The Super
element fechnlque can be appl led #0 each ex-
pl lclf flue Integra‘flon mefhod, no? only ?o fhe
space-flue element method.

A range of posslblllfles for fhe slmul‘l’aneous
dlscrellza’rlon In space and flme was u‘YlI lzed
In the followlng work. Nonsfaflonary spaflal
dlscreflza’rlon was used In a defalled Trvestl-
ga‘l’lon of The slablllfy problem In whfcn no?
flme sfablllfy bu? Ins+abll?1’y caused by
changeable joln? locaflon In successlve fine
layers was consldered.

EMES 0F RESQUTION IITH WNSTATIGMRY
PARTITION OF A SW

The method ls especlal ly useful when fre game.
fry of a sTrucfure ls changed In fine, as In
The fol lowlng grOup of problems:

0 In robofics, where large dlslocaflon of
masses and changlng gecmefry are assured

0 In je‘r plane deslgn when changeable wlng
geome‘l‘ry ls allowed

0 In safel I Hes whlle opening arms of the
antennas

The second group of problems for STFEM lncILdes
problems of lnflnl‘re sfrucfure subjecfed +o a
Travel Ing load:

0 rol l Ing problems
0 confac‘l wheel-rail problem
0 sfress wave propagaflon under movlng load

Conslder space-flrre elemen‘l’s wlfh nodes placed
ln dlfferenf coordlnal’es In each fime sfep
(Figure 2). leferenf flme steps can be aw
pl led To chosen spa‘llal parfs of a sfrucfure.
When bofh fhe stiffness of fhe sysfem in fhe
zone of Inferac’rlon and fhe speed of dlsplace—
men‘l‘s of Two elasfic bodles ls high, ‘l‘he dMme
parfl‘l’lon In such a reglon can be ccndersed
(Figure 3).

Approxlmaflon of fhe confacf area wl‘fh The
elemenf elTher enflrely In or Ou‘f of con‘l’actl
was used fo Inves‘l’igafe dlsplacemenfs In Hrre
of a beam placed on a unlla‘l’eral Hlnkler foun-
daflon. The unlla‘leral case was solved wlfh
fhe use of quadrangular bean elemenfs suppor‘fed

 



 

by lriongles for time condensation. The bilal‘oral case was solved ullh lho use of onlytriangular elements; conslanf Join? iocaflonwas named.

X; X‘

Figure 2.

  
Results can be seen In Figure 4.
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Nonsfaflonary Division a? Each Time

 

Figure 3. Time Division Condensafion in Re-gions of Higher Sflffness.
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Figure 4. Vibra‘rlon of a Bean Placed on Unl-
laferai and Biia‘reral Foundafions.

The next res? problem was concerned vlfh axial
vibraflons.
periodical ly
2.5-1.5 cos (0.57).

The length of fhe bar was changed
along ulfh the function 1”) =

union was excired by the

inertia oHecls. A In FlgureB pluunls iii!-
placements in lime ol selecled polnls and numade for the lanol period. 8 rerun-Mglater None. The lnlllai dlsnv ders “r! dumped
by a small damping coellitlenl. Nola lla-
regulerlfy of displacemenls.

 

“me -L_1rjfl! 1‘

Figure 5. Dlsplacemenf of fhe End of a Bar
wlfh Changeable Lengfh.

The greafesf savings can be achievad when
movable load or conlacf zone is considered.
The mesh is refined in fhe region of sign!!!—
canf Influence of forces, leaving lhe rough nel
in ranofe parfs. inf lnlle ends of live band can
be cu? off (Figure 6). All nodal polnl! of ill.
mesh assuned only In limiled disfanua (run Hu-
load are displaced wifh lhe lraveilng (man.
The local Traveling coordinaie system allow!fhe mesh gecmefry to be described independnnliy
of time. Up ‘io now, when fhe slallunary moth
has been given, fhe ldenfical parlilion in innenfire range of conlacf had lo be acumen. Insuch a case some spurious eliecls can be ob—served when fhe body in conlad goes (I'm onefinife element 10 anolher one. The meilmdproposed in fhls arlicle slmpl ilies i’he rairll-iaflons. Have phencmena can be observed lnml
easily.



  

time

Figure 6.

However, the arbitrary Joint location cannot betaken without danger of loss of stability.Analytical calculations and experimental obser-vations proved that limitations are imposed onthe coefficient l, which is the speed of Jointdisplacement related to the wave speed c

d 1t - / ' /
h c (10)

d = displacement of the Joint position insuccessive time steps (Figure 7)
h = time step
c ' wave speed, c2 ' E/p

time

Figure 7. A Part of the Analyzed Space-TimeBand for Study of Stability.

Mable Mesh in Surface Problems.

investigations were done only for selectedstructures. The maximum values of parameter;for selected structures are listed below:

0 a bar In longitudinal vibrations, modeledby quadrangular elements, Km
0 longitudinally vibrating bar modeled by

triangular elements, £<J2
0 beam element (quadrangular and

triangular);<l.5

These values can serve as indicators in othercases. In engineering practice the rate t isnot reached, even in wave problems.

Unfortunately, in general
(triangular) elements lead
ally stable schemes.

the simplex-shaped
to time condition-

The virtuai shape func-tion cannot be improved in a simple way.Analytical considerations are complicated andwere successful iy done only for the case of anaxially vibrating bar element. Unconditionalstability can be reached with the followingfunctions of area coerdinates of triangle L I:

"I ' LlS‘S/zLizts/zLi'Lii-zls
(m

where a

is thespatial length of the For the great~est accuracy we assune [40]
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0, for (44".!
e.(l') - s.

30(x‘-2n<3x~-4) , n:r.J?e

H!)

BEKFITS OF “MEX-SHAPED ELEFENTS

if the space-time elements have the shapes oftriangles, tetrahedrons, or hyper-tetrahedrons,considerable savings of computational effortcan be gained. Efficiency is significantlyincreased fer several reasons: simplex-shapedelements lead to triangular ferms of matrices(Figure 8) with smaller number of coefficients;second, triangulation of the coefficient matrixis unnecessary; so the solution can thus becarried out Joint by Joint [43,44]. The nunberof arithmetic operations per time step isreduced. A short analysis of efficiency forlinear and nonlinear solutions is given below.
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Figure 8. Space-Time Net fOr One Space-Time
Layer and its Global Matrix.

Number of multiplications M per step both for
the linear and nonl lnear variants of the method
is described by the inequality

M < 2 sN(p+i)

(14)

total number of degrees of freedom
nodal nunber of degrees of freedom
number of joints connected with any
given joint

il
il

IIN
s
p

For instance, consider a regular square mesh
composed of 10x10 Joints with one degree of
freedom in a joint. The Newmark method re-
quires 4,700 arithmetical operations. The
present method needs only i,500 or three times
less.

 

Another reason for the increase in efficiencv
is that, because of the triangular fer-s ot
Iatrlces and possibility of direct solution of
the systee of equations, only nonzero coeffi-
cients must be held. in other eetnods applied
to band matrices sue zero coefficients belo-
the threshold become nonzero airing sciatica.
Increasing the capacity requlruents. in the
present approach a larp reduction of consi-ed
memory and cmputatlonal time is gained.

Steraga requlranents in the case nith constant
coefficients l.c and in the case uith variable
coefficients L, are, respectively:

Lc < 2 lepH) t sN
(i5)

LV < 7/2 lepti) + 3/2 sN
us)

For these reasons Small computers can be used
fer calculations, especially microcomputers.

Finally, this interesting simplex-shaped ele‘
ment mesh has other advantages in nonlinear
problems but must be used carefully. An inver
tlgatlon of the form of triangular matrices
shows the time anisotropy of the solution
scheme [44]. When a regular triangular mesh is
used and the force is applied in a joint, the
speed of the information flow ’5 different in
both directions in successive tine layers
(Figure 9). The unique speed of uaxe propaga-
tion is reached when special partition of the
space-time layer is assmed (Figure 30‘. it
should be emphasized that the application of
simplex-shaped elements does not affect the
accuracy of results, but may be used if the
anisotropy of propagation is to be conspicuous.

 

Figure 9. information Flow in the Case of
Successive Numbering.
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Figure 10. isotropic information Propagation.

A static three-dimensional problem described by
Zlenklewicz [45] can be simply resolved in
dynamics with this method. A scheme of the
test problem is given in Figure 11. The system
consists of 125 joints and 384 tetrahedral
spatial elements. it is subjected by a heavi-
side force of the value 1. in Figure 12 dis-
placements of joints under the load are drawn.
Note the coincidence with the static results
given by Zienkiewicz. Calculations were car-
ried out on a microcomputer compatible with
iBM—PC (81442, 8087). After an assembly of
global matrices that lasted about five minutes,
one step took four seconds of the computational
time.

 

Figure 11. Static Three-Dinensional Problem of
Zienklewicz [4].

FUTIRE DIRECTIONS

Several directions can be indicated for the
future. Higher order simplex space-time ele-
ments, with higher order approximation both in
space and in time can be developed. Space-time
element models of simplex shapes can be im-
proved to obtain unconditionally stable schemes

with respect to the time step. Element models
can be developed to ai low the arbitrary parti-
tion of the space-time layer. Parameters can
be introduced dependent on the time step,
element geanetry, material constants, and
others as has been shown [15]. A good approach
to that kind of problem is available [16].
Broad development of element models for differ-
ent dynamic problems; e.g., robotics, material
processing, should be undertaken. Large nu-
merical problems should be solved, and error
analysis should be developed. The method
should be applied to the analysis of infinite
structures (novable mesh, lntlnlta space-titre
elements).

 

Figure 12. Response of Static Three-Dlmen~
sional Problem of Zienkiewlcz [4].
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