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Abstract. The goal of the presented paper is to provide an introduction to the basic computational models used in quantum information

theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with

their classical counterparts. We also provide an introduction to quantum programming languages, which are developed using the QRAM

model. We review the syntax of several existing quantum programming languages and discuss their features and limitations.
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1. Introduction

Computational process must be studied using the fixed mod-

el of computational device. This paper introduces the basic

models of computation used in quantum information theory.

We show how these models are defined by extending classical

models.

We start by introducing some basic facts about classical

and quantum Turing machines. These models help to under-

stand how useful quantum computing can be. It can be also

used to discuss the difference between quantum and classi-

cal computation. For the sake of completeness we also give

a brief introduction to the main results of quantum com-

plexity theory. Next we introduce Boolean circuits and de-

scribe the most widely used model of quantum computation,

namely quantum circuits. We focus on this model since many

presented facts about quantum circuits are used in the fol-

lowing sections. Finally we introduce another model which

is more suited for defining programming languages operat-

ing on quantum memory – quantum random access machine

(QRAM).

We also describe selected examples of the existing quan-

tum programming languages. We start by formulating the re-

quirements which must be fulfilled by any universal quantum

programming language. Next we describe languages based

on imperative paradigm – QCL (Quantum Computation Lan-

guage) and LanQ. We also describe recent research efforts

focused on implementing languages based on functional par-

adigm and discuss the advantages of a language based on this

paradigm. As the example of functional quantum program-

ming language we present cQPL.

We introduce the syntax and discuss the features of the

presented languages. We also point out their weaknesses.

For the sake of completeness a few examples of quantum

algorithms and protocols are presented. We use these ex-

amples to introduce the main features of the presented lan-

guages.

Note that we will not discuss problems related to the phys-

ical realisation of the described models. We also do not cover

the area of quantum error correcting codes, which aims to

provide methods for dealing with decoherence in quantum

systems. For an introduction to these problems and recent

progress in this area see e.g. [1, 2].

One should be also aware that the presented overview of

existing models of quantum computation is biased towards

the models interesting for the development of quantum pro-

gramming languages. Thus we neglect some models which

are not directly related to this area (e.g. quantum automata or

topological quantum computation).

1.1. Quantum information theory. Quantum information

theory is a new, fascinating field of research which aims to

use quantum mechanical description of the system to perform

computational tasks. It is based on quantum physics and clas-

sical computer science, and its goal is to use the laws of

quantum mechanics to develop more powerful algorithms and

protocols.

According to the Moore’s Law [3, 4] the number of tran-

sistors on a given chip is doubled every two years (see Fig. 1).

Since classical computation has its natural limitations in the

terms of the size of computing devices, it is natural to inves-

tigate the behaviour of objects in micro scale.

Quantum effects cannot be neglected in microscale and

thus they must be taken into account when designing future

computers. Quantum computation aims not only at taking

them into account, but also at developing methods for con-

trolling them. Quantum algorithms and protocols are recipes

how one should control quantum system to achieve higher

efficiency.

Information processing on quantum computer was first

mentioned in 1982 by Feynman [5]. This seminal work was

motivated by the fact that simulation of a quantum system on

the classical machine requires exponential resources. Thus, if
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we could control a physical system at the quantum level we

should be able to simulate other quantum systems using such

machines.

Fig. 1. Illustration of Moore’s hypothesis. The number of transis-

tors which can be put on a single chip grows exponentially. The

squares represent microprocessors introduced by Intel Corporation

after Ref. [4]. The dotted line illustrates the rate of growth, with the

number of transistors doubling every two years

The first quantum protocol was proposed two years lat-

er by Bennett and Brassard [6]. It gave the first example of

the new effects which can be obtained by using the rules

of quantum theory for information processing. In 1991 Ek-

ert described the protocol [7] showing the usage of quantum

entanglement [8] in communication theory.

Today we know that thanks to the quantum nature of

photons it is possible to create unconditionally secure com-

munication links [9] or send information with the efficien-

cy unachievable using classical carriers. During the last few

years quantum cryptographic protocols have been implement-

ed in real-world systems. Quantum key distribution is the most

promising application of quantum information theory, if one

takes practical applications [10, 11] into account.

On the other hand we know that the quantum mechanical

laws of nature allow us to improve the solution of some prob-

lems [12–14], construct games [15, 16] and random walks [17,

18] with new properties.

Nevertheless, the most spectacular achievements in quan-

tum information theory up to the present moment are: the

quantum algorithm for factoring numbers and calculating dis-

crete logarithms over finite field proposed in the late nineties

by Shor [13]. The quantum algorithm solves the factorisation

problem in polynomial time, while the best known probabilis-

tic classical algorithm runs in time exponential with respect

to the size of input number. Shor’s factorisation algorithm is

one of the strongest arguments for the conjecture that quantum

computers can be used to solve in polynomial time problems

which cannot be solved classically in reasonable (i.e. polyno-

mial) time.

Taking into account research efforts focused on discov-

ering new quantum algorithms it is surprising that for the

last ten years no similar results have been obtained [19, 20].

One should note that there is no proof that quantum com-

puters can actually solve NP-complete problems in polyno-

mial time [21, 22]. This proof could be given by quantum

algorithms solving in polynomial time problems known to

be NP-complete such as k-colorability. The complexity of

quantum computation remains poorly understood. We do not

have much evidence how useful quantum computers can be.

Still much remains to be discovered in the area of the rela-

tions between quantum complexity classes such as BQP and

classical complexity classes like NP.

1.2. Progress in quantum algorithms. Due to the slow

progress in discovering new quantum algorithms novel meth-

ods for studying the impact of quantum mechanics on algo-

rithmic problems were proposed.

The first of these methods aims at applying the rules of

quantum mechanics to game theory [16, 23]. Classical games

are used to model the situation of conflict between competing

agents. The simplest application of quantum games is pre-

sented in the form of quantum prisoners dilemma [15]. In

this case one can analyse the impact of quantum information

processing on classical scenarios. On the other hand quantum

games can be also used to analyse typical quantum situations

like state estimation and cloning [24].

Quantum walks provide the second promising method for

developing new quantum algorithms. Quantum walks are the

counterparts of classical random walks [17, 18]. For example,

in [25] the quantum algorithm for element distinctness using

this method was proposed. It requires O(n2/3) queries to de-

termine if the input {x1, . . . , xn} consisting of n elements

contains two equal numbers. Classical algorithm solving this

problem requires O(n logn) queries. The generalisation of

this algorithm, with applications to the problem of subset

finding, was described in [26]. Other application of quantum

walks include searching algorithms [27] and subset finding

problem. It was also shown that quantum walks can be used

to perform a universal quantum computation [28, 29]. In [30]

the survey of quantum algorithms based on quantum walks is

presented. More information concerning recent developments

in quantum walks and their applications can be found in [31].

One should note that the development of quantum algo-

rithms is still a very lively area of research [20, 32]. General

introduction to quantum algorithms can be found in [33]. The

in-depth review of the recent results in the area of quantum

algorithms for algebraic problems can be found in [34].

2. Computability

Classically computation can be described using various mod-

els. The choice of the model used depends on the particular

purpose or problem. Among the most important models of

computation we can point:

• Turing machine introduced in 1936 by Turing and used

as the main model in complexity theory [35].

• Random access machine [36, 37] which is the example

of register machines; this model captures the main features

of modern computers and provides a theoretical model for

programming languages.
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• Boolean circuits [38] defined in terms of logical gates and

used to compute Boolean functions f : {0, 1}m 7→ {0, 1}n;

they are used in complexity theory to study circuit com-

plexity.

• Lambda calculus defined by Church [39] and used as the

basis for many functional programming languages [40].

• Universal programming languages which are probably

the most widely used model of computation [41].

It can be shown that all these models are equivalent [35,

38]. In other words the function which is computable using

one of these models can be computed using any other model.

It is quite surprising since Turing machine is a very simple

model, especially when compared with RAM or programming

languages.

In particular the model of a multitape Turing machine

is regarded as a canonical one. This fact is captured by the

Church-Turing hypothesis.

Hypothesis 1 (Church-Turing). Every function which would

be naturally regarded as computable can be computed by

a universal Turing machine.

Although stated as a hypothesis, this thesis is one of the

fundamental axioms of modern computer science. A Universal

Turing machine is a machine which is able to simulate any

other machine. The simplest method for constructing such

device is to use the model of a Turing machine with two

tapes [35].

Research in quantum information processing is motivated

by the extended version of Church-Turing thesis formulated

by Deutsch [42].

Hypothesis 2 (Church-Turing-Deutsch). Every physical

process can be simulated by a universal computing device.

In other words this thesis states that if the laws of physics

are used to construct a Turing machine, this model might pro-

vide greater computational power when compared with the

classical model. Since the basic laws of physics are formulat-

ed as quantum mechanics, this improved version of a Turing

machine should be governed by the laws of quantum physics.

In this section we review some of these computational

models focusing on their quantum counterparts. The discus-

sion of quantum programming languages, which are based on

the quantum random access machines (QRAM), is presented

in Sec. 3.

We start be recalling the basic facts concerning a Tur-

ing machine. This model allows to establish clear notion of

computational resources like time and space used during com-

putation. It is also used to define other models introduced in

this section precisely.

On the other hand for practical purposes the notion of Tur-

ing machine is clumsy. Even for simple algorithms it requires

quite complex description of transition rules. Also, program-

ming languages defined using a Turing machine [43], have

rather limited set of instructions. Thus we use more sophis-

ticated methods like Boolean circuits and programming lan-

guages based on QRAM model.

2.1. Turing machine. The model of a Turing machine is

widely used in classical and quantum complexity theory. De-

spite its simplicity it captures the notion of computability.

In what follows by alphabet A = {a1, . . . , an} we mean

any finite set of characters or digits. Elements of A are called

letters. Set Ak contains all strings of length k composed from

elements ofA. Elements ofAk are called words and the length

of the word w is denoted by |w|. The set of all words over A
is denoted by A∗. Symbol ǫ is used to denote an empty word.

The complement of language L ⊂ A∗ is denoted by L and it

is the language defined as L = A∗ − L.

Classical Turing machine. A Turing machine can operate on-

ly using one data structure – the string of symbols. Despite its

simplicity, this model can simulate any algorithm with incon-

sequential loss of efficiency [35]. A Classical Turing machine

consists of

• an infinitely long tape containing symbols from the finite

alphabet A,

• a head, which is able to read symbols from the tape and

write them on the tape,

• memory for storing programme for the machine.

The programme for a Turing machine is given in terms of

transition function δ. The schematic illustration of a Turing

machine is presented in Fig. 2.

Fig. 2. Computational step of the Turing machine. Configuration

(qi, x
′a, b1y

′) is presented in a). If the transition function is defined

such that δ(qi, b1) = (q2, b2,−1) this computational step leads to

configuration (qj , x
′, ab2y

′) (see b)

Formally, the classical deterministic Turing machine is de-

fined as follows.

Definition 1. Deterministic Turing machine. A determin-

istic Turing machine M over an alphabet A is a sixtuple

(Q,A, δ, q0, qa, qr), where

• Q is the set of internal control states,

• q0, qa, qr ∈ Q are initial, accepting and rejecting states,

• δ : Q× A 7→ Q × A × {−1, 0, 1} is a transition function

i.e. the programme of a machine.

By a configuration of machine M we understand a triple

(qi, x, y), qi ∈ Q, x, y ∈ A∗. This describes a situation where

the machine is in the state qi, the tape contains the word xy
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and the machine starts to scan the word y. If x = x′ and

y = b1y
′ we can illustrate this situation as in Fig. 2.

The transition from the configuration c1 to the configura-

tion c2 is called a computational step. We write c ⊢ c′ if δ
defines the transition from c to c′. In this case c′ is called the

successor of c.
A Turing machine can be used to compute values of func-

tions or to decide about input words. The computation of a

machine with input w ∈ A∗ is defined as a sequence of config-

urations c0, c1, c2, . . ., such that c0 = (qi, ǫ, w) and ci ⊢ ci+1.

We say that computation halts if some ci has no successor or

for configuration ci, the state of the machine is qa (machine

accepts input) or qr (machine rejects input).

The computational power of the Turing machine has its

limits. Let us define two important classes of languages.

Definition 2. A set of words L ∈ A∗ is a recursively enu-

merable language if there exists a Turing machine accepting

input w iff w ∈ L.

Definition 3. A set of words L ∈ A∗ is a recursive language

if there exists a Turing machine M such that

• M accepts w iff w ∈ L,

• M halts for any input.

The computational power of the Turing machine is limited

by the following theorem.

Theorem 1. There exists a language H which is recursively

enumerable but not recursive.

Language H used in the above theorem is defined in

halting problem [35]. It consists of all words composed of

words encoding Turing machines and input words for these

machines, such that a particular machine halts on a given

word. A universal Turing machine can simulate any machine,

thus for a given input word encoding machine and input for

this machine we can easily perform the required computation.

A deterministic Turing machine is used to measure time

complexity of algorithms. Note that if for some language there

exists a Turing machine accepting it, we can use this machine

as an algorithm for solving this problem. Thus we can mea-

sure the running time of the algorithm by counting the number

of computational steps required for Turing machine to output

the result.

The time complexity of algorithms can be described using

the following definition.

Definition 4. Complexity class TIME(f(n)) consists of all

languages L such that there exists a deterministic Turing ma-

chine running in time f(n) accepting input w iff w ∈ L.

In particular complexity class P defined as

P =
⋃

k

TIME(nk), (1)

captures the intuitive class of problems which can be solved

easily on a Turing machine.

Nondeterministic and probabilistic computation. Since one

of the main features of quantum computers is their ability to

operate on the superposition of states we can easily extend the

classical model of a probabilistic Turing machine and use it to

describe quantum computation. Since in general many results

in the area of algorithms complexity are stated in the terms

of a nondeterministic Turing machine we start by introducing

this model.

Definition 5 (Nondeterministic Turing machine). A nonde-

terministic Turing machineM over an alphabetA is a sixtuple

(Q,A, δ, q0, qa, qr), where

• Q is the set of internal control states,

• q0, qa, qr ∈ Q are initial, accepting and rejecting states,

• δ ⊂ Q×A×Q×A× {−1, 0, 1} is a relation.

The last condition in the definition of a nondeterministic

machine is the reason for its power. It also requires to change

the definition of acceptance by the machine.

We say that a nondeterministic Turing machine accepts in-

put w if, for some initial configuration (qi, ǫ, w), computation

leads to configuration (qa, a1, a2) for some words a1 and a2.

Thus a nondeterministic machine accepts the input if there

exists some computational path defined by transition relation

δ leading to an accepting state qa.

The model of a nondeterministic Turing machine is used

to define complexity classes NTIME.

Definition 6. Complexity class NTIME(f(n)) consists of all

languages L such that there exists a nondeterministic Turing

machine running in time f(n) accepting input w iff w ∈ L.

The most prominent example of these complexity classes

is NP, which is the union of all NTIME(nk), i.e.

NP =
⋃

k

NTIME(nk). (2)

A nondeterministic Turing machine is used as a theoretical

model in complexity theory. However, it is hard to imagine

how such device operates. One can illustrate the computation-

al path of a nondeterministic machine as in Fig. 3 [35].

Fig. 3. Schematic illustration of the computational paths of a nonde-

terministic Turing machine [35]. Each circle represents the configu-

ration of the machine. The machine can be in many configurations

simultaneously
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Since our aim is to provide the model of a physical de-

vice we restrict ourselves to more realistic model. We can

do that by assigning to each element of relation a number

representing probability. In this case we obtain the model of

a probabilistic Turing machine.

Definition 7 (Probabilistic Turing machine). A probabilis-

tic Turing machine M over an alphabet A is a sixtuple

(Q,A, δ, q0, qa, qr), where

• Q is the set of internal control states,

• q0, qa, qr ∈ Q are initial, accepting and rejecting states,

• δ : Q × A × Q × A × {−1, 0, 1} 7→ [0, 1] is a transition

probability function i.e.
∑

(q2,a2,d)∈Q×A×{−1,0,1}

δ(q1, a1, q2, a2, d) = 1. (3)

For a moment we can assume that the probabilities of

transition used by a probabilistic Turing machine can be rep-

resented only by rational numbers. We do this to avoid prob-

lems with machines operating on arbitrary real numbers. We

will address this problem when extending the above definition

to the quantum case.

The time complexity of computation can be measured in

terms of the number of computational steps of the Turing

machine required to execute a programme. Among important

complexity classes we have chosen to point out:

• P – the class of languages for which there exists a deter-

ministic Turing machine running in polynomial time,

• NP – the class of languages for which there exists a non-

deterministic Turing machine running in polynomial time,

• RP – the class of languages L for which there exists

a probabilistic Turing machine M such that: M accepts

input w with probability at least 1
2 if w ∈ L and always

rejects w if w 6∈ L,

• coRP – the class of languages L for which L is in RP,

• ZPP – RP ∩ coRP.

More examples of interesting complexity classes and com-

putational problems related to them can be found in [44].

Quantum Turing machine. A quantum Turing machine was

introduced by Deutsch [42]. This model is equivalent to a

quantum circuit model [45, 46]. However, it is very inconve-

nient for describing quantum algorithms since the state of a

head and the state of a tape are described by state vectors.

A quantum Turing machine consists of:

• Processor: M 2-state observables {ni|i ∈ZM
}.

• Memory: infinite sequence of 2-state observables

{mi|i ∈ Z}.
• Observable x, which represents the address of the current

head position.

The state of the machine is described by the vector

|ψ(t)〉 = |x;n0, n1, . . . ;m〉 in the Hilbert space H associ-

ated with the machine.

At the moment t = 0 the state of the machine is described

by the vectors |ψ(0)〉 =
∑

m am|0; 0, . . . , 0; . . . , 0, 0, 0, . . .〉
such that

∑

i

|ai|2 = 1. (4)

The evolution of the quantum Turing machine is described

by the unitary operator U acting on H.

A classical probabilistic (or nondeterministic) Turing ma-

chine can be described as a quantum Turing machine such

that, at each step of its evolution, the state of the machine is

represented by the base vector.

The formal definition of the quantum Turing machine was

introduced in [21].

It is common to use real numbers as amplitudes when de-

scribing the state of quantum systems during quantum com-

putation. To avoid problems with an arbitrary real number we

introduce the class of numbers which can be used as ampli-

tudes for amplitude transition functions of the quantum Turing

machine.

Let us denote by C̃ the set of complex numbers c ∈ C,

such that there exists a deterministic Turing machine, which

allows to calculate Re (c) and Im (c) with accuracy
1

2n
in

time polynomial in n.

Definition 8 (Quantum Turing Machine). A quantum Tur-

ing machine (QTM) M over an alphabet A is a sixtuple

(Q,A, δ, q0, qa, qr), where

• Q is the set of internal control states,

• q0, qa, qr ∈ Q are initial, accepting and rejecting states,

• δ : Q × A × Q × A × {−1, 0, 1} 7→ C̃ is a transition

amplitude function i.e.

∑

(q2,a2,d)∈Q×A×{−1,0,1}

|δ(q1, a1, q2, a2, d)|2 = 1. (5)

Reversible classical Turing machines (i.e.Turing machines

with reversible transition function) can be viewed as particu-

lar examples of quantum machines. Since any classical algo-

rithm can be transformed into reversible form, it is possible

to simulate a classical Turing machine using quantum Turing

machine.

Quantum complexity. Quantum Turing machine allows for

rigorous analysis of algorithms. This is important since the

main goal of quantum information theory is to provide some

gain in terms of speed or memory with respect to classical

algorithms. It should be stressed that at the moment no formal

proof has been given that a quantum Turing machine is more

powerful than a classical Turing machine [22].

In this section we give some results concerning quantum

complexity theory. See also [21, 47] for a introduction to this

subject.

In analogy to classical case it is possible to define com-

plexity classes for the quantum Turing machine. The most

important complexity class is this case is BQP.

Definition 9. Complexity class BQP contains languages L
for which there exists a quantum Turing machine running in

polynomial time such that, for any input word x, this word is
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accepted with probability at least 3/4 if x ∈ L and is rejected

with probability at least 3/4 if x 6∈ L.

Class BQP is a quantum counterpart of the classical class

BPP.

Definition 10. Complexity class BPP contains languages L
for which there exists a nondeterministic Turing machine run-

ning in polynomial time such that, for any input word x, this

word is accepted with probability at least 3/4 if x ∈ L and is

rejected with probability at least 3/4 if x 6∈ L.

Since many results in complexity theory are stated in

terms of oracles, we define an oracle as follows.

Definition 11. An oracle or black box is an imaginary machine

which can decide certain problems in a single operation.

We use notation AB to describe the class of problems

solvable by an algorithm in class A with an oracle for the

language B.

It was shown [21] that the quantum complexity classes are

related as follows.

Theorem 2. Complexity classes fulfil the following inequality

BPP ⊆ BQP ⊆ P#P. (6)

Complexity class #P consists of problems of the form

compute f(x), where f is the number of accepting paths of

an NP machine. For example problem #SAT formulated

below is in #P.

Problem 1 (#SAT). For a given Boolean formula, compute

how many satisfying true assignments it has.

Complexity class P#P consists of all problems solvable

by a machine running in polynomial time which can use ora-

cle for solving problems in #P.

Complexity ZOO [44] contains the description of com-

plexity classes and many famous problems from complexity

theory. The complete introduction to the complexity theory

can be found in [35]. Theory of NP-completeness with many

examples of problems from this class is presented in [48].

Many important results and basic definitions concerning

quantum complexity theory can be found in [21]. The proof

of equivalence between quantum circuit and quantum Turing

machine was given in [45]. An interesting discussion of quan-

tum complexity classes and relation of BQP class to classical

classes can be found in [22].

2.2. Quantum computational networks. After presenting

the basic facts about Turing machines we are ready to in-

troduce more usable models of computing devices. We start

by defining Boolean circuits and extending this model to the

quantum case.

Boolean circuits. Boolean circuits are used to compute func-

tions of the form

f : {0, 1}m 7→ {0, 1}n. (7)

Basic gates (functions) which can be used to define such cir-

cuits are:

• ∧ : {0, 1}2 7→ {0, 1}, ∧(x, y) = 1 ⇔ x = y = 1 (logical

and),

• ∨ : {0, 1}2 7→ {0, 1}, ∨(x, y) = 0 ⇔ x = y = 0 (logical

or),

• ∼: {0, 1} 7→ {0, 1}, ∼ (x) = 1− x (logical not).

The set of gates is called universal if all functions

{0, 1}n 7→ {0, 1} can be constructed using the gates from

this set. It is easy to show that the set of functions composed

of ∼, ∨ and ∧ is universal. Thus it is possible to compute any

functions {0, 1}n 7→ {0, 1}m using only these functions. The

full characteristic of universal sets of functions was given by

Post in 1949 [49].

Using the above set of functions a Boolean circuit is de-

fined as follows.

Definition 12 (Boolean circuit). A Boolean circuit is an

acyclic direct graph with nodes labelled by input variables,

output variables or logical gates ∨, ∧ or ∼.

Input variable node has no incoming arrow while out-

put variable node has no outcoming arrows. The example of

a Boolean circuit computing the sum of bits x1 and x2 is

given in Fig. 4.

Fig. 4. The example of a Boolean circuit computing the sum of bits

x1 and x2 [50]. Nodes labelled x1 and x2 represent input variables

and nodes labelled y1 and y2 represent output variables

Note that in general it is possible to define a Boolean cir-

cuit using different sets of elementary functions. Since func-

tions ∨, ∧ and ∼ provide a universal set of gates we defined

Boolean circuit using these particular functions.

Function f : {0, 1}m 7→ {0, 1} is defined on the bina-

ry string of arbitrary length. Let fn : {0, 1}m 7→ {0, 1}n
be a restriction of f to {0, 1}n. For each such restriction

there is a Boolean circuit Cn computing fn. We say that

C0, C1, C2, . . . is a family of Boolean circuits computing f .

Note that any binary language L ⊂ {0, 1}∗ can be accept-

ed by some family of circuits. But since we need to know

the value of fn to construct a circuit Cn such family is not

an algorithmic device at all. We can state that there exists

a family accepting the language, but we do not know how to

build it [35].

To show how Boolean circuits are related to Turing ma-

chines we introduce uniformly generated circuits.

Definition 13. We say that language L ∈ A∗ has uniformly

polynomial circuits if there exists a Turing machine M that
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an input 1 . . . 1︸ ︷︷ ︸
n

outputs the graph of circuit Cn using space

O(log n), and the family C0, C1, . . . accepts L.

The following theorem provides a link between uniformly

generated circuits and Turing machines.

Theorem 3. A language L has uniformly polynomial circuit

iff L ∈ P.

Quantum circuits model is an analogous to uniformly

polynomial circuits. They can be introduced as the straight-

forward generalisation of reversible circuits.

Reversible circuits. The evolution of isolated quantum sys-

tems is described by a unitary operator U . The main difference

with respect to classical evolution is that this type of evolution

is reversible.

Before introducing a quantum circuit we define a re-

versible Boolean circuit

Definition 14 (Reversible gate). A classical reversible func-

tion (gate) {0, 1}m 7→ {0, 1}m is a permutation.

Definition 15. A reversible Boolean circuit is a Boolean cir-

cuit composed of reversible gates.

The important fact expressed by the following theorem al-

lows us to simulate any classical computation on a quantum

machine described using a reversible circuit

Theorem 4. All Boolean circuits can be simulated using re-

versible Boolean circuits.

Like in the case of nonreversible circuit one can introduce

the universal set of functions for reversible circuits.

Fig. 5. Classical Toffoli gate is universal for reversible circuits. It

was also used to provide the universal set of quantum gates [51]

The important example of a gate universal for reversible

Boolean circuits is a Toffoli gate. The graphical representa-

tion of this gate is presented in Fig. 5. The following theorem

was proved by Toffoli [52].

Theorem 5. A Toffoli gate is a universal reversible gate.

As we will see in the following section it is possible to

introduce two-bit quantum gates which are universal for quan-

tum circuits. This is impossible in the classical case and one

needs at least a three-bit gate to construct the universal set of

reversible gates.

In particular, any reversible circuit is automatically a quan-

tum circuit. However, quantum circuits offer much more di-

versity in terms of the number of allowed operations.

Quantum circuits. The computational process of the quantum

Turing machine is complicated since data as well as control

variables can be in a superposition of base states. To provide

more convenient method of describing quantum algorithms

one can use a quantum circuits model. This model is some-

times called a quantum gate array model.

Quantum circuits model was first introduced by Deutsch

in [51] and it is the most commonly used notation for quan-

tum algorithms. It is much easier to imagine than the quantum

Turing machine since the control variables (executed steps and

their number) are classical. There are only quantum data (e.g.

qubits or qudits and unitary gates) in a quantum circuit.

A quantum circuit consists of the following elements (see

Table 2):

• the finite sequence of wires representing qubits or se-

quences of qubits (quantum registers),

• quantum gates representing elementary operations from the

particular set of operations implemented on a quantum ma-

chine,

• measurement gates representing a measurement operation,

which is usually executed as the final step of a quantum

algorithm. It is commonly assumed that it is possible to

perform the measurement on each qubit in canonical basis

{|0〉, |1〉} which corresponds to the measurement of the Sz

observable.

The concept of a quantum circuit is the natural gener-

alisation of acyclic logic circuits studied in classical com-

puter science. Quantum gates have the same number of in-

puts as outputs. Each n-qubit quantum gate represents the

2n-dimensional unitary operation of the group SU(2n), i.e.

generalised rotation in a complex Hilbert space.

The main advantage of this model is its simplicity. It also

provides very convenient representation of physical evolution

in quantum systems.

From the mathematical point of view quantum gates are

unitary matrices acting on n-dimensional Hilbert space. They

represent the evolution of an isolated quantum system [53].

The problem of constructing new quantum algorithms re-

quires more careful study of operations used in quantum cir-

cuit model. In particular we are interested in efficient decom-

position of quantum gates into elementary operations.

We start by providing basic characteristic of unitary ma-

trices [53, 54].

Theorem 6. Every unitary 2 × 2 matrix G ∈ U(2) can be

decomposed using elementary rotations as

G = Φ(δ)Rz(α)Ry(θ)Rz(β) (8)

where

Φ(ξ) =

(
eiξ 0

0 eiξ

)
,

Ry(ξ) =

(
cos(ξ/2) sin(ξ/2)

− sin(ξ/2) cos(ξ/2)

)
,
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and

Rz(ξ) =

(
ei ξ

2 0

0 e−i ξ
2

)
.

We introduce the definition of quantum gates as stated

in [50].

Definition 16. A quantum gate U acting on m qubits is a

unitary mapping on C2m ≡ C
2 ⊗ . . .⊗ C

2

︸ ︷︷ ︸
m times

U : C
2m 7→ C

2m

, (9)

which operates on the fixed number of qubits.

Formally, a quantum circuit is defined as the unitary map-

ping which can be decomposed into the sequence of elemen-

tary gates.

Definition 17. A quantum circuit on m qubits is a unitary

mapping on C2m

, which can be represented as a concatena-

tion of a finite set of quantum gates.

Any reversible classical gate is also a quantum gate. In

particular logical gate ∼ (negation) is represented by quan-

tum gate NOT , which is realized by σx Pauli matrix.

As we know any Boolean circuit can be simulated by a re-

versible circuit and thus any function computed by a Boolean

circuit can be computed using a quantum circuit. Since a quan-

tum circuit operates on a vector in complex Hilbert space it

allows for new operations typical for this model.

The first example of quantum gate which has no classical

counterpart is
√
NOT gate. It has the following property
√
NOT

√
NOT = NOT, (10)

which cannot be fulfilled by any classical Boolean function

{0, 1} 7→ {0, 1}. Gate
√
N is represented by the unitary ma-

trix
√
NOT =

1

2

(
1 + i 1− i
1− i 1 + i

)
. (11)

Another example is Hadamard gate H . This gate is used

to introduce the superposition of base states. It acts on the

base state as

H |0〉 = 1√
2

(|0〉+ |1〉) ,

H |1〉 = 1√
2

(|0〉 − |1〉) .
(12)

If the gate G is a quantum gate acting on one qubit it is

possible to construct the family of operators acting on many

qubits. The particularly important class of multiqubit opera-

tions is the class of controlled operations.

Definition 18. (Controlled gate). Let G be a 2 × 2 unitary

matrix representing a quantum gate. Operator

|1〉〈1| ⊗G+ |0〉〈0| ⊗ I (13)

acting on two qubits, is called a controlled-G gate.

Here A ⊗ B denotes the tensor product of gates (unitary

operator) A and B, and I is an identity matrix. If in the above

definition we take G = NOT we get

|1〉〈1| ⊗ σx + |0〉〈0| ⊗ I =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 , (14)

which is the definition of CNOT(controlled-NOT) gate. This

gate can be used to construct the universal set of quantum

gates. This gate also allows to introduce entangled states dur-

ing computation:

CNOT(H ⊗ I)|00〉 = CNOT
1√
2

(|00〉+ |10〉) =

=
1√
2

(|00〉+ |11〉) .

The classical counterpart of CNOT gate is XOR gate.

Table 1

Logical values for XOR gate. Quantum CNOT gate computes value of x1

XOR x2 in the first register and stores values of x2 in the second register

x1 x2 x1 XOR x2

0 0 0

0 1 1

1 0 1

1 1 0

Table 2

Basic gates used in quantum circuits with their graphical representation and

mathematical form. Note that measurement gate is represented in Kraus

form, since it is the example of non-unitary quantum evolution

The name of the gate Graphical representation Mathematical form
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Other examples of single-qubit and two-qubit quantum

gates are presented in Table 2. In Fig. 6 a quantum circuit

for quantum Fourier transform on three qubits is presented.

Fig. 6. Quantum circuit representing quantum Fourier transform for

three qubits. Elementary gates used in this circuit are described in

Table 2

Fig. 7. Circuit for quantum teleportation. Double lines represent the

operation which is executed depending on the classical data obtained

after the measurement on a subsystem

One can extend Definition 18 and introduce quantum gates

with many controlled qubits.

Definition 19. Let G be a 2×2 unitary matrix. Quantum gate

defined as

| 1 . . . 1︸ ︷︷ ︸
n−1

〉〈1 . . . 1︸ ︷︷ ︸
n−1

| ⊗G+
∑

l 6=1 . . . 1︸ ︷︷ ︸
n−1

|l〉〈l| ⊗ I (15)

is called (n − 1)-controlled G gate. We denote this gate by

∧n−1(G).
This gate ∧n−1(G) is sometimes referred to as a gener-

alised Toffoli gate or a Toffoli gate with m controlled qubits.

Graphical representation of this gate is presented in Fig. 8.

Fig. 8. Generalised quantum Toffoli gate acting on n qubits. Gate G

is controlled by the state of n− 1 qubits according to Definition 19

The important feature of quantum circuits is expressed by

the following universality property [54].

Theorem 7. The set of gates consisting of all one-qubit gates

U(2) and one two-qubit CNOT gate is universal in the sense

that any n-qubit operation can be expressed as the composi-

tion of these gates.

Note that, in contrast to the classical case, where one needs

at least three-bit gates to construct a universal set, quantum

circuits can be simulated using one two-qubit universal gate.

In order to implement a quantum algorithm one has to de-

compose many qubit quantum gates into elementary gates. It

has been shown that almost any n-qubit quantum gate (n ≥ 2)

can be used to the build a universal set of gates [55] in the

sense that any unitary operation on the arbitrary number of

qubits can be expressed as the composition of gates from this

set. In fact the set consisting of two-qubit exclusive-or (XOR)

quantum gate and all single-qubit gates is also universal [54].

Let us assume that we have the set of gates containing on-

ly CNOT and one-qubit gates. In [56] theoretical lower bound

for the number of gates required to simulate a circuit using

these gates was derived. The efficient method of elementary

gates sequence synthesis for an arbitrary unitary gate was pre-

sented in [57].

Theorem 8 (Shende-Markov-Bullock). Almost all n-qubit

operators cannot be simulated by a circuit with fewer than

⌈1/4[4n − 3n− 1]⌉ CNOT gates.

In [58] the construction providing the efficient way of

implementing arbitrary quantum gates was described. The re-

sulting circuit has complexity O(4n) which coincides with

lower bound from Theorem 8.

It is useful to provide more details about the special case,

when one uses gates with many controlled and one target

qubits. The following results were proved in [54].

Theorem 9. For any single-qubit gate U the gate ∧n−1(U)
can be simulated in terms of Θ(n2) basic operations.

In many situations it is useful to construct a circuit which

approximates the required circuit. We say that quantum cir-

cuits approximate other circuits with accuracy ε if the distance

(in terms of Euclidean norm) between unitary transformations

associated with these circuits is at most ε [54].

Theorem 10. For any single-qubit gate U and ε > 0
gate ∧n−1(U) can be approximated with accuracy ε using

Θ

(
n log

1

ε

)
basic operations.

Note that the efficient decomposition of a quantum circuit

is crucial in physical implementation of quantum information

processing. In particular case decomposition can be optimised

using the set of elementary gates specific for target architec-

ture. CNOT gates are of big importance since they allow to

introduce entangled states during computation. It is also hard

to physically realise CNOT gate since one needs to control

physical interaction between qubits.

One should also note that for some classes of quantum

circuits it is possible to construct their classical counterparts,

which can be used to simulate quantum computation per-

formed by these circuits efficiently. The most notable class

having this property is a class of circuits CHP class, which

consists of stabilizer circuits, i.e. circuits consisting solely

of CNOT, Hadamard and phase gates [59]. This property is

known as so called Gottesman-Knill theorem.

Theorem 11 (Gottesman-Knill). Any stabilizer circuit can

be efficiently simulated on a classical machine.

It is worth noting that gates used to construct stabilizer cir-

cuits do not provide an universal set of gates. Nevertheless,

such circuits can produce highly entangled states.
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2.3. Random access machines. Quantum circuit model does

not provide a mechanism for controlling with classical ma-

chine the operations on quantum memory. Usually quantum

algorithms are described using mathematical representation,

quantum circuits and classical algorithms [60]. The model of

quantum random access machine is built on an assumption

that the quantum computer has to be controlled by a classi-

cal device [61]. Schematic presentation of such architecture

is provided in Fig. 9.

Fig. 9. The model of classically controlled quantum machine [61].

Classical computer is responsible for performing unitary operations

on quantum memory. The results of quantum computation are re-

ceived in the form of measurement results

Quantum random access machine is interesting for us

since it provides a convenient model for developing quan-

tum programming languages. However, these languages are

our main area of interest. We see no point in providing the

detailed description of this model as it is given in [61] togeth-

er with the description of hybrid architecture used in quantum

programming.

Classical RAM model. The classical model of random ac-

cess machine (RAM) is the example of more general register

machines [36, 37].

The random access machine consists of an unbounded se-

quence of memory registers and a finite number of arithmetic

registers. Each register may hold an arbitrary integer number.

The programme for the RAM is a finite sequence of instruc-

tions Π = (π1, . . . , πn). At each step of execution register i
holds an integer ri and the machine executes instruction πκ,

where κ is the value of the programme counter. Arithmetic

operations are allowed to compute the address of a memory

register.

Despite the difference in the construction between a Tur-

ing machine and RAM, it can be easily shown that a Turing

machine can simulate any RAM machine with polynomial

slow-down only [35].

It is worth noting that programming languages can be de-

fined without using RAM model. Interesting programming

language for a Turing machine P ′′, providing the minimal set

of instructions, was introduced by Böhm in [43].

Quantum RAM model. Quantum random access machine

(QRAM) model is the extension of the classical RAM. QRAM

can exploit quantum resources and, at the same time, can be

used to perform any kind of classical computation. It allows

us to control operations performed on quantum registers and

provides the set of instructions for defining them.

Recently a new model of sequential quantum random ma-

chine (SQRAM) has been proposed. Instruction set for this

model and compilation of high-level languages is discussed

in [62]. However, it is very similar to QRAM model.

The quantum part of QRAM model is used to generate

probability distribution. This is achieved by performing mea-

surement on quantum registers. The obtained probability dis-

tribution has to be analysed using a classical computer.

Quantum pseudocode. Quantum algorithms are, in most of

the cases, described using the mixture of quantum gates, math-

ematical formulas and classical algorithms. The first attempt

to provide a uniform method of describing quantum algo-

rithms was made in [63], where the author introduced a high-

level notation based on the notation known from computer

science textbooks [64].

In [60] the first formalised language for description of

quantum algorithms was introduced. Moreover, it was tightly

connected with the model of quantum machine called quan-

tum random access machine (QRAM).

Quantum pseudocode proposed by Knill [60] is based on

conventions for classical pseudocode proposed in [64, Chap-

ter 1]. Classical pseudocode was designed to be readable by

professional programmers, as well as people who had done

a little programming. Quantum pseudocode introduces op-

erations on quantum registers. It also allows to distinguish

between classical and quantum registers.

Quantum registers are distinguished by underlining them.

They can be introduced by applying quantum operations to

classical registers or by calling a subroutine which returns a

quantum state. In order to convert a quantum register into a

classical register measurement operation has to be performed.

The example of quantum pseudocode is presented in List-

ing 1. It shows the main advantage of QRAM model over

quantum circuits model – the ability to incorporate classical

control into the description of quantum algorithm.

Listing 1. Quantum pseudocode for quantum Fourier transform on d qubits.

Quantum circuit for this operation with d = 3 is presented in Fig. 6.
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Operation H(ai) executes a quantum Hadamard gate on a

quantum register ai and SWAP(ai, aj) performs SWAP gate

between ai and aj . OperationRφ(ai) that executes a quantum

gate R(φ) is defined as

R(φ) =

(
1 0

0 eiφ

)
, (16)

on the quantum register ai. Using conditional construction

if aj then Rφ(ai)

it is easy to define controlled phase shift gate (see Defini-

tion 19). Similar construction exists in QCL quantum pro-

gramming language described in Sec. 3.

The measurement of a quantum register can be indicated

using an assignment aj ← aj .

Quantum programming environment. Since the main aim

of this paper is to present the advantages and limitations of

high-level quantum programming languages, we need to ex-

plain how these languages are related to quantum random ac-

cess machine. Thus as the summary of this section we present

the overview of an architecture for quantum programming,

which is based on the QRAM model.

The architecture proposed in [65, 66] is designed for trans-

forming a high-level quantum programming language into the

technology-specific implementation set of operations. This ar-

chitecture is composed of four layers:

• High level programming language providing high-level

mechanisms for performing useful quantum computation;

this language should be independent from particular phys-

ical implementation of quantum computing.

• Compiler of this language providing architecture indepen-

dent optimisation; also compilation phase can be used to

handle quantum error correction required to perform useful

quantum computation.

• Quantum assembly language (QASM) – assembly lan-

guage extended by the set of instructions used in the quan-

tum circuit model.

• Quantum physical operations language (QCPOL),

which describes the execution of quantum programme in

a hardware-dependent way; it includes physical operations

and it operates on the universal set of gates optimal for

a given physical implementation.

The authors of [65, 66] do not define a specific high-level

quantum programming language. They point out, however,

that existing languages, mostly based on Dirac notation, do

not provide the sufficient level of abstraction. They also stress,

following [67], that it should have the basic set of features.

We will discuss these basic requirements in detail in Sec. 3.

At the moment quantum assembly language (QASM) is the

most interesting part of this architecture, since it is tightly

connected to the QRAM model.

QASM should be powerful enough for representing high

level quantum programming language and it should allow for

describing any quantum circuit. At the same time it must be

implementation-independent so that it could be used to opti-

mise the execution of the programme with respect to different

architectures.

QASM uses qubits and cbits (classical bit) as basic units

of information. Quantum operations consist of unitary oper-

ations and measurement. Moreover, each unitary operator is

expressed in terms of single qubit gates and CNOT gates.

In the architecture proposed in [66] each single-qubit op-

eration is stored as the triple of rationals. Each rational mul-

tiplied by π represents one of three Euler-angles, which are

sufficient to specify one-qubit operation.

3. Quantum programming languages

Quantum algorithms [12, 14, 68, 69] and communication pro-

tocols [6, 70, 71] are described using a language of quantum

circuits [53]. While this method is convenient in the case of

simple algorithms, it is very hard to operate on compound

or abstract data types like arrays or integers using this nota-

tion [19, 72].

This lack of data types and control structures motivated

the development of quantum pseudocode [60, 73] and various

quantum programming languages [61, 66, 74–77].

Several languages and formal models were proposed for

the description of quantum computation process. The most

popular of them is quantum circuit model [51], which is tight-

ly connected to the physical operations implemented in the

laboratory. On the other hand the model of quantum Turing

machine is used for analysing the complexity of quantum al-

gorithms [21].

Another model used to describe quantum computers is

Quantum Random Access Machine (QRAM). In this model

we have strictly distinguished the quantum part performing

computation and the classical part, which is used to control

computation. This model is used as a basis for most quan-

tum programming languages [78–80]. Among high-level pro-

gramming languages designed for quantum computers we can

distinguish imperative and functional languages.

At the moment of writing this paper the most advanced

imperative quantum programming language is Quantum Com-

putation Language (QCL) designed and implemented by Ömer

[61, 81, 82]. QCL is based on the syntax of C programming

language and provides many elements known from classical

programming languages. The interpreter is implemented us-

ing simulation library for executing quantum programmes on

classical computer, but it can be in principle used as a code

generator for classical machine controlling a quantum circuit.

Along with QCL several other imperative quantum pro-

gramming languages were proposed. Notably Q Language de-

veloped by Betteli [67, 74] and libquantum [83] have the abil-

ity to simulate noisy environment. Thus, they can be used

to study decoherence and analyse the impact of imperfec-

tions in quantum systems on the accuracy of quantum algo-

rithms.

Q Language [84] is implemented as a class library for

C++ programming language and libquantum is implement-

ed as a C programming language library. Q Language pro-
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vides classes for basic quantum operations like QHadamard,

QFourier, QNot, QSwap, which are derived from the base

class Qop. New operators can be defined using C++ class

mechanism. Both Q Language and libquantum share some

limitation with QCL, since it is possible to operate on single

qubits or quantum registers (i.e. arrays of qubits) only. Thus,

they are similar to packages for computer algebra systems

used to simulate quantum computation [85, 86].

Concerning problems with physical implementations of

quantum computers, it became clear that one needs to take

quantum errors into account when modelling quantum com-

putational process. Also quantum communication has become

very promising application of quantum information theory

over the last few years. Both facts are reflected in the design

of new quantum programming languages.

LanQ developed by Mlnařı́k was defined in [77, 87]. It

provides syntax based on C programming language. LanQ

provides several mechanisms such as the creation of a new

process by forking and interprocess communication, which

support the implementation of multi-party protocols. More-

over, operational semantics of LanQ has been defined. Thus,

it can be used for the formal reasoning about quantum algo-

rithms.

It is also worth to mention new quantum programming

languages based on functional paradigm. Research in func-

tional quantum programming languages started by introducing

quantum lambda calculus [88]. It was introduced in a form of

simulation library for Scheme programming language. QPL

[89] was the first functional quantum programming language.

This language is statically typed and allows to detect errors

at compile-time rather than run-time.

A more mature version of QPL is cQPL – communica-

tion capable QPL [75]. cQPL was created to facilitate the

development of new quantum communication protocols. Its

interpreter uses QCL as a backend language so cQPL pro-

grammes are translated into C++ code using QCL simulation

library.

Table 3 contains the comparison of several quantum pro-

gramming languages. It includes the most important features

of existing languages. In particular we list the underlying

mathematical model (i.e. pure or mixed states) and the support

for quantum communication.

Table 3

The comparison of quantum programming languages with information about

implementation and basic features. Based on information from [75] and [87]

QCL Q Language QPL cQPL LanQ

reference [81] [84] [89] [75] [87]

implemented X X X X X

formal semantics – – X X X

communication – – – X X

universal X X X X X

mixed states – – X X X

All languages listed in Table 3 are universal and thus they

can be used to compute any function computable on a quan-

tum Turing machine. Consequently, all these language provide

the model of quantum computation which is equivalent to the

model of a quantum Turing machine.

In this section we compare the selected quantum program-

ming languages and provide some examples of quantum al-

gorithms and protocols implemented in these languages. We

also describe their main advantages and limitations. We in-

troduce the basic syntax of three of the languages listed in

Table 3 – QCL, LanQ and cQPL. This is motivated by the

fact that these languages have a working interpreter and can

be used to perform simulations of quantum algorithms. We

introduce basic elements of QCL required to understand ba-

sic programmes. We also compare the main features of the

presented languages.

The main problem with current quantum programming

languages is that they tend to operate on very low-level struc-

tures only. In QCL quantum memory can be accessed using

only qreg data type, which represents the array of qubits.

In the syntax of cQPL data type qint has been introduced,

but it is only synonymous for the array of 16 qubits. Sim-

ilar situation exists in LanQ [?], where quantum data types

are introduced using qnit keyword, where n represents a di-

mension of elementary unit (e.g. for qubits n = 2, for qutrits

n = 3). However, only unitary evolution and measurement can

be performed on variables defined using one of these types.

3.1. Requirements for quantum programming language.

Taking into account QRAM model described in Sec. 2 we

can formulate basic requirements which have to be fulfilled

by any quantum programming language [74].

• Completeness: Language must allow to express any quan-

tum circuit and thus enable the programmer to code every

valid quantum programme written as a quantum circuit.

• Extensibility: Language must include, as its subset, the

language implementing some high level classical comput-

ing paradigm. This is important since some parts of quan-

tum algorithms (for example Shor’s algorithm) require non-

trivial classical computation.

• Separability: Quantum and classical parts of the language

should be separated. This allows to execute any classical

computation on purely classical machine without using any

quantum resources.

• Expressivity: Language has to provide high level elements

for facilitating the quantum algorithms coding.

• Independence: The language must be independent from

any particular physical implementation of a quantum ma-

chine. It should be possible to compile a given programme

for different architectures without introducing any changes

in its source code.

As we will see, the languages presented in this Section

fulfil most of the above requirements. The main problem is

the expressivity requirement.

3.2. Imperative quantum programming. First we focus on

quantum programming languages which are based on the im-

perative paradigm. They include quantum pseudocode, dis-

cussed in Sec. 2, Quantum Computation Language (QCL)

316 Bull. Pol. Ac.: Tech. 59(3) 2011



Models of quantum computation and quantum programming languages

created by Ömer [61, 81, 82] and LanQ developed by Ml-

nařı́k [76, 77, 87].

Below we provide an introduction to QCL. It is one of

the most popular quantum programming languages. Next, we

introduce the basic elements of LanQ. This language provides

the support for quantum protocols. This fact reflects the recent

progress in quantum communication theory.

Quantum Computation Language. QCL (Quantum Com-

putation Language) [61, 81, 82] is the most advanced imple-

mented quantum programming language. Its syntax resembles

the syntax of C programming language [90] and classical data

types are similar to data types in C or Pascal.

The basic built-in quantum data type in QCL is qureg

(quantum register). It can be interpreted as the array of qubits

(quantum bits).

qureg x1 [ 2 ] ; / / 2− q u b i t quantum r e g i s t e r x1

qureg x2 [ 2 ] ; / / 2− q u b i t quantum r e g i s t e r x2

H( x1 ) ; / / Hadamard o p e r a t i o n on x1

H( x2 [ 1 ] ) ; / / and on t h e second q u b i t o f x2

Listing 2: Basic operations on quantum registers and subregisters in QCL.

QCL standard library provides standard quantum opera-

tors used in quantum algorithms, such as:

• Hadamard H and Not operations on many qubits,

• controlled not (CNot) with many target qubits and Swap

gate,

• rotations: RotX, RotY and RotZ,

• phase (Phase) and controlled phase (CPhase).

Most of them are described in Table 2 in Sec. 2.

Since QCL interpreter uses qlib simulation library, it is

possible to observe the internal state of the quantum machine

during the execution of quantum programmes. The following

sequence of commands defines two-qubit registers a and b and

executes H and CNot gates on these registers.

qc l> qureg a [ 2 ] ;

qc l> qureg b [ 2 ] ;

qc l> H( a ) ;

[ 4 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |1 ,0 > +

0 . 5 |2 ,0 > + 0 . 5 |3 ,0 >

qc l> dump

: STATE: 4 / 32 q u b i t s a l l o c a t e d ,

28 / 32 q u b i t s f r e e

0 . 5 |0> + 0 . 5 |1> + 0 . 5 |2> + 0 . 5 |3>

qc l> CNot ( a [ 1 ] , b )

[ 4 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |1 ,0 > + 0 . 5 |2 ,0 >

+ 0 . 5 |3 ,0 >

qc l> dump

: STATE: 4 / 32 q u b i t s a l l o c a t e d ,

28 / 32 q u b i t s f r e e

0 . 5 |0> + 0 . 5 |1> + 0 . 5 |2> + 0 . 5 |3>

Using dump command it is possible to inspect the internal

state of a quantum computer. This can be helpful for check-

ing if our algorithm changes the state of quantum computer

in the requested way.

One should note that dump operation is different from

measurement, since it does not influence the state of quantum

machine. This operation can be realised using simulator only.

a. Quantum memory management. Quantum memory can

be controlled using quantum types qureg, quconst, quvoid and

quscratch. Type qureg is used as a base type for general quan-

tum registers. Other types allow for the optimisation of gener-

ated quantum circuit. The summary of types defined in QCL

is presented in Table 4.

b. Classical and quantum procedures and functions.

QCL supports user-defined operators and functions known

from languages like C or Pascal. Classical subroutines

are defined using procedure keyword. Also standard ele-

ments, known from C programming language, like loop-

ing (e.g. for i=1 to n { ... }) and conditional structures (e.g.

if x==0 { ... }), can be used to control the execution of quan-

tum and classical elements. In addition to this, it provides two

types of quantum subroutines.

The first type is used for unitary operators. Using it one

can define new operations, which in turn can be used to ma-

nipulate quantum data. For example operator diffuse defined

in Listing 3 defines inverse about the mean operator used

in Grover’s algorithm [14]. This allows to define algorithms

on the higher level of abstraction and extend the library of

functions available for a programmer.

operator d i f f u s e ( qureg q ) {
H( q ) ; / / Hadamard Trans form

Not ( q ) ; / / I n v e r t q

CPhase ( pi , q ) ; / / R o t a t e i f q =1111 . .

! Not ( q ) ; / / undo i n v e r s i o n

!H( q ) ; / / undo Hadamard Trans form

}

Listing 3: The implementation of the inverse about the mean operation in

QCL [61]. Constant pi represents number π. Exclamation mark ! is used

to indicate that the interpreter should use the inverse of a given operator.

Operation diffuse is used in the quantum search algorithm [14].

Table 4

Types of quantum registers used for memory management in QCL

Type Description Usage

qureg general quantum register basic type

quvoid register which has to be empty when operator is called target register

quconst must be invariant for all operators used in quantum conditions quantum conditions

quscratch register which has to be empty before and after the operator is called temporary registers
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Using subroutines it is easy to describe quantum algo-

rithms. Figure 10 presents QCL implementation of Deutsch’s

algorithm, along with the quantum circuit for this algorithm.

This simple algorithm uses all main elements of QCL. It also

illustrates all main ingredients of existing quantum algorithms.

operator U( qureg x , qureg y ) {
H( x ) ;

O r ac l e ( x , y ) ;

H( x & y ) ;

}

/ / c l a s s i c a l c o n t r o l s t r u c t u r e

procedure d e u t s c h ( ) {
/ / a l l o c a t e 2 q u b i t s

qureg x [ 1 ] ;

qureg y [ 1 ] ;

i n t m;

/ / e v a l u a t i o n loop

{
/ / i n i t i a l i s e machine s t a t e

r e s e t ;

/ / do u n i t a r y compu t a t i on

U( x , y ) ;

/ / measure 2nd r e g i s t e r

measure y ,m;

/ / v a l ue i n 1 s t r e g i s t e r v a l i d ?

} u n t i l m==1;

/ / measure 1 s t r e g i s t e r which

measure x ,m;

/ / c o n t a i n s g ( 0 ) xor g ( 1 )

pr in t ”g ( 0 ) xor g ( 1 ) =” ,m;

/ / c l ean up

r e s e t ;

}

Fig. 10. Quantum circuit for Deutsch’s algorithm and QCL imple-

mentation of this algorithm (see [61] for more examples). Evalua-

tion loop is composed of preparation (performed by reset instruc-

tion), unitary evolution (U(x,y) operator) and measurement. Subrou-

tine Oracle () implements function used in Deutsch’s algorithm after

Refs. [42, 91]

The second type of quantum subroutine is called a quan-

tum function. Quantum functions are also called pseudo-

classic operators. It can be defined using qufunct keyword.

The subroutine of type qufunct is used for all transformations

of the form

|n〉 = |f(n)〉, (17)

where |n〉 is a base state and f is a one-to-one Boolean func-

tion. The example of quantum function is presented in List-

ing 5.

c. Quantum conditions. QCL introduces quantum condi-

tional statements, i.e. conditional constructions where quan-

tum state can be used as a condition.

QCL, as well as many classical programming languages,

provides the conditional construction of the form

i f be then

block

where be is a Boolean expression and block is a sequence of

statements.

QCL provides the means for using quantum variables as

conditions. Instead of a classical Boolean variable, the vari-

able used in condition can be a quantum register.

qureg a [ 2 ] ;

qureg b [ 2 ] ;

/ / t h e sequence o f s t a t e m e n t s

/ / . . .

/ / per form CNot i f a=|1 . . . 1〉
i f a {

CNot ( b [ 0 ] , b [ 1 ] ) ;

}

Listing 4: Example of a quantum conditional statement in QCL

In this situation QCL interpreter builds and executes the

sequence of CNOT gates equivalent to the above condition.

Here register a is called enable register.

In addition, quantum conditional structures can be used in

quantum subroutines. Quantum operators and functions can be

declared as conditional using cond keyword. For example

/ / c o n d i t i o n a l phase g a t e

extern cond operator Phase ( r e a l ph i ) ;

/ / c o n d i t i o n a l no t g a t e

extern cond qufunct Not ( qureg q ) ;

declares a conditional Phase gate and a controlled NOT gate.

Keyword extern indicates that the definition of a subroutine is

specified in an external file. The enable register (i.e. quantum

condition) is passed as an implicit parameter if the operator

is used within the body of a quantum if-statement.

/ / i n c r emen t r e g i s t e r

cond qufunct i n c ( qureg x ) {
i n t i ;

f or i = #x−1 to 0 s t ep −1 {
/ / app l y c o n t r o l l e d −no t f rom MSB t o LSB

CNot ( x [ i ] , x [ 0 : : i ] ) ;

}
}

/ / e q u i v a l e n t i m p l e m e n t a t i o n

/ / w i t h c o n s t a n t enab l e r e g i s t e r

/ / c o n d i t i o n a l i n c r emen t as s e l e c t i o n o p e r a t o r

qufunct c i n c ( qureg x , quconst e ) {
i n t i ;

f or i = #x−1 to 0 s t ep −1 {
CNot ( x [ i ] , x [ 0 : : i ] & e ) ;

}
}

Listing 5: Operator for incrementing quantum state in QCL defined

as a conditional quantum function. Subroutine inc is defined using

cond keyword and does not require the second argument of type

quconst. Subroutine cinc provides equivalent implementation with

explicit-declared enable register.
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In the case of inc procedure, presented in Listing 5, the

enable register is passed as an implicit argument. This ar-

gument is set by a quantum if-statement and transparently

passed on to all suboperators. As a result, all suboperators

have to be conditional. This is illustrated by the following

example [61]

/ / c o u n t i n g and c o n t r o l r e g i s t e r s

qc l> qureg q [ 4 ] ; qureg e [ 1 ] ;

/ / p r epar e t e s t s t a t e

qc l> H( q [ 3 ] & e ) ;

[ 5 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |8 ,0 > + 0 . 5 |0 ,1 >

+ 0 . 5 |8 ,1 >

/ / c o n d i t i o n a l i n c r emen t

qc l> c i n c ( q , e ) ;

[ 5 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |8 ,0 > + 0 . 5 |1 ,1 >

+ 0 . 5 |9 ,1 >

/ / e q u i v a l e n t t o c i n c ( q , e )

qc l> i f e { i n c ( q ) ; }
[ 5 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |8 ,0 > + 0 . 5 |2 ,1 >

+ 0 . 5 |10 ,1 >

/ / c o n d i t i o n a l decrement

qc l> ! c i n c ( q , e ) ;

[ 5 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |8 ,0 > + 0 . 5 |1 ,1 >

+ 0 . 5 |9 ,1 >

/ / e q u i v a l e n t t o ! c i n c ( q , e ) ;

qc l> i f e { ! i n c ( q ) ; }
[ 5 / 3 2 ] 0 . 5 |0 ,0 > + 0 . 5 |8 ,0 > + 0 . 5 |0 ,1 >

+ 0 . 5 |8 ,1 >

Finally we should note that a conditional subroutine can

be called outside a quantum if-statement. In such situation en-

able register is empty and, as such, ignored. Subroutine call

is in this case unconditional.

LanQ. Imperative language LanQ is the first quantum

programming language with full operation semantics speci-

fied [87].

Its main feature is the support for creating multipartite

quantum protocols. LanQ, as well as cQPL presented in the

next section, are built with quantum communication in mind.

Thus, in contrast to QCL, they provide the features for facil-

itating simulation of quantum communication.

Syntax of the LanQ programming language is very simi-

lar to the syntax of C programming language. In particular it

supports:

• Classical data types: int and void.

• Conditional statements of the form

i f ( cond ) {
. . .

} e l s e {
. . .

}

• Looping with while keyword

whi l e ( cond ) {
. . .

}

• User-defined functions, for example

i n t fun ( i n t i ) {
i n t r e s ;

. . .

re turn r e s ;

}

a. Process creation. LanQ is built around the concepts of

process and interprocess communication, known for example

from UNIX operating system. It provides the support for con-

trolling quantum communication between many parties. The

implementation of teleportation protocol presented in List-

ing 6 provides an example of LanQ features, which can be

used to describe quantum communication.

Function main() in Listing 6 is responsible for controlling

quantum computation. The execution of protocol is divided

into the following steps:

1. Creation of the classical channel for communicating the

results of measurement:

channel[int ] c withends [c0,c1]; .

2. Creation of Bell state used as a quantum channel for tele-

porting a quantum state

(psiEPR aliasfor [psi1 , psi2 ]); this is accomplished by call-

ing external function createEPR() creating an entangled

state.

3. Instruction fork executes alice () function, which is used to

implement sender; original process continues to run.

4. In the last step function bob() implementing a receiver is

called.

void a l i c e ( channelEnd [ i n t ] c0 ,

qb i t a u x T e l e p o r t S t a t e ) {
i n t i ;

qb i t ph i ;

/ / p r epar e s t a t e t o be t e l e p o r t e d

ph i = computeSomething ( ) ;

/ / B e l l measurement

i = measure ( B e l l B a s i s , phi ,

a u x T e l e p o r t S t a t e ) ;

send ( c0 , i ) ;

}

void bob ( channelEnd [ i n t ] c1 ,

qb i t s t a t e T o T e l e p o r t O n ) {
i n t i ;

i = recv ( c1 ) ;

/ / e x e c u t e one o f t h e Pau l i g a t e s

/ / a c co rd i ng t o t h e p r o t o c o l

i f ( i == 1) {
Sigma z ( s t a t e T o T e l e p o r t O n ) ;

} e l s e i f ( i == 2) {
Sigma x ( s t a t e T o T e l e p o r t O n ) ;

} e l s e i f ( i == 3) {
Sigma x ( s t a t e T o T e l e p o r t O n ) ;

S igma z ( s t a t e T o T e l e p o r t O n ) ;

}
dump q ( s t a t e T o T e l e p o r t O n ) ;

}

void main ( ) {
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channel [ i n t ] c withends [ c0 , c1 ] ;

qb i t ps i1 , p s i 2 ;

psiEPR a l i a s f o r [ ps i1 , p s i 2 ] ;

psiEPR = crea t eEPR ( ) ;

c = new channel [ i n t ] ( ) ;

fork a l i c e ( c0 , p s i 1 ) ;

bob ( c1 , p s i 2 ) ;

}

Listing 6: Teleportation protocol implemented in LanQ [87]. Functions

Sigma x(), Sigma y() and Sigma z() are responsible for implementing

Pauli matrices. Function createEPR() (not defined in the listing) creates

maximally entangled state between parties – Alice and Bob. Quantum com-

munication is possible by using the state, which is stored in a global variable

psiEPR. Function computeSomething() (not defined in the listing) is re-

sponsible for preparing a state to be teleported by Alice.

b. Communication. Communication between parties is

supported by providing send and recv keywords. Communi-

cation is synchronous, i.e. recv delays programme execution

until there is a value received from the channel and send de-

lays a programme run until the sent value is received.

Processes can allocate channels. It should be stressed that

the notion of channels used in quantum programming is dif-

ferent from the one used in quantum mechanics. In quan-

tum programming a channel refers to a variable shared be-

tween processes. In quantum mechanics a channel refers to

any quantum operation.

Another feature used in quantum communication is vari-

able aliasing. In the teleportation protocol presented in List-

ing 6 the syntax for variable aliasing

qb i t ps i1 , p s i 2 ;

psiEPR a l i a s f o r [ ps i1 , p s i 2 ] ;

is used to create quantum state shared among two parties.

c. Types. Types in LanQ are used to control the separa-

tion between classical and quantum computation. In particular

they are used to prohibit copying of quantum registers. The

language distinguishes two groups of variables [87, Chapter

5]:

• Duplicable or non-linear types for representing classical

values, e.g. bit, int, boolean. The value of a duplicable

type can be exactly copied.

• Non-duplicable or linear types for controlling quantum

memory and quantum resources, e.g. qbit, qtrit channels

and channel ends (see example in Listing 6). Types from

this group do not allow for cloning [92].

One should note that quantum types defined in LanQ are

mainly used to check validity of the program before its run.

However, such types do not help to define abstract opera-

tions. As a result, even simple arithmetic operations have to

be implemented using elementary quantum gates, e.g. using

quantum circuits introduced in [93].

3.3. Functional quantum programming – QPL and cQ-

PL. During the last few years few quantum programming

languages based on functional programming paradigm have

been proposed [94]. As we have already point out, the lack

of progress in creating new quantum algorithms is caused by

the problems with operating on complex quantum states. Clas-

sical functional programming languages have many features

which allow to clearly express algorithms [4]. In particular

they allow for writing better modularised programmes than in

the case of imperative programming languages [95]. This is

important since this allows to debug programmes more eas-

ily and reuse software components, especially in large and

complex software projects.

Quantum functional programming attempts to merge the

concepts known from classical function programming with

quantum mechanics. The program in functional programming

language is written as a function, which is defined in terms of

other functions. Classical functional programming languages

contain no assignment statements, and this allows to eliminate

side-effects [96]. It means that function call can have no effect

other than to compute its result [95]. In particular it cannot

change the value of a global variable.

The first attempts to define a functional quantum program-

ming language were made by using quantum lambda calculus

[88], which was based on lambda calculus. For the sake of

completeness we can also point out some research on mod-

elling quantum computation using Haskell programming lan-

guage [97, 98]. However, here we focus on high-level quantum

programming languages. Below we present recently proposed

languages QPL and cQPL, which are based on functional par-

adigm. They aim to provide mechanisms known from pro-

gramming languages like Haskell [99] to facilitate the mod-

elling of quantum computation and quantum communication.

In [89] Quantum Programming Language (QPL) was de-

scribed and in [75] its extension useful for modelling of quan-

tum communication was proposed. This extended language

was name cQPL – communication capable QPL. Since cQPL

compiler is also QPL compiler, we will describe cQPL only.

The compiler for cQPL language described in [75] is built

on the top of libqc simulation library used in QCL inter-

preter. As a result, cQPL provides some features known from

QCL.

Classical elements of cQPL are very similar to classical

elements of QCL and LanQ. In particular cQPL provides con-

ditional structures and loops introduced with while keyword.

new i n t l oop := 10 ;

whi l e ( l oop > 5) do {
pr in t l oop ;

loop := loop − 1 ;

} ;

i f ( l oop = 3) then {
pr in t ” loop i s equa l 3” ;

} e l s e {
pr in t ” loop i s no t equa l 3” ;

} ;

Listing 7: Classical control structures in cQPL.
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Procedures. Procedures can be defined to improve modular-

ity of programmes.

proc t e s t : a : in t , q : qb i t {
. . .

}

Procedure call has to know the number of parameters returned

by the procedure. If, for example, procedure test is defined

as above, it is possible to gather the calculated results

new i n t a1 = 0 ;

new i n t cv = 0 ;

new i n t qv = 0 ;

( a1 ) := c a l l t e s t ( cv , qv ) ;

or ignore them

c a l l t e s t ( cv , qv ) ;

In the first case the procedure returns the values of input vari-

ables calculated at the end of its execution.

Classical variables are passed by value i.e. their value is

copied. This is impossible for quantum variable, since a quan-

tum state cannot be cloned [92]. Thus, it is also impossible to

assign the value of quantum variable calculated by procedure.

Note that no cloning theorem requires quantum variables

to be global. This shows that in quantum case it is impossi-

ble to avoid some effects known from imperative program-

ming and typically not present in functional programming

languages.

Global quantum variables are used in Listing 9 to create

a maximally entangled state in a teleportation protocol. Proce-

dure createEPR(epr1, epr2) operates on two quantum variables

(subsystems) and produces a Bell state.

Quantum elements. Quantum memory can be accessed in

cQPL using variables of type qbit or qint. Basic operations

on quantum registers are presented in Listing 8. In particu-

lar, the execution of quantum gates is performed by using ∗=

operator.

new qb i t q1 := 0 ;

new qb i t q2 := 1 ;

/ / e x e c u t e CNOT g a t e on both q u b i t s

q1 , q2 ∗= CNot ;

/ / e x e c u t e phase g a t e on t h e f i r s t q u b i t

q1 ∗= Phase 0 . 5 ;

Listing 8: State initialisation and basic gates in cQPL. Data type qbit rep-

resents a single qubit.

It should be pointed out that qint data type provides only

a shortcut for accessing the table of qubits.

Only a few elementary quantum gates are built into the

language:

• Single qubit gates H, Phase and NOT implementing basic

gates listed in Table 2 in Sec. 2.

• CNOT operator implementing controlled negation and

FT(n) operator for n-qubit quantum Fourier transform.

This allows to simulate an arbitrary quantum computation.

Besides, it is possible to define gates by specifying their ma-

trix elements.

Measurement is performed using measure/then keywords

and print command allows to display the value of a variable.

measure a then {
pr in t ” a i s |0> ” ;

} e l s e {
pr in t ” a i s |1> ” ;

} ;

In similar manner like in QCL, it is also possible to inspect

the value of a state vector using dump command.

Quantum communication. The main feature of cQPL is its

ability to build and test quantum communication protocols

easily. Communicating parties are described using modules.

In analogy to LanQ, cQPL introduces channels, which can be

used to send quantum data. Once again we stress that notion

of channels used in cQPL and LanQ is different from that used

in quantum theory. Quantum mechanics introduces channels

to describe allowed physical transformations, while in quan-

tum programming they are used to describe communication

links.

Communicating parties are described by modules, intro-

duced using module keyword. Modules can exchange quan-

tum data (states). This process is accomplished using send

and receive keywords.

To compare cQPL and LanQ one can use the implementa-

tion of the teleportation protocol. The implementation of tele-

portation protocol in cQPL is presented in Listing 9, while

the implementation in LanQ is provided in Listing 6.

module Al i c e {
proc c rea t eEPR : a : qbit , b : qb i t {

a ∗= H;

b , a ∗= CNot ;

/∗ b : Cont ro l , a : T a r g e t ∗ /

} in {
new qb i t t e l e p o r t := 0 ;

new qb i t epr1 := 0 ;

new qb i t epr2 := 0 ;

c a l l c rea t eEPR ( epr1 , epr2 ) ;

send epr2 to Bob ;

/∗ t e l e p o r t : Cont ro l , epr1 : T a r g e t

(see: Figure 7) ∗ /

t e l e p o r t , ep r1 ∗= CNot ;

new b i t m1 := 0 ;

new b i t m2 := 0 ;

m1 := measure t e l e p o r t ;

m2 := measure epr1 ;

/∗ Transm i t t h e c l a s s i c a l

measurement r e s u l t s t o Bob ∗ /

send m1, m2 to Bob ;

} ;
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module Bob {
r e c e i v e q : qb i t from Al i c e ;

r e c e i v e m1 : b i t , m2 : b i t from Bob ;

i f (m1 = 1) then { q ∗= [ [ 0 , 1 , 1 , 0 ] ] ;

/∗ Apply s i gma x ∗ / } ;

i f (m2 = 1) then { q ∗= [ [ 1 ,0 ,0 ,−1 ] ] ;

/∗ Apply s i gma z ∗ / } ;

/∗ The s t a t e i s now t e l e p o r t e d ∗ /

dump q ;

} ;

Listing 9: Teleportation protocol implemented in cQPL (from [75]). Two

parties – Alice and Bob – are described by modules. Modules in cQPL are

introduced using module keyword.

4. Summary

The main goal of this paper is to acquaint the reader with

quantum programming languages and computational models

used in quantum information theory. We have described a

quantum Turing machine, quantum circuits and QRAM mod-

els of quantum computation. We have also presented three

quantum programming languages – namely QCL, LanQ and

cQPL.

First we should note that the languages presented in this

paper provide very similar set of basic quantum gates and

allow to operate only on the arrays of qubits. Most of the

gates provided by these languages correspond to the basic

quantum gates presented in Sec. 2. Thus, one can conclude

that the presented languages have the ability to express quan-

tum algorithms similar to the abilities of a quantum circuit

model.

The biggest advantage of quantum programming lan-

guages is their ability to use classical control structures for

controlling the execution of quantum operators. This is hard

to achieve in quantum circuits model and it requires the intro-

duction of non-unitary operations to this model. In addition,

LanQ and cQPL provide the syntax for clear description of

communication protocols.

The syntax of presented languages resembles the syntax

of popular classical programming languages from the C pro-

gramming language family [90]. As such, it can be easily

mastered by programmers familiar with classical languages.

Moreover, the description of quantum algorithms in quantum

programming languages is better suited for people unfamiliar

with the notion used in quantum mechanics.

The main disadvantage of described languages is the lack

of quantum data types. The types defined in described lan-

guages are used mainly for two purposes:

• To avoid compile-time errors caused by copying of quan-

tum registers (cQPL and LanQ).

• Optimisation of memory management (QCL).

Both reasons are important from the simulations point of view,

since they facilitate writing of correct and optimised quantum

programmes. However, these features do not provide a mech-

anism for developing new quantum algorithms or protocols.

Acknowledgments. The author would like to thank

W. Mauerer for providing preliminary version of his cQ-

PL compiler and acknowledge interesting discussions with
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