THE SHOCK AND VIBRATION DIGEST

EDITOR:
TECHNICAL EDITOR: RESEARCH EDITOR: COPY EDITOR: PRODUCTION:

Judith Nagle-Eshleman
Ronald L. Eshleman
Gwen M. Wassilak
Loretta G. Twohig
Barbara K. Solt
Betty J. Schalk

BOARD OF EDITORS

J.D.C. Crisp	V. Miller
R.R. Guy	R. Pappa
D.J. Johns	R.J. Peppin
M. Lalanne	W.D. Pilke!
P.A.A. Laura	H.C. Pusey
B.N. Leis	C.B. Sharma
A. Longinow	J.G. Showalter
C.B. Sharma	R.H. Volin

The Shock and Vibration Digest is a monthly publication of the Vibration Institute. The goal of the Digest is to provide efficient transfer of sound. shock and vibration technology among researchers and practicing engineers. Subjective and objective analyses of the literature are provided along with news and editorial material. News items and articles to be considered for publication should be submitted to:

Dr. R.L. Eshleman
 Vibration Institute

Suite 401.115 West 55th Street
Clarendon Hills. Illinois 60514
(312) 654.2254

Volume 20, No. 4 April 1988

Opinions expressed by authors are their own and do not necessarily reflect the policies of the Institute. Send correspondence regarding change of address to The Vibration Institute, Suite 401. 115 W. 55th Street. Clarendon Hills. Illinois 60514. Telephone 312.654 .2254. Postmaster: please send address changes to the Vibration Institute.

A publication of
THE VIBRATION INSTITUTE
115 W. 55 th Street
Clarendon Hills. IL 60514

Copies of articles abstracted are not available from the Institute (except for those generated by the Institute). Inquiries should be directed to library resources, authors, or the original publishers.

This periodical is for sale on subscription at an annual rate of $\mathbf{\$ 2 0 0 . 0 0}$. For foreign subscribers. there is an additional 25 percent charge for overseas delivery Subscriptions are accepted for the calendar year. beginning with the January issue. Orders may be forwarded at any time to the Vibration Institute. 115 W. 55th Street. Suite 401 . Clarendon Hills. IL 60514. The Digest was formerly published by the Shock and Vibration Information Center of the Naval Research Laboratory.

STATE-OF-THE-ART IM TRIE SPACE-TILE FINITE ELEMENT METHOD

C. I.Bajer * ANO C.6. Bonthoux"

Abstract

The space-time finite el Gment method is rarely used in solutions of engineering dynamic problems. Classic time integration methods are usually Included in computational procedures. Hovever, nonstationary spatial discretization cannot be assumed when spatial and time domalins are separated. Recent developments of the finite space-tine element method allow application of approximation techniques to the spatial and time domalns. Special schemes lead to highly efficlent algor ithas that consider both memory requirements and number of ar ithmetlical operat lons. Recent vork In the fleld of space-tlme elements applied to structural dynamics are described in the article. Some comparisons and relations to other computat Ional methods are made.

Recent advances in structural dynamics, supported by the development of faster and larger computers, enable engineers to solve problems of Increasingly complex structures. Dynamic behavior of highly discretized three-dimensional objects does not cause any significant problems because stationary solutions are assumed in resolving dynamic problems. integration of the differential equation of motion Is usually performed by simple or selected time integration procedures. Spatial variables are separated from the time varlable. Solution in space is searched by any discrete method and a difference scheme is applied to the time donaln. The primary design of a structure is considered throughout the entire investigation.

Such an approach I imits possibilities of arbitrary modeling of gecmetry and the application of boundary conditions or other spatial data in tine. If problems with variable coefficlents, materlal nonlinearities, and contact effects are considered computational effort increases rapidiy. On the other hand, new technological problems require more complex sol utions. Because microcomputers are now in common use, the numerical efficiency of algorithms must be carefully examined.

New possibilities are obtained by the true space-time finite element method. The time domain is regarded in the same way as are
spatial varlables. Recent achlevements in space-time technology are described in this article. Some examples prove the efficlency of the method in solutions of atypical problems.

HISTORICAL BACKGROUND

Early approaches to the space-time modeling of physical problems were published in 1969 by Oden [1], Fried [2], and Argyris and Sharpf [3]. In the first paper readers can find an attempt of general ization of the finite element method over the time domain. Unfortunately, the suggestion of arbitrary partition of time space was not continued. More papers appeared on the simple time integration of differential equations based on the stationary partition. Fried [2] Indicated simplifications that can be gained when noncontinuous time boundary conditlons are considered. Formulations were supported only by the example of a one-degree-of-freedom vibrating system and a heat conduc tion example in which the time variable was still independent of space. At the same time Argyris and Sharpf [3] formulated a similar approach. Although time is Included in derivations of basic quantities, all of the papers treat the problem by Hamilton's princlple. Alturi [4] gave a more general approach in 1973.

More advanced description in space and time was given by Bonnerot and Jamet $[5,6]$ for heat transfer problems. New ideas in modeling a movable edge should be noted. In successive work $[7,8]$ time Integration schemes were stilil called by the term space-time element. Both spatial and time variables were approximated by different and separated functions. The paper by Kujarski and Desal [9] is a good example of such an approach. Three time level procedures described can be unconditionally stable when some constant parameters are properly chosen.
Simultaneously considerable progress in numerical methods of direct integration of differential equations for stationary problems was made. Fundamental work was publlished for stationary problems $[10-20]$. Faster, more efficient, and unconditionaliy stable methods

[^0]were competing for accuracy 21-27. In each case o space discretizing method was applled to the structure and then a difference method was used for time integration. In structural dynamics static mass and stiffness matrices al lowed consideration of continuous varlation in time boundary conditions or spatial domaln. Some revlew papers show high performance in stability and accuracy analysis [28-33]. However, in many systems one or a few concentrated masses were used to prove the efficlency of the methods. Continuous objects are rarely found in these papers.

The first complete and clear space-tlme approximation for structural vibrations was made by Koczkowskl and Langer [34-36]. Strains and stresses are approximated in the space-time domaln. There is no difference between spatial and time varlables. Initial conditions can be regarded as boundary conditions on the constant time layer. Only such a formulation can be understood as an extension of the finite element method. A simllar approach was presented by RIff and Baruch $[37,38]$. Al though the early papers descr ibe uni-dimensional structures and although a conditional stability is still the main disadvantage of the formulation, the space-time finite element method quickly Improved. Space-time elements of non-rectangular shapes were introduced $[39,40]$. A trlangular beam element of arbitrary joint location was used to present a space-tlme element approach to contact problems. A decrease in the integration time step for some spatial regionswith higher speed of displacement is possiblewith the use of triangles. A formulation of an unconditionally stable varlant of the method for multiplex-shaped space-time elements [41] can be regarded as a further improvement. However, in this case the method is a time integration scheme because separation of spatial and time varlables is possible. Recently developed simplex-shaped elements lead to highly efficlent procedures.

Some recent applications of the space-time finite element method are described below. However, a general formulation is restralned by stablilty IImitations. Arbltrary node location in time space cannot be succossfully applled. Stablilty criterla are given for selected structures. Numerical examples prove the efficlency of the approach in different problems of structural dynamics.

FUNDAMENTAL CONCEPTS

In the space time finite element method (STFEM), Interpolation functions are applled both to spatial and time domalns. That is why, for uni-dimensional structures, there are two dimensional space-time elements and three-dimensional objects for two-dimensional problems.

Same sample space-time elements are depleted in Figure 1. Note that shape functions have one more varlable -- the time varlable -. than that found in the classical finite element method (FEM). Element matrices are larger because in STFEM a greater number of jolnts are consldered In the element. The assembly of the global matr Ix [44] is performed in the same was as in the FEM. Element matrix K* is composed of stiffness K, Inertia M, and damping matrices W and Z, depending on the rheological model of the body

$$
\begin{equation*}
K \#=K+M+Z+M \tag{1}
\end{equation*}
$$

Figure 1. Examples of Space-Time Elements.
The assembly of global matrix leads to the hal f-Infinite form
$\left[\begin{array}{lllll}A & B & & \\ C & D & B & (G) \\ & C & D & B \\ (0) & C & D & B\end{array}\right]\left\{\begin{array}{c}\delta_{1} \\ \delta_{2} \\ \delta_{3} \\ \delta_{4} \\ \delta_{4}\end{array}\right]=\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3} \\ F_{4}\end{array}\right\}$
(2)
that can be solved stepwise when the $|n| t i a l$ displacements $\delta_{1}=\delta_{1}$ oare known:

$$
\begin{equation*}
C \&_{1-1}+D Q_{q}+B \&_{1+1}=F_{1} \tag{3}
\end{equation*}
$$

In equation (3) all matrices have dimensions equal to the total number of degrees of freedom In a structure. Initial speed can be Included, assuming for example

$$
\begin{equation*}
\dot{i}_{0}=\frac{1}{h}\left[(1-\beta) \delta_{0}+\beta \delta_{1}\right] \quad \quad 0 \leq \beta \leq 1 \tag{4}
\end{equation*}
$$

In early formulations space-time finlte elements were of multiplex (quadrangular) shape. Interpolation functions were constructed by multiplying spatial and time terms

$$
\begin{equation*}
N_{1}(x, t)=M_{1}(x) \cdot T_{1}(t) \tag{5}
\end{equation*}
$$

$M_{1}(x)$ were the same functions as in FEM. $T_{1}(t)$
were assumed as were assumed as

$$
T_{1}(t)=1 / h\left(t_{2}-t\right)
$$

$$
\begin{equation*}
T_{2}(t)=1 / h\left(t-t_{1}\right) \tag{6}
\end{equation*}
$$

or in local coordinates

$$
\begin{equation*}
T_{1}(t)=1 / 2\left(1+\tau r_{1}\right) \tag{7}
\end{equation*}
$$

Apply equation (7) both to real and virtual displacements to obtain a conditionally stable formula. Modification of equation (7) by third power terms [41] leads to the unconditionally stable variant of the method

$$
\begin{equation*}
T_{i}(\tau)=1 / 2\left(1+\tau q_{i}\right)+\alpha q_{i}\left(\tau^{3}-\tau\right) \tag{8}
\end{equation*}
$$

The system described with the use of equation (8) is unconditionally stable for $\geqslant 1.25$. However, in the case of I inear problems conditional stabllity does not cause any substantial difficulty. Each second layer of jolnts can be eliminated; the result is a space-time super element [42]. Then the system of equations has the following coefficlents:
$\left[\left.\begin{array}{ccc}A-B D^{-1} B & -B D^{-1} B \\ -C D^{-1} C & D-C D^{-1} B-8 D^{-1} C & -B D^{-1} B \\ & -C D^{-1} C & D-C D^{-1} B-B D^{-1} C \\ & -B D^{-1} B\end{array} \right\rvert\,\left\{\begin{array}{c}\delta_{0} \\ \delta_{0} \\ \delta_{4}\end{array} \left\lvert\,=\left\{\left.\begin{array}{c}F_{0}^{-1} \\ F_{2}^{-} \\ F_{4}^{+}\end{array} \right\rvert\,\right.\right.\right.\right.$

$$
\begin{aligned}
& F_{0}=F_{0}-B 0^{-1} F_{1} \\
& F_{1}=F_{1}-C D^{-1} F_{1-1}-B 0^{-1} F_{1+1} \quad 1=2,4,6, \ldots
\end{aligned}
$$

Successive elliminations allow solutions for each 2^{n} instants. Although equation (9) is expressed in even moments, it is posslbie to el Iminate odd layers so that the displacement vector is in even moments. Such a technique passes stabllity IImitations for a super element of sufficiently high order. Unfortunately, this procedure cannot be applled to problems with variable coefficients. The super element technique can be applled to each explicit time integration method, not only to the space-time element method.

A range of possibilities for the simultaneous discretization in space and time was utllized in the following work. Nonstationary spatial discretization was used in a detalled Investigation of the stability problem in which not time stability but instability caused by changeable joint location in successive time layers was considered.

EXANPLES OF RESOUUTION WITH NONSTATIONARY PARTITION OF A STRUCTURE

The method is especially useful when the geanetry of a structure is changed in time, as in the following group of problems:

- in robotics, where large disiocation of masses and changing geametry are assumed
- In jet plane design when changeable wing geometry is allowed
- In satellites while opening arms of the antennas

The second group of problems for STFEM includes problems of infinite structure subjected to a traveling load:

- rolling problems
- contact wheel-rail problem
- stress wave propagation under moving load

Consider space-time elements with nodes placed in different coordinates in each time step (Figure 2). Different time steps can be applied to chosen spatial parts of a structure. When both the stiffness of the system in the zone of interaction and the speed of displacements of two elastic bodies is high, the time partition in such a region can be condensed (Figure 3).

Approximation of the contact area with the element either entirely in or out of contact was used to investigate displacements in time of a beam placed on a unilateral Winkler foundation. The unilateral case was solved with the use of quadrangular beam elements supported
by triangles for time condensation. The bllat eral case was solved with the use of only trlangular elements; constant joint location was assumed. Results can be seen in figure 4.

Figure 2. Nonstationary Division at Each Time Step.

Figure 3. Time Division Condensation in Regions of Higher Stiffness.

Figure 4. Vibration of a Beam Placed on Unilateral and Bllateral Foundations.

The next test problem was concerned with axial vibrations. The length of the bar was changed periodically along with the function $1(t)=$ 2.5-1.5 cos $(0.5 t)$. Motion was excited by the

Inertia effects. A in figure 5 presents disa placements in time of selected polnts and was made for the $|n| t \mid a l$ perlod. B represents later time. The initial disorders were dambed by a small damping coefflelent. Note the regularlty of displacements.

Figure 5. Displacement of the End of Bar with Changeable Length.

The greatest savings can be achleved when movable load or contact zone is consldered. The mesh is refined in the region of signifi= cant influence of forces, leaving the rough net In remote parts. Infinite ends of the band can be cut off (Figure 6). All nodal polnts of the mesh assumed only in IImited distance from the load are displaced with the travel ling force. The local travel ing coordinate system allows the mesh geametry to be descr lbed Independently of time. Up to now, when the statlonary mesh has been given, the identical partition in the entire range of contact had to be assumed. In such a case some spur lous effects can be observed when the body in contact goes from one finlte element to another one. the method proposed in this article slmplifles the calculatlons. Wave phencmena can be observed more easlly.

Figure 6. Movable Mesh in Surface Problems.

However, the arbitrary joint location cannot be taken without danger of loss of stabllity. Analytical calculations and exper Imental observations proved that IImitations are imposed on the coefficient ζ, which is the speed of joint displacement related to the wave speed c

$$
\begin{equation*}
\zeta=d / h \cdot 1 / c \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
d= & d i s p l a c e m e n t ~ o f ~ t h e ~ J o i n t ~ p o s i t i o n ~ i n ~ \\
& \text { successive time steps (Figure 7) } \\
h= & \text { time step } \\
c= & \text { wave speed, } c^{2}=E / \rho
\end{aligned}
$$

Figure 7. A Part of the Analyzed Space-Time Band for Study of Stabllity.

Investigations were done only for selected structures. The maximum values of parameter $\}$ for selected structures are llsted below:

- abar in longltudinal vibrations, modeled by quadrangular el ements, $5<\sqrt{3}$
- longltudinally vibrating bar modeled by trlangular el ements, $\zeta \ll 2$
- beam element (quadr angular and trlangular) $\zeta<1.5$

These values can serve as indicators in other cases. In engineering practice the rate ζ is not reached, even in wave problems.

Unfortunately, in general the simplex-shaped (triangular) elements lead to time conditionally stable schemes. The virtual shape function cannot be Improved in a simple way. Analytical considerations are complicated and were successfully done only for the case of an axially vibrating bar element. Unconditional stablilty can be reached with the following functions of area coordinates of triangle L_{1} :

$$
\begin{align*}
& N_{1}=L_{1}{ }^{3}-3 / 2 L_{1}{ }^{2}+3 / 2 L_{1}-L_{1} L_{2} L_{3} \tag{11}\\
& \tilde{N}_{1}=L 1+\alpha\left(-2 L_{1}^{3}+3 L_{1}{ }^{2}-L_{1}+L_{1} L_{2} L_{3}\right) \tag{12}
\end{align*}
$$

where a is a function of the square of the Courant number $k=c h / b[10]$ and b is the spatial length of the element. For the great-
$a(x)=\left\{\begin{array}{l}0, \text { for } x_{s} \sqrt{2} \\ \left.30 i x^{2}-2\right) /\left(3 x^{2}-4\right), \text { for } x-\sqrt{2}\end{array}\right.$
(13)

BENEFITS OF SIMPLEX-SHAPED ELEMENTS

If the space-time elements have the shapes of trlangles, tetrahedrons, or hyper-tetrahedrons, considerable savings of computational effort can be galned. Efficlency is significantly increased for several reasons: slmplex-shaped elements lead to triangular forms of matrices (Figure 8) with smaller number of coefficlents; second, trlangulation of the coefficient matrix is unnecessary; so the solution can thus be carrled out joint by joint $[43,44]$. The number of arithmetic operations per time step is reduced. A short analysis of efficlency for I inear and nonl inear sol utions is given below.

Figure 8. Space-Time Net for One Space-Time Layer and Its Global Matrix.

Number of multiplications M per step both for the IInear and nonl inear variants of the method is descr ibed by the inequality

```
M<2 sN(p+1)
```

$$
\begin{align*}
N= & \text { total number of degrees of freedom } \tag{14}\\
s= & \text { nodal number of degrees of freedom } \\
p= & \text { number of joints connected with any } \\
& \text { given joint }
\end{align*}
$$

For Instance, consider a regular square mesh composed of 10×10 joints with one degree of freedom in a joint. The Newmark method requires 4,700 arithmetical operations. The present method needs only 1,500 or three times less.

Another reason for the increase in efficlency Is that, because of the trlangular forms of matrices and possibility of olrect solution of the system of equations, only nonzero coefflclents must be held. In other methods appl led to band matrices some zero coefficlents below the threshold become nonzero during sol ution, Increasing the capacity requirements. In the present approach a large reduction of consumed memory and computational time is galned.

Storage requirements in the case with constant coefficlents L_{c} and in the case ith vartable coefficients L_{v} are, respectively:

$$
\begin{align*}
& L_{c}<2 s N(p+1)+s N \tag{15}\\
& L_{v}<7 / 2 s N(p+1)+3 / 2 s N \tag{16}
\end{align*}
$$

For these reasons small computers can be used for calculations, especially microcomputers.
Finally, this interesting simplex-shaped element mesh has other advantages in nonlinear problems but must be used carefully. An investigation of the form of triangular matrices shows the time anisotropy of the solution scheme [44]. When a regular triangular mesh is used and the force is applled in a joint, the speed of the information flow is olfferent in both directions in successive time layers (Figure 9). The unique speed of wave propagation is reached when special partition of the space-time layer is assumed (Figure 10). It should be emphaslzed that the application of simplex-shaped elements does not affect the accuracy of results, but may be used if the anisotropy of propagation is to be conspicuous.

Figure 9. Information flow in the Case of Successive Numbering.

Figure 10. Isotropic Information Propagation.
A static three-dimensional problem described by Zlenklewicz [45] can be simply resolved in dynamics with this method. A scheme of the test problem is given in figure 11. The system conslsts of 125 joints and 384 tetrahedral spatial elements. It is subjected by a heaviside force of the value 1. In Figure 12 displacements of joints under the load are drawn. Note the colncldence with the static results given by Zlenkiewicz. Calculations were carried out on a microcomputer compatible with IBM-PC ($8 \mathrm{MHz}, 8087$). After an assembly of global matrices that lasted about five minutes, one step took four seconds of the computational time.

Figure 11. Static Three-Dimensional Problem of Zlenkiewlcz [4].

FUTURE DIRECTIONS

Several directions can be indicated for the future. Higher order simplex space-time elements, with higher order approximation both in space and in time can be developed. Space-time element models of simplex shapes can be Im proved to obtain unconditionally stable schemes

With respect to the time step. Element models can be developed to allow the arbltrary partition of the space-time layer. Parameters can be Introduced dependent on the time step, element geametry, material constants, and others as has been shown [15]. A good approach to that kind of problem is avallable [16]. Broad development of element models for different dynamic problems; e.g., robotics, matertal processing, should be undertaken. Large numerical problems should be solved, and error analysls should be developed. The method should be applied to the analysis of $|n f| n \mid t e$ structures (movable mesh, Inflinlte space-time el ements).

Figure 12. Response of Static Three-Dimenslonal Problem of Zienkiewicz [4].

REFERENCES

1. Oden, J.T., "A General Ized Theory of Finite Elements, I. Topological Considerations, 11. Appl ications," Intl. J. Numer. Methods Engrg., 1, pp 205-221, 247-259 (1969).
2. Fried, I., "Finlte Element Analysis of Time-Dependent Phenomena," AIAA J., I, PP 1170-1173 (1969).
3. Argyris, J.H. and Scharpf, D.W., "Finite Element in Space and TIme," Nucl. Engrg. Des., 10, pp 456-469 (1969).
4. Altur 1, S., "An Assumed Stress Hybrid Finite Element Model for Linear Elastodynamics and Analysis," AIAA J., 11, PP 1028-1031 (1973).
5. Bonnerot, R. and Jamet, P., "A Second Order Finite Element Method for the One-Dimensional Stefan Problem," Intl. J. Numer. Methods Engrg., 8, pp 811-820 (1974).
6. Bonnerot, R. and Jamet, P., "Numerical Computation of the Free Boundary for the TwoDimensional Stefan Problem by Space-Time Finite Elements," J. Comp. Phys., 25, Pp 163-181 (1977).
7. Kuang, Z.B. and Altur I, S.N., "Temperature Field Due to a Moring Heat Source: a Moring Mesh Finite Element Analysis," J. Appl. Mech., Trans. ASME, 52, PP 274-280 (1985).
8. Kohler, W. and Pittr, J., "Calculation of Translent Temperature Fields with Finite Elements in Space and TIme Dimensions," Intl. J. Numer. Methods Engrg., 8, PP 625-631 (1974).
9. KujawskI, J. and Desal, C.S., "General Ized Time Finite Element Algorithm for Non-Linear Dynamic Problems," Engrg. Comp., 1, pp 247-251 (1984).
10. Courant, R., "Varlational Methods for the Sol ution of Problems of Equilibrium and Vibra tlons," Bull. Amer. Math. Soc., 49, Pp 1-23 (1943).
11. Lax, P.D. and Richtmyer, R.D., "Survey of the Stabllity of Finite Difference Equations," Comm. Pure. Appl. Nath., 2, pp 267-293 (1956).
12. Newmark, N.M., "A Method for Computation of Structural Dynamics," ASCE J. Engrg. Mech., 85 (EM3), pp 67-94 (1959).
13. Hughes, T.R.J., "A Note on the Stability of Newmark's Al gor ithm in Non-Linear Structural Dynamics," |nt|. J. Numer. Methods Engrg., 11, pp 383-386 (1977).
14. Gurtin, M., "Variational Principles for Linear $|n| t i a l-V a l u e ~ P r o b l e m s, " ~ Q u a r t . ~ A p p l . ~$ Math., 22, pp 252-256 (1964).
15. Goudreau, G.L. and Tay lor, R.L., "Eval uation for Numerical Integration Methods in Elastodynamics," J. Comp. Meth. Appl. Mech. Engrg., 2, pp 69-97 (1973).
16. Park, K.C., "An Improved StIffly Stable Method for Direct Integration of Non-Linear Dynamic Equations," J. Appl. Mech., Trans. ASME, 42, PD 464-470 (1975).
17. Belytschko, T. and Schoeberle, D.F., "On the Unconditional Stability of an Implicit Algorithm for Nor-Linear Structural Dynamics," J. Appl. Mech., Trans. ASME, 42, pp 865-969 (1975).
18. Hughes, T.R.J., "Stabillity, Convergence and Growth and Decay of Energy of the Average Acceleration Method in Nor-Linear Structural Dynamics," Computers Struc., 6, pp 313-324 (1976).
19. Trujillo, D.M., "An Unconditional ly Stable Explicit Algorithm for structural Dynamics," Intl. J. Numer. Methods, Engrg., 11, pp 15791592 (1977).
20. Park, K.C. and Fellppa, C.A., MPartitioned Transient Analysis Procedure for Coupled-Field Problems: Accuracy Analysis," J. Appl. Mech., Trans. ASME, 47, PD 919-926 (1980).
21. Mullen, R. and Belytschkol, T., "An Analysis of an Unconditionally Stable Explicit Method," Computers Struc., 16, DD 691-696 (1983).
22. Johnson, D.E., mProof of the Stability of the Houbolt Method," AIAA J., 4, PD 1450-1451 (1966).
23. Hilber, H.M., Hughes, T.R.J., and Taylor, R.L., "Improved Numerical Dissipation for Time integration Algorithms in Structural MechanIcs," Intl. J. Earthquake Engrg. Struc. Dynam., 5, PP 283-292 (1977).
24. Hughes, T.R.J. and Liu, W.K., "ImplicitExplicit Finite Elements in Transient Analysis: Stabllity Theory," J. Appl. Mech., Tr ans. ASME, 45 (June 1978).
25. Nickell, R.E., "On the Stability of Approximation Operators in Problems of Structural Dynamics," intl. J. Sol ids Struc., Z, PD 301319 (1971).
26. Belytschko, T. and Smolinski, P., "StabilIty of Multi-Time Step Partitioned Integrators for First Order Finite Element System," Comp. Meth. Appl. Mech. Engrg., 49, Pp 281-297 (Mar 1985).
27. Bathe, K.J., Finlte Element Procedures in Englneerling Analysis, Prentice-Hall (1982).
28. Hughes, T.R.J. and Tezdvyar, T.E., "Stability and Accuracy Analysis of Some FullyDiscrete Algorithms for the One-Dimensional Second-Order Wave Equation," Computers Struc., 12, pp 665-668 (1984).
29. Bathe, K.J. and Wilson, E.L., "Stabllity and Accuracy Analysis of Direct Integration Methods," Int|. J. Earthquake Engrg. Struc. Dynam., 1, pp 283-291 (1973).
30. Krleg, R.D., "Unconditional Stability in Numer Ical Time Integration Methods," J. AppI. Mech., Tr ans. ASME, 4Q, PP 417-421 (June 1973).
31. Park, K.C., "Practical Aspects of Numerical TIme Integration," Computers Struc., I, PP 343-353 (1977).
32. Jeltsch, R., "Stability and Accuracy of Different Schemes for Hyperbol ic Problems, " J. Comp. Appl. Math., 12-13, pp 91-108 (1985).
33. Zlenkiew|cz, O. C., MFinlte Elements in the Time Domaln, In: State-of-the-Art Surveys on

Finlte Element Technology," Ed. A.K. Noor and W.D. Pllkey, ASME (1983).
34. Kaczkowskl, 2., "The Method of Finlte Space Time Finite Elements in Dynamics of Structures," J. Tech. Phys., 16, PD 69-84 (1975).
35. Kaczkowsk1, 2., "General Formulation of Stiffness Matrlx for Space TIme Finlte Elements," Archlwum Inzynleril LadoweJ. 25, PP 351-357 (1979).
36. Kaczkowskl, Z. and Langer, J., "Synthesls of the Space Tlme Finlte Element Method," Archlwum Inzinleril LadoweJ, 26, pp 11-17 (1980).
37. Riff, R. and Baruch, M., "Stabllity of TIme Finite Element," AlAA J., 22, pp 1171-1172 (Aug 1984).
38. RIff, R. and Baruch, M., "Time Finite Element Discretization of Hamllton's Law of VaryIng Action," A IAA J., 22, pp 1310-1318 (Aug 1984).
39. Bajer, C.I., "Non Stationary Division by the Space Time Finite Element Method in Vibra tion Analysis," Proc. 2nd Intl. Conf. Recent

Adv. Struc. Dynam., Ed. Petyt M, and Wolfe, H.F., ISVR Southampton, PD 161-170 (1984),
40. Bonthoux, C.B. and Bajer, C.1., "Stablilité de résol ution par "Eléments finls d'Espace et de Temps d'une équation de type hyperbol laque," (to be published).
41. Kacprlzyk, Z, and LewInskI, T, "Comperl" son of Some Numerical Integration Methods for the Equatlons of Motion of the Systems with Finite Number of Degrees of Freedom," Engrg. Trans., 31, pp 213-240 (1983).
42. Kacprlzyk, Z., "Space TIme Superelement," Proc. 6th Cont. Computational Mothods Struc. Mech., Blalystok (1983) (In Pollsh).
43. Bajer, C. I., "MIcrocomputer Applications of Non-rectangular Space TIme Finlte Elements In Vibration Analysis - Direct Jolnt-by-Jolnt Procedure," Engrg. Software IV, Proc. 4th Int|. Conf., Spr Inger-Verlag, Ed. Adey, R.A. (1985),
44. Bajer, C.I., "Trlangular and Tetrahedral Space Time Finite Elements In Vibration Analysis," $1 n+1$. J. Numer. Methods Engrg., 23, PD 1-18 (1986).
45. Zlenklewlcz, O.C., The Finlte Element Method, Third Edition, McGraw-HIII (1977).

[^0]: * Laboratolre de Recherches ef Applications en Macanique Assistee par Ordinateur. INPL.

 Ecole des Mines - Parc de Saur upt - 54042 MANCY Cedex - France

