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SUMMARY

Recently, several methods of time integration of the equations of motion have been proposed. Many of
them result in square mass, damping and stiffness matrices. The space—time finite element method-1s an
extension of the FEM, familiar to most engineers, over the time domain. A special approach enables the
use of trrangular tetrahedral and hyper-tetrahedral elements in time and space. By special division of the
space—time layer the triangular matrix of coefficients in the system of equations can be obtamed A snnple
algorithm enables the storage of non-zero coefficients only.'Dynamic solution requires a small amount of
the memory compared to other methods, and ensures considerable reduction of arithmetic operations. The
method presented is also efficient in solving both linear and non-linear problems. Matrices for 2 beam and
plane stress/strain element are derived. Exemplary problems solved by the method described have proved
the eﬂ'e.ctweness of the application of trlangular and tetrahedral space—time elements in vibration analysts.

INTRODUCTION

Discrete methods enable modelling of comphcated problems in structural engmeermg However
approximation requlrements result in matrix equations with many degrees of freedom. In cases
of dynamic and non-linear problems the significant increase of costs has stimulated the growth
of research directed towards the development of algonthms designed for these problems There
are two general classes of algorithms: implicit and exphcrt Implicit algonthms permlt large time
steps but the cost of one step of computations is high, and storage requlrements Increase
consrderably with the size of the mesh. Imphicit methods can be consrdered as numerlcally stable
ones. On the other hand the explicit methods are inexpensive, considering the number of
operations per step, and require less storage than implicit ones. The stability restrictions usually
require small time steps, making the computations more expensive. Mixed implicit—explicit
methods which include the best features of both types of algorithms have also been worked out.
Both implicit and explicit methods described in the literature have many disadvantages. In each
algorithm for the integration of the equation of motion the stiff partition into finite elements is
assumed. In linear problems the stiffness, mass and damping matrices are computed once at the
beginning and they are valid throughout each step. In non-linear problems the matrices are
computed using the same mesh as initially assumed. The stationary division of the construction
enables the solution of some essential problems. For example, vibrations of a structure with
travelling support can be solved only if a non-stationary division is assumed. A partition varying
at each step 1s also useful i in plastic region approxrmatlon 1n contact problems, movable, edge
problems etc. _ o
The second disadvantage of the method developed to date is more general and concerns the
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solution of the system of equations. The matrices obtained in the computations are square and
banded. The final coefficient matrix has the same form. Even in the case of optimum numbering
of the mesh nodes the efficient solution requires holding the square part of the band in the
memory. Then, the matrix can be effectwely triangularized with the use of external memory.
Although in linéar problems with constant coefficients such a procedure can be applied once
even by the use of a time consuming method, in problems with variable coefficients the proper
memory must be permanently provided. Since the computations in vibration analysis are carried
out many times, in order to provide efficiency they should be performed in core. This is the
reason why the size of the structure analysed depends so strongly on the size of the computer
memory.

The third problem concerns the possibility of decreasing the time step in regions of high speed
of displacements. It can be achieved by a mixed implicit—explicit method,' > in which the implicit
method is applied in one spatial region whereas the explicit one is used in the other.

Several papers have elaborated on finite element analysis in the time domain. New integration
methods have been proposed* S and an efficient method has been described.® However, to allow
the element by-element procedure a diagonal mass matrix must be assumed. A comparative
analysm has been performed. 7 A broad survey of the state of the art in the field of finite element
application to dynamic problems has been given® and an introduction into the space-time
element technology has been described.” Unfortunately, in none of these papers 1s there an
approach which provides easy manipulation of finite elements in time. This is why some serious
practical problems cannot be simply solved. The space—time finite element method (STFEM),
of which some aspects will be described below, can be regarded as an extension of common
finite elements over the time domain.!° 13 The easiness of the time—space partition, almost as
easy as the spatial discretization, makes the method useful in the solution of problems with
movable edges All the dlsadvantages mentioned previously can now be overcome. In this paper,
time—space partltlon into triangular, tetrahedral and hyper-tetrahedral space—time finite elements
will be discussed and benefits in the computatlonal process will be exhibited. Considerable
reduction of the matrix form and savmgs in arithmetical calculations are not the only values of
the application described. This paper is limited to the basic apphcable propertles of the method,
but since the STFEM is similar to the FEM famlllar to most engineers wider appheatlons are
imaginable. In the present formulation the method is conditionally stable. This is not so strong
a restriction in cases of geometrically non-lmear problems for Wthh the method is partlcularly
comfortable

OUTLINE OF THE SPACE-TIME FINITE ELEMENT THEORY

The space —time finite element can be understood as a finite element in which the additional
time dlmensmn is considered. Therefore, the space—time system of elements has more dimensions.
For example a beam element has rectangular shape and a plate element becomes a three-
dimensional rectangular prism (Figure 1(a)). Non-rectangular space—time elements are also
p0351b1e (Figure 1(b)). To clartfy further conSIderatlens the basw prmmples of the method will
be included. |

Let f be a dlsplacement vector at any point of the element volume. It can be expressed In
terms of the nodal values o,

f= NS, ' ' IR

N is the matrix of the shape functions. The stress ¢ and strain € can be expressed by the commonly
known relations (the Kelvin—Voigt model was assumed) '
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Figure 1. Rectangular and non-rectangular space—time finite elements

e=af=0d.No, (2)
c=| E+ L4 £ (3)

d, 1s the matrix of differential operators, E is the matrix of the elasticity constants and 7., is a
coeflicient of internal damping. Deformation of the element in time &, can be determined as a
velocity

of ON B
a,—a—t-——-é-t-—&c LR | - - (4)
The momentum of the material poini 1S
o, = — Rg, (5)

R denotes the matrix of elementary inertia coefficients. Denoting 5, as an external dampinﬁg
coefficient, the virtual four-work of internal forces in the volume of the element can be equated
to the four-work of external forces |

. , |
f (0e'6 + d¢f 6, )dV = 58 F, — f of 'n, —dV (6)
" A " ot
Considering (2)—(5) it can be written that
(0, N)'EIN + (0, N)T Ea N — ?—N TR~-6—)—N+NT —a—N dVeo.,=F (7)
" X X X qw 6t X at | at nz at ¢ €
For the whole construction the following matrix equation can be obtained:
K+M+W+2Z)5=F | (8)
or
| K*¢=F (9)
where _ | |
K = f @NJEONdV o)
L , | - _

/0 \T o . .
- --L(a—t-N) RNV (11)
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W= (a,N)Tn,,—a NdV o '_: (12)
7, = J NTq,a—dV T (13)
- v ot .

The matrices K, M, W and Z are ealled the stlffness mass, mternal damping and external
damping matrices, respectively. The analyms of the joint cannectlons m several successive time
layers leads to the global matrix K* in the form = '-

A; B
Cl D1 + A2 Bz
C, D,+A, B,

C, D;+ A, e

i.e. for one time layer equation (9) has the form
Ciordioy + Doy +A)S+ B, =F, . . (19

Such a formulation enables step-by-step solution. Thé dimensions of the submatrices A;, B;, €,
and D, are equal to the total number of degrees of freedom related to the entire structure. In
this meaning the space—time finite element method can be regarded as a time integration method.
However, the time—space region can be divided into space— —time elements of almost any shape.
Although some restrictions are imposed on the shape, in practlcal use the arbltrary tlme space
division can be applied. - e & B LRTE LR A L B

Trmngular element of a beam ( first model) . . . ..

.The assumption of a linear distribution of dlsplaeements in the’ spaee—atlme element enables
the simple derivation of the stiffness, mass and damping matrices. Let the deflection w and the

angle of rotation 6 be given by lmear relations
W alx?+a2t+a3 ag ' (16)

g=[xt1 1" (17)

-and a, b contain the constants a;, b;, i = 1,2, 3. Denoting by r; the columns of the inverted matrix
of nodal co-ordinates

where

x, t 117
G 'l= X, tp | = [ry,r,,r3] | (18)
x3 t3 l |

the :shape matrix N can be determined:

- 1 O
=[Ny, N5, N3], Ny=gr, [O 1] (19
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In the case of a beam, the differential operator @, has the form

1
0, = o 20
. 3. (20)
- Ox
The elasticity matrix is
E= diag-[gki,El:l IR wo v« AFT)

where G is the shear modulus, 4 is the area of.the cross-section, K is the shape factor for the
cross-section and EI is the flexural stiffness. The elementary inertia matrix is

R = diag [pA, pI1 (22)

Considering relations (10)—(13) one can compute the matrices K, M, W and Z. The integration
over the element volume can be accomplished analytically if the origin of co-ordinates is placed
at the centre of gravity of the element. Then, after addition according to (8) the stiffness matrix
K¥* can be written |

5 . T pA . sn ETES -t | "

: (tlr. - tl)(tm - tn) D (xk A x!-'}(xm - xl) _'_(tt _' tl)(xmtn o xntm) . 5 _(Ih e tl)(xn T xm)

4KV 4V 4KV 4y

, |

+— (Xt — Xl )Xy — X))
av ‘-
GA e El pl
- (tm . n)(xkti I xltk) | | . | _*_'(tk o II)(IH T tn) — (xk e xi)(xm R xn) -
MKV e e oy il R L e e i e Y
| 3 f'.*‘-qw_'i_;rjz e

+ — (Oxuly — Xt ) (Xp — X)

where V is the volume of the eleme__r;t_land X;, t; are the nodal co-ordinates. The indices are
changed periodically in a sequence i, k, | and j, m, n. o '

Triangular element of a beam (second model )

To form correctly formulated shape functions we miust ensure the conformance of the
displacements. on the edges. of neighbouring elements. The agsumption of a displacement
distribution varying cubically along the element sides allows the evaluation of displacements at
an additional 6 mid-side nodes. Then a polynomial of sufficiently high order can be assumed
to express the displacement distribution in the element area. The displacements on the edges
are expressed in terms of the nodal values by the form - = . * b

f ={‘g}=N,i§i +N§§j= k(<) (24)

in which §;, 8, represent the nodal displacements and N; is the matrix of cubic and quadratic
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Figure 2. Triangular space—time element

relations describing the displacements on the edge k. The expressions N¥ are related to the

co-ordinate & as follows
N‘:.‘=[N11i Nl?-i] . , | . (25)

Niyi=my — pumy cos? o

1
N5 =3&lh(my — ums) COS a,

iy .
Naui= — Emi(1 — ) ~cos oy - 26)
k
N,y = —(ms) — pm{V)cos® o + 31+ &&;)sin? o
where
3y EIK
A= 1+3y y_GA ox\* D
0¢

The length of the side k, denoted by I, and the angle between the axis Ox and the edge k of
the triangle a, are shown in Figure 2. The polynomials m;, m;, m; and their derivatives are

m, =025(— &3+ 3¢, + 2), m{) = 0-75(— &5 + 1)
m, =025(— & — & + o + 2); m§) = 0-25(— 355 — 2o + 1) (28)
my = 0-25(— &5 + &o); | _ o =&E;

The distribution of displacements inside the element is expressed by the polynomials
f(x. ) w a,x3 + a,(x2t + xt?) + azt> + a,x* + asxt + agt* +a;x +agt +as | (_'29)
x, — —
R byx> + by(x?t + xt2) + bst® + byx® + bsxt + bet” + byX + bgl + bg

Let us define vectors a and b as sequences of unknown coefficients a,...,a, and b,...,bg,
respectively, and let the vector g be of the form | | -

g = [x3, x%t + Xt‘?, t3’ xz, xt, tz, X; Us 1] | . | | - (30)
The displacements w at all nine nodes, denoted by w,, can be expressed by the relation

g(xlitl) | _
g(sz,tz) a=Gé - (31)

€

g(x‘:'h t9)
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and the dlsplacements B at the nine nodes, denoted by GE, by the relatlon _ .

Then the unknown a and b can be evaluated by the inversion of G in (31) and (32) Nodal values
of w, and 0, must be computed by multiplication of the vector 0. by the matrices A, and A,,
respectlvely Coeflicients of the matrices A, and A, should be found to express: dlsplacements
at the nine nodes in terms of three main joint displacements

Cowe=A8, 0.=A%, (33)
The shape functions are given by | - o
. o [Een GtOAT
N(x, ¢
0= [g(x ) G7 Ae] -
The differentiations in relations (10)—(13) can be performed as follows:
og(x, r) A, A, -
a -
i L b
N ag(x z) AL A
ot ot [Aa] - (36)
0 ﬁzg(x,t) A, |
v - w 7
5ta Ni 0x 0t [Ae] ,G-).

Tetmhedral etement of plane stréss/stmm o

- Let us assume a hnear dl:StrlbuthIl of dlsplacements fin the element

g=Mxyt] | '(39)

and a, b are the vectors of four constants a;, b;,, i = 1,2, 3,4. Then 1f the columns of the matrix
G'“" are. denoted by r) = [pm Pt pa,,p4,]"[ the shape matrix N has the form

where =

o N 1 0 . TmEw e e R
=[N1,N2,N3, N.l, N'=g"'|:0 1:| | (40)

The matrix 2, used in (2) for the case of. plane stress and the matrix E used in (3) are well
known: - |

2= D @)
“ S 0 O 5

where E is Young’s modulus and v is Poisson’s ratio.
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The inertia matrix R is diagonal with elements equal to the mass density p. _
To simplify the integration over the volume V let us assume the nodal co-ordinates which
satisfy the relations '

_ Yx;=0, Yy=0}t=0 @
The submatrices K;;, M;;, W;; and Z;; can be written PR
E E i E E
1_ 2p11p1j+2(1+ )pZIPZj %1_v2p11p2j+2(1+ )pZIplj
K;;= A ettty ettt (43)
E » E E |
1__ 2p21p11+2(1+ )pllp2j il_v2p21p2j+2(l+ )pllplj
Mij = = PVP;_aipajl (44)
W, = | i il | (¥ (45)
Zij =N,V PaiP3j (46)

I denotes the 2 x 2 unit matrix and 0 the 2 x 2 zero matrix. In plane strain analysis the matrix
E (41) must be replaced by the appropriate form. It is seen from equation (45) that in the case
of low polynomial order internal damping cannot be considered.

SOLUTION ALGORITHM

If the stationary division was assumed, the algorithm could be considered as an integration
method for the equation of motion. It could be considered as an explicit time integration method.
Global matrices of the system of equations (15) related to one time—space layer were filled by
non-zero elements in the way resulting from the division of the construction into finite elements
and the numbering of joints. Non-zero elements were placed symmetrically. The evaluation of
joint displacements at the given moment required the solution of the system of equations. The
mesh condensation caused the matrix band widening, along with increasing the total number
of equations. In the presented algorithm triangular, tetrahedral and hyper-tetrahedral elements
are of the special interest. The application of the elements depicted in Figure 1(b) enables us to
gain the triangular coeflicient matrices of the system of equations (15) under the condition of
a special numbering of the nodes. Figure 3 presents. a space—time layer in the case of a
unidimensional structure and the global stiffness matrix K* from equations (8) and (9). The right

X
7 XXX
AR SRR TOIRUL
B ol X[ XX X[ [ [ XX

CD © IIEIIIII

Figure 3. Example space—time net and its global matrix
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Figure 5. Information flow in the space—time element method

hand upper quarter of the global matrix denoted by B is a lower triangular matrix. We notice
that the upper triangular form can also be obtained by a special space—time layer division into
triangular elements (Figure 4). Now joint-by-joint solution must be started from the last node.
Any other numeration and any space-time layer division are available but in that case joints
must be analysed in a respective sequence. The analysis of the matrix shown in Figure 2 together
with the system of space-time elements enables the investigation of the information flow among
joints in the space-time layer (Figure 5). The form of the diagram deplcted in Figure 5 is similar
to the diagrams presented in Reference 5. Continuous lines denote the directions of the
information flow which coincide with the element edges.

Anyway, as mentioned previously, the numbering of the nodes and the time layer partition
are arbitrary. To simplify the computational algorithm a special method of space—time element
generation was assumed. All nodes of the spatial division net are successively considered. Let
the number of the considered joint be denoted by i. The space-time mesh can be simply
constructed by the analysis of the mesh topology. All the joints connected with the joint i must
be taken and if the joint number is greater than i, its time co-ordinate ¢t = 0. In the case when
it 1s less, 1ts time co-ordinate t = At. Joint i gives two nodes at which t =0 and t = At. The
described method of space—time mesh generation in the case of surface structure is shown in
Figure 6. The global matrix related to one space—time layer is held in core in the form of a
sequence of submatrices the dimensions of which are equal to the nodal number of degrees of
freedom. The constructed sequence of joint numbers neighbouring the successive joints serves
as a pattern of submatrix location in the sequence of submatrices. The method of global matrix
recording 1s presented in Figure 7. The sequence of submatrices shown in Figure 5 contains a
number of zero blocks (denoted by points). They can be easily eliminated using the remark that
if the joint number in the row of the surrounding number sequence is greater than i (underlined
in Figure 7) the zero block is located at the first position. But, if the joint number in the row is
less than i, the zero block appears in the third position. In the case of equallty of the numbers
the zero blocks do not appear. ;

The presented method of matrix recording ensures the entire exploitation of the memory It
I8 also essential that triangular matrices already require a smaller area of the memory. Based
on the method presented the computer program was worked out. It was written in Fortran IV
and was designed for any type of computer. It can be applied without modification in the
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in global matrix. |
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Figure 7. The disposition of matrices A, B, C and D in-the memory for the example from Figure 3

dynamic analysis of -any type of structure: beams, plates, three dimensional blocks and “aﬁy
higher problems of computational physics. A table whose dimension is declared at the top of
the program is the only one that should be adjusted to the size of the available computer
meméry.-":-..;. AR ¢ § 8, - B o K T & e ‘-

Analysis of the in-core storage efficiency

To evaluate the occupation of the memory by the matrices defined in the program, the number
of words necessary in the example problem computation was estimated. In further considerations
the word is understood as the number of machine words which represent a real number in the
computer. As an example, a plate divided into 128 triangular elements was considered (Figure 8).
To initiate the program a vector of 12,000 real numbers is required. The number of words
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Figure 8. The net of the plate division

necessary to hold the global matrices of the system of equations was also evaluated. If n denotes
the number of joints on the edge of the square mesh and s denotes the number of nodal degrees
of freedom, the total memory used by the space—time stiffness matrix (measured in real numbers)
is (15n° — 16n + 4)s* and the number of multiplications per time step is the same.

Remarks on the use of the external memory

In the case when the dimension of the problem enables the computations to be performed
it 1s possible to use the version of the program collaborating with the random access external
store. The global matrix, written in the form of submatrices, is held in the external store in
several records. The program possesses a table which acts as a buffer in which one of the recorded
parts of the global matrix is held. In computations two stages of exploitation of written matrices
can be separated. In the first one the global stiffness matrix is formulated by addition of
corresponding elements of local matrices. The formulation is carried out element by element,
and hence some transmissions are inevitable in cases when element matrix coefficients hit the
fields of different records. In the second stage displacements of joints at successive moments are
computed. The reading of records is carried out sequentially. Interchange between the internal
store buffer and the external store i1s optimum. In spite of the high efficiency of computations
performed by the described procedure it can be applied only in special cases and under the
condition of a large capacity of the buffer to reduce the number of transmissions at each step.
Otherwise, the computations will last a long time by reason of transmissions only.

APPLICATIONS

It 1s 1nteresting to compare the results obtained by the space—time finite element method and
different element models with the exact solutions. Usually the simple oscillator with one degree
of freedom was used in the investigations of previously constructed methods of time integration.
Here more complicated schemes of structures have to be taken. Conventional methods of time
integration allow one to separate the spatial dimensions from the time variable and in this way
to obtain integration schemes independent of the finite element models. The STFEM enables
the separation of the time variable and that is why the solution scheme accuracy is affected by
the space-time element formulation. However, it is possible to obtain a one degree of freedom
scheme. _

Let us consider a bar 1n axial vibrations. Let the bar be modelled by one spatial finite element,
one end of which 1s fixed. The space—time layer must be composed of two triangular space—time
finite elements. Stiffness and mass matrices related to the movable end are
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Figure 9. Displacements in time of a bar in axial vibration (triangular elements)
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- Figure 10. The tested problem
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where a 18 the length of the bar element and h is the time step. | _
" The equilibrium equation written for one momernit leads to the recursive scheme~ =

R . 2

[PAGI "EAh 'pAﬂ_PAa]' ] SN

.#' i 5l n - — 1 13 o ) = g . - - 1 H ::_. : (48}
P . . = - .. — o R ] : Lo o "

2 _"éi_-}-_]_z g

where §; is the displacement at moment i and F, is the nodal impulsc at moment i, or -

e = T A L (L o, G B (49
q oy ton P T ( a? ) TR o ket 49

Oor

The time step limitation. Lo R
o) e . _ el
results from the stability analysis. Foric?h*/a? =1 and F; = h (let the Heaviside function describe
the load) we obtain the sequence of displacements at successive moments: 0;'0-5, 1, 0-5,:0, 05,
1,... (multiplier = 2h?/pAa). The period T = 4a/c and the amplitude is 2a/EA. We cdn see that
accuraté results were achieved. In the case c?h?/a* = 0-5 the successive displacements are 0, 05,
1-5, 2, 15, 05, O, 0),..., so we have a phase error of 006 and accurate amplitude. Displace-
ments in time of the bar split into three spatial elements are shown in Figure 9.~ = =
" Triangular elements of a beam were used in’ the solution of the ptéblem shown in Figure 10.
H(¢) is the Heaviside function: The amplitude of joint 1 and the period of oscillations for both

=g
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Table I. Comparison of results in beam vibration analysis - -

Time step - Firstmodet  -‘Second model Exact value -
AN, o~ A L o Tuc A, T - A o LT
01 16x 166 69-0 x 10~# 1-80 x 106 745 x 107 % § o PO
10 . 16>< 106 _6'_7-'0'_>< 107*  1-80 x 10° 740 10’ Pkl L 101077 |
A=amplitude, @ At =time step

T = périod of vibrations, At = criti¢al time step - ] - 5 TR e %

TR TR
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Figure 11. Plane stress analysis example’

models of triangular beam elements were compared with the exact values. Shear effects were
neglected 1n computed examples. The results are gathered in Table 1.

A similar test was performed for tetrahedral elements of plane stress analysis. A cantilever
beam divided into 6 finite elements was considered (Figure 11). The amplitude of the subjected
joint is 112, which is about 0-21 of the exact value. It must be noticed that the static solution
of the same problem, in the casé of constant stress elements, is also 0-21 of the exact value and
in this example the method can be regarded.as accurate.

Discussion of results

Although more complicated, even three-dimensional, problems were successfully solved, the
simple tests presented above sufficiently exhibit the main properties of the method.

It can be noted that the amplitude error in all cases is neglectable. In axial vibrations of bars
and beam vibrations with the use of the cubic model of STFE the amplitude results are accurate.
The linear model of a beam element and, especially, tetrahedral elements of plane stress/strain
endorse the influence of the precision of the element model formulation on the results.

The phase error is significant in some cases if compared with the exact solutions. It is worth
quoting here some results from Reference 14. For different parameters fe[0,1] the period
error of Newmark’s method was investigated. The error was evaluated as a function of At.
When the time step was equal to 0-25 of the period T it extended from 0-18 for B =% to 043
for f=3. In a conditionally stable case (B <) the respective values were 0-08 (ﬁ = %) and
— 013 (ﬁ 0). The phase error comparison for other methods was described 1n Reference 5 and,
also, its considerable values were exhibited. In this context the space—time triangular and
tetrahedral elements can be accepted It must be emphasized that the FEM is free of numerical
(spurious) damping. ' -

The space—time finite element method must be considered together with the space—time
elements. It can be regarded as an extension of the FEM over the time domain and its properties
depend on the element properties.
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More general remarks

The space—time layer division into triangular and tetrahedral elements needs special discussion.
The triangular space—time net shown in Figure 12 effects a flow of information with a speed
not greater than the slope of the edges. The numbering, as in Figure 12, involves the anisotropy
of the mathematical model. A similar problem has appeared in the Trujillo method* and was
discussed in Reference 5. But in the Trujillo method the direction of anisotropy is changed in
successive time layers and in two steps the information is transmitted ta all nodes. In the method
described in this paper, the same effect can be obtained if the sequence of joint numbers 1n-each
second layer is changed. However, for the sake of storage minimization, another method was
assumed. The successful numbering of each second joint in the spatial structure increases the
limit of the speed of information flow twice and causes equal speeds in the two directions
(Figure 13). To check the influence of the numbering on the final results two simple test problems
were solved. Cantilever beam vibrations with the mesh as in Figure 12 were considered. In the
first case the first joint was subjected to an impulse and in the second case the last one was
forced. In both cases the displacements differed at only a few initial steps. After several steps
the results coincided. .

Non-linear problems can also be solved by the method described in this paper. The
computational program must be modified to hold additional matrices C; and D; for the (i + 1)th
layer of joints (14). Both of them take about 0-75 of the total memory desired for the linear

—
L
_
»

Figure 13. Isotropic information propagation
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Figure 14. Non-stationary division of a beam
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Figure 15. Time division condensation in some regions of the structure

problem. Non-linearity can be of two types. Non-linear material properties in elastic-plastic
problems, the influence of the unilateral elastic foundation and other contact problems can be
of the first type of non-linear analysis. The second type is when a non-stationary division of the
structure into finite elements is assumed’> (Figure 14). Non-stationary time-space partition was
used in dynamic analysis of a beam placed on a unilateral foundation.'® The time—space partition
was adjusted to the soil-structure contact area. The space—time element edges were always in
coincidence with the lines limiting the contact zone. Moreover, triangular space~time elements
were used in the time division condensation in regions of high stiffness of the structure (Figure 15).
To complete the information included in this paper it should be emphasized that the stability
limitations have to be considered. Two cases of non-stationary division can be determined in
which the stability restrictions limit the size and the shape of the elements. The first case is when
the time—space layer is divided into triangular elements, but the joint locations at the bottom
and the top of the time layer are the same. Here the time step is the only factor which limits
the application of the triangular elements.. The second case is more general. The joint locations
at two successive moments are changed (Figure 14). The limitations depend on the time step on
one hand and on the speed of joint dislocation on the other hand. Since the simple investigation
for one degree of freedom could not be applied, more complicated reproducible systems of
elements were used in examinations.

STABILITY ANALYSIS

In the application of the space-time FEM two reasons for instability can be indicated. The
value of the time dimension of the elements, 1.e. the time step, is the first one. In the case of
non-rectangular STFE:s i1t 1s difficult to express analytically the influence of the time step on the
stability of computational schemes. The time variable is mixed with the spatial variables and
cannot be separately observed. For each type of STFE model a new investigation process must
be carried on. The problem is wide and can be properly shown only in a separate paper. A
short introduction into the way of the testing and some practical conclusions can be cited in
the paper. '
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Figure 16. Space—time band used in stability analysis

In the case of a beam a separated part of a space—time half band is depicted in Figure 16.
Every second layer of nodes was eliminated. The matrix of coefficients of the system of equations
can be written in a block form: o j 5 |

H OB @ 6
F A B
C D E
- F A B
For free vibrations an equation of the step-by-step procedure is obtained: .
 (=FD'0)3,+(A—FD'E—BD 'O)dy +(—BD'E)Sz=0 (5))
The same ean be written by the use of the amplification matrix T: ' '

am} ' { 8;} R

whelﬁe?j.q: : E 5 1 ; BTl s € LR g ¢ At ey & el
. [BDT!E)A-FD 'E-BD!C) |~®BD'E)'FD!C] .
B e s INURNNI )
I is the uﬂita’rymatrix ‘and 0 is the zero matrnx. The stability condition n the problem (52) is
described in References 17 and 18. If the spectral radius ¥ ‘of the matnx T 1s less than one:
the recurrerice scheme (51) is stable. In the case of W(T) = 1, when the radius is multiple root of
the characteristic equation, the problem (51) is also unstable. Below' some conclusions for
triangular and tetrahedral elements will be presented.

According to Figure 16 two dimensiqnlgss coefﬁcic_nts‘will be introduced. The first one
represents the time step At related to the critical value At,,:
The second one describes the speed of joint dislocation compared to the speed of wave propagation
in the elastic medium . . - ' |

- ——

-.p- -

e

A

5 : A Lpedn e 3 - 4 i = .
‘e v 1 . " F . S B 55)
¢ oa ok, # : - ( ] i

41

D

A i R
i
= N ; h N N 5 =
- \ -
N - - ) .J.I(56)
o= R 3 i
; 1 o . . )



g e T W W oEa gmw L e e R LA, W

SPACE-TIME FINITE ELEMENTS IN VIBRATION ANALYSIS 2047

2._ .
L By | s foww £, | BOS WE e IR TS
0. 05 1.5, 2 i+ 25

~Figure 17. Triangular beam element (second model)a—s_tablhty condition -
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| Figure 18. Tetrahedral element of plane stréss'f'sirain——atab'ility coﬁditio“n,'

' The spectral radius lIJ can bc deplcted in terms of thc value { (Flgures 17 and 18) It can be seen

that in the case of beam elements the critical value of £ = 1:5 was obtained. An identical result

was obtained for the quadrangular space—time beam element.'* The plane stress/strain element

has poor stability properties. The range of £ which ensures the stable oscillations 1s not coherent.

It makes application of such an element difficult. Considering the 1mp0531b111ty of inclusion of

the internal damping (45) the new model of higher polynomial order should be mtroduced
‘The time step for triangular elements of a bar is limited by the value

hg\/zzf S € 1)

where b is the length of a spatial element and c is the wave speed, whereas in the .c"ase of
rectangular bar elements the same condition 1s ' - - -

The limits of the parameter ¢ in the cases of triangular and quadrangular bar elements are

. EgJT __ S (59)
respectively.
CONCLUSIONS

The accuracy of the STEFM with the use of simplex-shaped elements described in the paper
strongly depends on the quality of the space—time element, in the meaning of its mathematical
model. Amplitude error is neglectable when comparing results not with the theoretical value
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but with FEM calculations. Imperfections of finite elements and space—time finite elements are
of great influence on the final results. Phase error is significant if compared with analytical
calculations but, when compared with other time integration methods, the accuracy is sufficient.
The method is conditionally stable. Improvements in element formulation may lead to the
unconditionally stable formulation as was done in the case of rectangular, multiplex-shaped
elements. Comfort in non-stationary partition of the structure makes the method useful in
engineer’s practice. Although some restrictions on the time-space division are imposed, the
approach described can be successfully applied in non-linear problems. '

Triangular, tetrahedral and hyper-tetrahedral space-time elements lead to a lower triangular
matrix of coefficients in the system of equations. A special algorithm ensures high effectiveness
in storage and in computations.

Many methods of time integration give an infinite speed of information flow that contradicts
the reality. Here the speed of disturbance is limited and it improves the differential equation
solution.
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