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SUMMARY

Recently, several methods of time integration of the equations of motion have been proposed. Many of

them result in square mass, damping and stiffness matrices. The space—time finite element methodis an

extension of the FEM, ,familiar to most engineers,» over the time domain. A special approach enables the

use of triangular, tetrahedral and hyper-tetrahedral elements in time and space. By special division of the

space—time layer the triangular matrix of coefficients in the system of equations Can be obtained; A simple

algorithm enablés the storage of non-zero coefficients only.‘Dynamic solution requires a small‘amO’unt 'of

the memory cornpared to other methods, and. ensures considerable reduction of arithmetic operations'The

method-presentedis also efficient in solving both linear and non—linear problems. Matrices for a beam and

plane stress/strain element are derived..Exemp1ary problems solved by the method described have proved

the effectiveness of the application of triangular and tetrahedral space—time elements in vibration analysis.

INTRODUCTION

Discrete methods enable modelling of complicated problems in structural engineering. However,

approximatiOn requirements result in matrix equations with many degrees of freedérn. In cases

of dynamic and nOn-linear prOblems the'significant increase of costs has stimulated the growth

of research directed towards the development of algorithms designed for these problems. There

are two general classes of algorithms: implicit and explicit. Implicit algorithms permit large time

steps, but the cOst of one step, of computations is high, and storage requirements increase

considerably 'with the size of the mesh. Implicit methods can berctmsidered as numerically stable

ones. On the other hand, the explicit methods are inexpensive, considering the number of

operations per step,’and require less storage than implicit ones. The stability restrictions usually

require small time steps, making the computations more expensive. Mixed implicit—explicit

methods which include the best features of both types of algorithms have also been worked out.

Both implicit’and explicit methods described in the literature have many disadvantages. In each

algorithm for the integration of the equation of motion the still partition into finite elements is

assumed. In linear problems the stiffness, mass and damping matrices are computed once at the

beginning and, they'are valid throughout each step. In non-linear problems the matrices are

computed using the same mesh'as initially assumed. The stationary division of the construction

enables the solution of some essential problems. For example, vibrations of a structure with

travelling support can be SOIVed only if a non-stationary division is assumed. A partition varying

at each step is also useful in plastic region approximation, in contact problems, movable, edge

problems etc. i I

The second disadvantage of the method developed to date is more general and concerns the
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solution of the system of equations. The matrices obtained in the computations are square and

banded. The final coefficient matrix has the same form. Even in the case of optimum numbering

of the mesh nodes the efficient solution, requires holding. the square part of the band in the

memory. Then, the matrix can be effectively triangulariZed with the use of external memory.

Although in linear problems with constant coefficients such a procedure can be applied once

even by the use of a time consuming method, in problems with variable coefficients the proper

memory must be permanently provided. Since the computations in vibration analysis are carried

out many times, in order to provide efficiency they should be performed in core. This is the

reason why the size of the structure analysed depends so strongly on the size of thercomputer

memory.

The third problem concerns the possibility of decreasing the time step in regions of high speed

of displacements. It can be achieved by a mixed implicit—explicit method,“3 in which the implicit

method israpplied in one spatial region whereas the explicit one is used in the other.

Several papers have elaborated on finite element analysis in the time domain. New integration

methods have been proposed“5 and an efficient method has been described.‘ However, to allow

the ‘ele'inentherleinent procedure a diagonal mass matrix must be assumed. A comparative

analysis has'been performed.7 A broad survey of the state of the art in the field of finite element

application to dynamic problems .has been given8 and an introduction into the space-time

element technology has been described.9 Unfortunately, in none of these papers is there an

approach which provides easy manipulation of finite elements in time. This is why some serious

practical problems cannot be simply solved. The space—time finite element method (STFEM),

of which some aspects will be described below, can be regarded as an extension of common

finite elements over the time domain.‘°’13 The ea‘siness of the time—space partition, almost as

easy as the spatial discretization, makes the method useful in the solution of problems with

movable edges. All the disadvantages mentioned previously’can now be overcome. In this paper,

time—space’partition intotriangular, tetrahedral and hyper-tetrahedral space—time finite elements

will be discussed and benefits in the computational process will be exhibited. Considerable

reductionof'the matrix fOrm and savings in arithmetical calculations are not the only values of

the application described. This paper is limited 'to the basic applicable properties of the method,

but since the STFEM is similar to the FEM familiar to most engineers wider applicatiOns are

imaginable. In the present formulation the method is conditionally stable. This is not so strong

a restriction in cases of geometrically non-linear problems, for which the method is particularly

comfortable. ' ‘ '

‘ OUTLINE OF THE SPACE—TIME FINITE ELEMENT THEORY

The space—time finite element can be understood as a finite element in which the additional

time dimension is c0nsidered. Therefore, the space—time system of elements has more dimensions.

For example, a beam element has rectangular shape and a plate element becomes a three-

dimensiOnal rectangular prism (Figure 1(a)). Non-rectangular space—time elements are also

possible (Figure 1(b)). To clarify further considerations the basic principles of the method will

be included. ‘ I

Let f be a displacement vector at any point of the element volume. It can be expressed in

terms of the nodal values 6, ‘

r: N8, ' (1)

N is the matrix ofthe shape functions. The stress 0' and strain a can be expressed by the commonly

known relations (the Kelvin—Voigt model was assumed) 4
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Figure 1. Rectangular and non-rectangular space—time finite elements

a = a; = axNae (2)

c=<E+nw§E>s , (3)

fix is the matrix of differential operators, E is the matrix of the elasticity Constants and 11w is a

coeflicient of internal damping. Deformation of the element in time s, can be determined as a

velocity

0f 0N
8‘_E=Ese , I — a (4)

The momentum of the material point is

6t = — R31 (5)

R denotes the matrix of elementary inertia coefficients. Denoting n, as an external damping

coefficient, the virtual four-work of internal forces in the volume of the element can be equated

to the four-work of external forces r

f

J (690' + derogdv = éfieFe — I arm;dV (6)
V ' V

Considering (2)—(5) it can be written that

6 (3 T 6 6
aTEa 6T—N—VNR#NNT— V:M( M NH XN) nwatax (at ) at + nzatN]d 6: Fe (7)

For the Whole construction the following matrix equation can be obtained:

(K+M+W+Z)6=F (8)

or

K*8 = F (9)

where

K = f (axN)TE6deV I (10)

V

M— —'~ 8 N TRflNdV (11)
_ g, at at
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wéil‘afifnwflafidi/ .; ” (12)

. ' 1" at I I t i

EZ=J Nqua_NdV i L (13)
t, V at

The matrices K, M, W and Z are called the stiffness, mass,'.>internal damping and external

damping matrices, respectively: The analysis of the joint connections in several successive time

layers leads to the global matrix K“ in the form ’ ‘ r '

A1 Bl I

C1 D1+A2 B2 8 F

C2 D2+A3 B3 82 = F2 (14)

C3 ‘D3,‘+A4 3 a 3

ice. for one time layer equation (9) has the form

Ci-lsi-L‘I‘GJI-‘l+Ai)6i+Bi8i+l=Ft : . n4 .a' , (15)

Such a ’formfilation enables step-by-step solution. The dimensions Of the SubmatricesAi, 13;, C,-

and D,- are equal to the total number of degrees of freedom related to the entire structureln

this meaning the space—time finite element method can be regarded as a time integration method.

However, the time—space region can be divided into space—time elements of almost any shape.

Although some restrictiOns are imposed on the shape, in practical use the arbitrary time—space

division can be applied. " ""31 r ' ~» “' r

Triangular‘elementpfabeam (firstir'nodel) _ , _, . _ _ H ,,

wThe assiu‘n'ption of a linear distribution of displacements 'inthe’spaoe—‘Ltime' elemenz'enable‘s

the simple derivation of the stiffness, mass and damping matrices. let'thedeflection w and the

angle of rotation 0 be given by linear relations

W alrxi+a2t+a3n ag

9 ‘ b1x+b2t+b3 7 bg K . .

where

ig"=[x;z,1] , " W (17)

- and a, b contain the constants ai, bi, i = 1, 2, 3. Denoting by r; the columns ofthe inverted matrix

of nodal co-ordinates

x1 t1 1 “

Gd = x2 t2 1 = [1'1’l'2’ l'3] (18)
l _

the shape matrix N can be determined:

;1 0

N=[N1,N2,N3], Nl=gri[0 i' 1] (19)
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In the case of a beam, the differential operator 3, has the form

(20)

 

The elasticity matrix is

K

where G is the shear modulus, A is the area of. the cross-section, K is the shape factor for the

cross-section and E1 is the flexural stiffness. The elementary inertia matrix is

R = diag [pA, p1] V
(22)

Considering relations (10)—(13) one can compute the matrices K, M, W and Z. The integration

over the element volume can be accomplished analytically if the origin of co—ordinates is placed

at the centre of gravity of the element. Then, after addition according to (8) the stiffness matrix

K“ can be written

E = diagl:G—A~, E1] v : - (21)

GA ' 'pA V ' ‘ l ' GA "w

(ti: — tuft». — tn) — h’ (xx _ Xx)(X.. — x.) *(‘k — mum!" ‘ xntm) + _(tk — t1)(x,. — ’5...)
4V 4KV 4V

' 4KV

 

"l

+ —(xktl — xlthxu — xm)

4V ‘ ;

K3: . ' (23)GA ‘ El pI
_ —(tm — t.)(Xrtz — x1115) . “(in f t.)(t.. — tn) — —(Xh — XIXXM ,— Xn)

4KV, .1 .. -.4V . > 4V.»- .?

" m +' n, ‘ "
+ (xktl — 3%than x7») 7 .

 

where V is the volume of the elementand xi, ti are the nodal co-ordinates. The indices are

changed periodically in a sequence i,’k, l and j, m, n.

Triangular element of a beam (second model)

To form“correctly formulated shape functions We niust ensure the conformance of the

displacements, onthe edges of neighbouring elements. Themassumption of a displacement

distribution varying cubically along the element'sides allows the evaluation of displacements at

an additional 6 mid-side nodes. Then a polynomial of sufficiently high order can be assumed

to express the displacement distribution in the element area. The displacements on the edges

are expressed in terms of the nodal values :by the form - ‘

rk=p{3}=Nte+N;6,-=fk(e (24)

in which 8,-, 6,- represent the nodal displacements and N? is the matrix of cubic and quadratic
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Figure 2. Triangular space—time element

relations describing the displacements on the edge k. The expressions N? are related to the

co-ordinate 5 as follows

N1: = [NW NW] _ (25)

N11i= m1 _.um3 0052 01k

N12i = %€ilk(m2 " I‘ms) COS “I:

2

N21i: —€im(ll)(l _fl)l‘cosak ‘ (26)

k

N22i = " ("'(21) — #m(11))0052 “k + %(1 + Sinz “k

where

3y EIK

#1 — 1—443, 7 - (TAT—x7 (27)

55

The length of the side k, denoted by 1*, and the angle between the axis 0x and the edge k of

the triangle dk are shown in Figure 2. The polynomials m1, m2, m3 and their derivatives are

m1=0-25(—-€3+3€0+Z), ma“=0-75(—€3+ 1)

m2 = 0-25(— £3 — £3 + £0 + 2), m‘z" = 0'25(— 36% — 260 +1) (28)

m3=0'25(—§3+€0), Co=€§i

The distribution of displacements inside the element is expressed by the polynomials

a t) w alx3 + a2(x2t + xtz) + a3t3 + a4x2 + asxt + aat2 + a7x + ast + a9 (29)

x, = =

9 b1x3 + b2(x2t + xtz) + b3l3 + b4x2 + b5xt + bét2 + b7x + bst + b9

Let us define vectors a and b as sequences of unknown coefficients a1,...,a9 and b1,...,b9,

respectively,'and let the vector g be of the form ' ’

g = [x3, xzt + xtz, t3, x2, xt, t2, x, t, l] h _ (30)

The displacements w at all nine nodes, denoted 'by we, can be expressed by the relation

20cm) ‘

w = 30?”) a = Ga (31)
e

g(x9) t9)
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and the displacements 0 at the nine nodes, denoted by Beyby the relation 2 .

Then the unknown a and b can be evaluated by the inversion of G in (31) and (32). Nodal values

of w, and 0e must be computed by multiplication’of the‘vector 8, by the matrices Aw and A,,

respectively. Coefficients of the matrices Awand A,’ should be found toexpréss‘displacements

at the nine nodes in terms of three main joint displacements

   

we =AQ8., 0: = A08. ' . _ (33)

The shape functions are given by 7 i p I N p

' ' " g(x,t) 6—1 ’Aw '
N =

(x, G— 1 A0

The differentiations in relations (10)—(13) can be performed as follows;

6g(x, t) _ Aw _ A9
a = 1 1

xN ax [A0 g(x, t)G 0 I (35)

aN_ag(x,z)’ _1 A-w, . .. i _ p'

@7— at G A, . _ . -. , - (362

(3 6?g(x, t) _1A _Aw .

923*” f 6x6: _G A, V '97)

Tetrahedfdl'e'l'érhen? of plane streSS/strain '

Let us assume a lineardistribution of displacements f in the elemént

lif(x’y’t)'=[:]={::}
2' V-r' V, I (38.)

g=[5c,y',t,1] . " '7 " ('39;

and a, (b are-the vectors Of four constants a;, bi, 1': 1,2, 3,4. Then, if. the 'columns ofthematrix-

G"1 arerdendted by r, = [pm p2,, p3,, p4,]r, the shape matrix N has the form . .

where _ 7

4 r V r - 0 ' _ ~ . ’ '. , ’

N: [N11N23N3’N4J’ Ni=gri[0

The matrix a, used in (2) forithe case of, plane stress and the matrix E used in (3) are well

known: " ' '

  

(:3; 0 1 v 0

‘ ’ 6 ‘ E’fi ,. y 1 0

a?" 0 gay ’; _‘ 1—‘v2 _ 0 14v (41)

6 6 ' ' 2

6y 6x

where E is Young’s modulus and'v is Poisson’s ratio.
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The inertia matrix R is diagonal with elements equalsto the mass density p.

To simplify the integration over the volume V let us assume the nodal co-ordinates which

Satisfy the relations

      

_ 2xi=0a (‘Zyt=0’ 'Zti=o . . (42)

The submatrioes KU, MU, W“- and Z” can be written

E + E i E + E

1_ V2P11P1] 2(1 + v)P2.P2, §1_ vzypliPZj 2(1+ V) P211711

Ky: V -------------------------------
+-------------------------------------

(43)

E E g E ' . E » -

‘1 _ 2P2tP1j+ 2(1 + )plip2j §1_ v2 P2iP2j+ 2(1 + )pliplj

My“: —PVPasP3jI
(44)

Zr; = '12 VP4iP3j
(46)

I denotes the 2 x 2 unit matrix and 0 the 2 x 2 zero matrix. In plane strain analysis the matrix

E (41) must be replaced by the appropriate form. It is seen from equation (45) that in the case

of low polynomial order internal damping cannot be considered.

SOLUTION ALGORITHM

If the stationary division was assumed, the algorithm could be considered as an integration

method for the equation of motion. It could be considered as an explicit time integration method.

Global matrices of the system of equations (15) related to one time—space layer were filled by

non-zero elements in the way resulting from the division of the construction into finite elements

and the numbering of joints. Non-zero elements were placed symmetrically. The evaluation of

joint displacements at the given moment‘required the solution of the system of equations. The

mesh condensation caused the matrix band widening, along with increasing the total number

of equations. In the presented algorithm triangular, tetrahedral and hyper-tetrahedral elements

are of the special interest. The application of the elements depicted in Figure 1(b) enables us to

gain the triangular coefficient matrices of the system of equations (15) under the'condition of

a special numbering of the nodes. Figure 3 presents a space—time layer in the. case of a

unidimensional structure and the global stiffness matrix K* from equations (8) and (9). The right

123456789mnnnu

IIIIII

I‘ §:e= 'Ex

tuna 12 13 9 11. 10 11 I. I

t=0 III ‘

1 5 6 2 7 3 L 6

' IIIIII

   

   

11 IIIIIIIII

12IIIIIIII

13 IIIIHIIII

1"IIIIIIIIII

Figure 3. Example space-time net and its global matrix
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Figure 5. Information flow in the space—time element method

hand upper quarter of the global matrix denoted by B is a lower triangular matrix. We notice

that the upper triangular form can also be obtained by a special space—time layer division into

triangular elements (Figure 4). Now joint-by-joint solution must be started from the last node.

Any other numeration and any space~time layer division are available but in that case joints

must be analysed in a respective sequence. The analysis of the matrix shown in Figure 2'together

with the system of space—time elements enables the investigation of the information flow among

joints in the space—time layer (Figure 5). The form of the diagram depicted in Figure 5 is similar

to the diagrams presented in Reference 5. Continuous lines denote the directions of the

information flow which coincide with the element edges.

Anyway, as mentioned previously, the numbering of the nodes and the time layer partition

are arbitrary. To simplify the computational algorithm a special method of space—time element

generation was assumed. All nodes of the spatial division net are successively considered. Let

the number of the considered joint be denoted by i. The space—time mesh can be simply

constructed by the analysis of the mesh topology. All the joints connected with the joint 1' must

be taken and if the joint number is greater than 1', its time co-ordinate t= 0. In the case when

it is less, its time co-ordinate t: At. Joint i gives two nodes at which t=0 and t= At. The

described method of space—time mesh generation in the case of surface structure is shown in

Figure 6. The global matrix related to one space—time layer is held in core in the form of a

sequence of submatrices the dimensions of which are equal to the nodal number of degrees of

freedom. The constructed sequence of joint numbers neighbouring the successive joints serves

as a pattern of submatrix location in the sequence of submatrices. The method of global matrix

recording is presented in Figure .7. The sequence of submatrices shown in Figure 5 contains a

number of zero blocks (denoted by points). They can be easily eliminated using the remark that

if the joint number in the row of the surrounding number sequence is greater than i (underlined

in Figure 7) the zero block is located at the first position. But, if the joint number in the row is

less than i, the zero block appears in the third position. In the case of equality of the numbers

the zeroblocks do not appear.

The presented method of matrix recording ensures the entire exploitation of the memory. It

is also essential that triangular matrices already require a smaller areaof the memory. Based

on the method presented the computer program was worked out. It was written in Fortran IV

and was designed for any type of computer. It can be applied without modification in the
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coefficient position ', sequence of surrounding ‘numbers-

in global matrix . _

matrix 'deslgmtion
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Figure 7. The disposition of matrices A, B, C and D in the memory for the example from Figure 3

dynamic analysis of any type of structure: beams, plates, three dimensional blocks and any

higher problems of computational physics: A table whose dimensionis declared at the top of

the program is the only one that should be adjusted to the size of the available computer

memory /_ 2 r .
, V p .

Analysis bf the in—Core storage "efficiency

To evaluate the occupation of the memory by the matrices defined in the program, the number

of wordsnecessary in the example problem computation was estimated. In further considerations

the word is‘ understood as the number ofmachine words which represent a real number in the

computer. As an example, a plate divided into 128- triangular elements was considered (Figure 8).

To initiate the‘ program a vector of 12,000 real numbers is required: The number of words
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Figure 8. The net of the plate division

necessary to hold the global matrices of the system of equations was also evaluated. If n denotes

the number of joints on the edge of the square mesh and 5 denotes the number of nodal degrees

of freedom, the total memory used by the space—time stiffness matrix (measured in real numbers)

is (15n2 — 16n + 4)s2 and the number of multiplications per time step is the same.

Remarks on the use of the external memory

In the case when the dimension of the problem enables the computations to be performed

it is possible to use the version of the program collaborating with the random access external

store. The global matrix, written in the form of submatrices, is held in the external store in

several records. The program possesses a table which acts as a buffer in which one of the recorded

parts of the global matrix is held. In computations two stages of exploitation of written matrices

can be separated. In the first one the global stiffness matrix is formulated by addition of

corresponding elements of local matrices. The formulation is carried out element by element,

and hence some transmissions are inevitable in cases when, element matrix coefficients hit the

fields of different records. In the second stage displacements of joints at successive moments are

computed. The reading of records is carried out sequentially. Interchange between the internal

store buffer and the external store is optimum. In spite of the high efficiency of computations

performed by the described procedure it can be applied only in special cases and under the

condition of a large capacity of the buffer to reduce the number of transmissions at each step.

Otherwise, the computations will last a long time by reason of transmissions only.

APPLICATIONS

It is interesting to compare the results obtained by the space—time finite element method and

different element models with the exact solutions. Usually the simple oscillator with one degree

of freedom was used in the investigations of previously constructed methods of time integration.

Here more complicated schemes of structures have to be taken. Conventional methods of time

integration allow one to separate the spatial dimensions from the time variable and in this .way

to obtain integration schemes independent of the finite element models. The STFEM enables

the separation of the time variable and that is why the solution scheme accuracy is affected by

the space~time element formulation. However, it is possible to obtain a one degree of freedom

scheme.

Let us consider a bar in axial vibrations. Let the bar be modelled by one spatial finite element,

one end of which is fixed. The space—time. layer must be composed of two triangular space—time

finite elements. Stiffness and mass matrices related to the movable end are
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Figure 9. Displacements in time of a bar in axial vibration (triangular elements)

E :1 =0

I‘ll: Hi i " V 'A=1
32m

1:1,., , W

; 'v - .
_10‘17‘

e -

1 2 3 46% L =1

K:05

t L , L ,. L ,. F_=’10'H(tl

“ I, figure, 10. The tested problem

where a is" the length of’the bar element and h is the time step. ' " '

The eduilibrium equation Written for one moment leads to the recursive scheme

  

l , r z >
r l 5' , . . y : 4

' ‘PAa'EAh 'Aa_pAa 1‘1 ~_- - L 7 ~ z

' L ~' ’ . " _ '65+1: r ’ . . .

where T6;: the displacement at momenti and F,- the nodal impulse at "moment 'i, or _

a - : £th ' a 2hF, V

t ‘ ,5i+1= 2(15‘02 )5i__6if1 +7115 ‘ I V _ (49)

or

W) ‘
c= -—

‘ 2 . ,. . p

The time steprlimitation ‘1 _' n p ‘ ‘ I t I

V I i ‘ . j . .rlcjh2 , » r, i

i . , in?! I p ., 5'60)

results from the stability analysis. For iczhz/az = -1 and F, ,= h- (let-the Heaviside function describe

the lead) We obtain theisequence of displacements at successive moments: 0:0“5’, 1,'0-5,=0, 0-5,

1, . (multiplier = 2h2/pAa). The period T: 4a/c and the amplitude ist/Efii. We can see that

accurate results were achieved. In the case cth/a2 = 0-5 the successive displacements are 0, 0-5,

1-5, 2, 1'5, 0-5, 0, 05,. .., so we have a phase error of 006 and accurate amplitude. Displace-

merits in time of'the bar split into three Spatial elements are shown in Figure '9: ' ‘ ~ ‘1

Triangular elements of-a'beam Were'used' intth'efsolution'of the problem'shown in Figure 10.

H(t) is the Heaviside‘fun‘ctionzzThe amplitude of joint 1 and the period of Oscillations for both
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Table I. Comparison of results in beam vibration analysis

   

Time'st'ep ' First model ~ "Second model Exact value

‘ At/Atc, .- A T A. .. . T A r < T

—‘“——r—*—'—‘~———r——-——r———.
‘ {

' . ‘—T‘ ' 2. L' I .' .'. V ‘

, 0-1 , W‘_1"6x 16? 69-0x10‘4 180x106 74-5x10—4 ' r ” 6 _ ' -4

, 1-Q‘ " 1-6310“ 67-0 >910" ‘ 1-80 x106 74-0 x10"4 ' ‘1 8 X10 1 510 x 10'

Ar= amplitude, A! = time step

T= period ofvibrations, 2stcr = critical time step ' . ‘ , - “a
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+
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Figure 11. Plane stress analysis example),

models of triangular beam elements were compared with the exact values. Shear effects were

neglected in computed examples. The results are gathered in Table I.

A similar test was performed for tetrahedral elements of plane stress analysis. A cantilever

beam divided into 6 finite elements was considered (Figure 11). The amplitude of the subjected

joint is 112, which is about 0-21 of the exact value. It must be noticed that the static solution

of the same problem, in the case of constant’stress elements, is also 021 of the exact value and

in this example the method can be regardedas accurate.

Discussion of results

Although more complicated, even three-dimensional, problems were successfully solved, the

simple tests presented above sufficiently exhibit the main properties of the method.

It can be noted that the amplitude error in all cases is neglectable. In axial vibrations of bars

and beam vibrations with the use of the cubic model of STFE the amplitude results are accurate.

The linear model of a beam element and, especially, tetrahedral elements of plane stress/strain

endorse the influence of the precision of the element model formulation on the results.

The phase error is significant in some cases if compared with the exact solutions. It is worth

quoting here some results from Reference 14. For different parameters fie[0,%] the period

error of Newmark’s method was investigated. The error was evaluated as a function of At.

When the time step wasequal to 0‘25'of the period T it extended from 0-18 for B =% to 0-43

for [3 =%. In a conditionally stable case (/3 <%)‘ the respective values were 0-08 (fl =%) and

— 0'13 (/3 = 0). The phase errorcomparison for other methods was described in Reference 5 and,

also, its considerable values were exhibited. In this context the space—time triangular and

tetrahedral elements can be accepted. It must be emphasized that the FEM is free of numerical

(spurious) damping.

The space—time finite element method InuSt be considered together with the space—time

elements. It can be regarded as an extension of the FEM over the time domain and its properties

depend on the element properties.
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More general remarks

The space—time layer division into triangular and tetrahedral elements needs special discussion.

The triangular space-time net shown in Figure 12 effects a flow of information with a speed

not greater than the slope of the edges. The numbering, as in Figure 12, involves the anisotropy

of the mathematical model. A similar problem has appeared in;the Trujillo method“ and was

discussed in Reference 5.,But in the Trujillo method the direction of anisotropy is changed in

successive time layers and in two steps the information is transmitted to ,all nodes. In the method

described in this paper, the same effect can be obtained‘if the sequence ofjoint numbers in- each

second layer is changed. However, for the sake of storage minimization, another method was

assumed. The successful numbering of each second joint in the spatial structure increases the

limit of the speed of information flow twice and causes equal speeds in the two directions

(Figure 13). To check the influence of the numbering on the final results two simple test problems

were solved. Cantilever beam vibrationswith the mesh as in Figure 12¢,were considered. In the

first case the first joint was subjected to an impulse and in the second case the last one was

forced. In both cases the displacements differed at only a few initial steps. After several steps

the results coincided. ,, ‘

Non-linear problems can also be solved by the method described in this paper. The

computational program must be modified to hold additional matrices C,- and D,- for the (i + 1)th

layer of joints (14). Both of them take about 0-75 of the total memory desired for the linear
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Figure 13. Isotropic information propagation ‘
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Figure 15. Time division condensation in some regions of the structure,

problem. Non-linearity can be of two types. Non-linear material properties in elastic-plastic

problems, the influence of the unilateral elastic foundation and other contact problems can be

of the first type of non-linear analysis. The second type is when a non-stationary division of the

structure into finite elements is assumed” (Figure 14). Non-stationary time—"space partition was

used in dynamic analysis of a beam placed on a unilateral foundation.16 The time—space partition

was adjusted to the soil—structure contact area. The space—time element edges were always in

coincidence with the lines limiting the contact zone. Moreover, triangular space—time elements

were used in the time division condensation in regions of high stiffness of the structure (Figure 15).

To complete the information included in this paper it should be emphasized that the stability

limitations have to be considered. Two cases of non-stationary division can be determined in

which the stability restrictions limit the size and the shape of the elements. The first case is when

the time—space layer is divided into triangular elements, but the joint locations at the bottom

and the top of the time layer are the same. Here the time step is the only factor which limits

the application of the triangular elements-The second case is more general. The joint locations

at two successive moments are changed (Figure 14). The limitations depend on the time step on

one hand and on the speed of joint dislocation on the other hand. Since the simple investigation

for one degree of freedom could not be applied, more complicated reproducible systems of

elements were used in examinations.

STABILITY ANALYSIS

In the application of the space—time FEM two reasons for instability can be indicated. The

value of the time dimension of the elements, i.e. the time step, is the first one. In the case of

non-rectangular STFEs it isdiflicult to express analytically the influence of the time step on the

stability'of computational schemes. The time variable is mixed with the spatial variables and

cannot be separately observed. For each type of STFE model a new investigation proCess must

be carried on. The problem is wide and can be properly shown only in a separate paper. A

short introduction into the way of the testing and some practical conclusions can be cited in

the paper.
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Figure 16. Space—time band used in stability analysis

In the case of a beam a separated part of a space—time half band is depicted in Figure 16.

Every second layer of nodes was eliminated. The matrix of coefficients ofthe system of equations

can be written in a block form: ' ' ’ '

(1) (2) (3) (4) (5)

F A f B

C D E

a , F, A B:

. C D E,

For free vibrationsran“ equation of the step-‘by-step procedureis obtained:

' .(é tin-'10sl HA— FD"‘E{BD'?C)§H+(—BD‘1E)5m4=0 : . ,_(51)

The Same can be written by the use of the amplification matrix T:

. . ‘

5H2 __._ a; _, .1] '

' {5i .};_T{5i-2'} v.

[mo-infill iron-£93030); 4(BD-1Er1FDQ-4c]

' “7152.)
where; 5

_ ..................................-_..........
..“my---”................-,, a " . _ (.53)

.
. 0 U ,

I is the unita'rymatrix‘ 'and 0'iséthe zero matrix." The stability condition in the problem (52)“ is

described in References ‘17 and #18. If the Spectral radiusi‘Piof the matrix T 'is less thanrone:

the recurrence scheme (51) is stable. In the case Of ‘P(T) = 1, when the mains is multipleroot of

the characteristic equation, the problem (51) is also unstable. Below: some conclusions for

triangular and tetrahedral elements will be presented.

According to Figure 16 two dimensionless coefficiems will be introduced. The first one

represents the time step At related to the critical value At":

' J "' " _'At"

». -‘ i - l 7. _At°' ‘ ,~; 7. ,

The secondpne describes the speed ofjoint dislocation comparedthe speed ofWave propagation

in the elastic medium,_. .. i ;

.
-
-
—

7,65)Z  

‘.a" 1?

p

""‘(56)
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Figure 18. Tetrahedral element of plane stress/strajn—stability condition

The spectral radius ‘1’ can be depicted in terms of the value 6 (Figures 17 and 18). It can be seen

that in'the case of Ram elements the critical value of 6 : 1'5 was Obtained. An identical result

was obtained for. the quadrangular space—the beam element.14 The plane stress/strain element

has poor stability properties. The range of C which ensures the stable oscillations is not coherent.

It makes application of such an element difficult. Considering the impossibility of inclusion of

the internal damping (45) the new model of higher polynomial orderjshould be introduced.

The time step for triangular elements of a bar is limited by’ the value v ' '

hstg ‘ ’ . (57)

where: b is the length of a spatial element and c is the wave speed, whereas in the case of

rectangular bar elements the same condition is ' 7

K25 ' i ((58)

The limits of the parameter 6 in. ‘the cases of triangular and quadrangular bar elements are

{<J2 '. I A, , “(59)

and . i ' 7

ts J3 . - _ . , (60)

respectively.

CONCLUSIONS

The accuracy of the STEFM with the use of simplex-shaped elements described in the paper

strongly depends on the quality of the space—time element, in the meaning of its mathematical

model. Amplitude error is neglectable when comparing results not with the theoretical value
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but with FEM calculations. Imperfections of finite elements and space—time finite elements are

of great influence on the final results. Phase error is significant if compared with analytical

calculations but, when compared with other time integration methods, the accuracy is sufficient.

The method is conditionally stable. Improvements inclement formulation may lead to the

unconditionally stable formulation as was done in the case of rectangular, multiplex-shaped

elements. Comfort in non-stationary partition of the structure makes the method useful in

engineer’s practice. Although some. restrictions on the time—space division are imposed, the

approach described can be successfully applied in non-linear problems.

Triangular, tetrahedral and hyper-tetrahedral space-time elements lead to a lower triangular

matrix of coefficients in the system of equations. A special algorithm ensures high effectiveness

in storage and in computations.

Many methods of time integration give an infinite speed of information flow that contradicts

the reality. Here the speed of disturbance is limited and it improves the differential equation

solution.
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