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Computation of positive stable realizations

for linear continuous-time systems

T. KACZOREK∗

Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok, Poland

Abstract. Conditions for the existence of positive stable realizations with system Metzler matrices for proper transfer function are established.

It is shown that there exists a proper stable realization of transfer function of second order if and only if the transfer function has real

negative poles. Sufficient conditions for the existence of positive stable realizations of transfer function of third order are established. A

method based on the decomposition of transfer functions into the first, second and third orders transfer functions for computation of positive

stable realizations is proposed. A method for computation of positive stable realizations of transfer functions with real negative poles and

zeros is given.
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive theory is given in the monographs [1, 2].

Variety of models having positive behavior can be found in

engineering, economics, social sciences, biology and medi-

cine, etc.

An overview on the positive realization problem is giv-

en in [1–3]. The realization problem for positive continuous-

time and discrete-time linear systems has been considered in

[4–7] and the positive minimal realization problem for singu-

lar discrete-time systems with delays in [8]. The realization

problem for fractional linear systems has been analyzed in

[9, 10] and for positive 2D hybrid systems in [11]. A method

based on the similarity transformation of the standard realiza-

tions to the desired form has been proposed in [10].

In this paper sufficient conditions will be established for

the existence of positive stable realizations with system Met-

zler matrices and procedures for computation of the realiza-

tions of proper transfer functions will be proposed.

The paper is organized as follows. In Sec. 2 some defin-

itions and theorems concerning positive continuous-time lin-

ear systems are recalled and the problem formulation is given.

Problem solution is presented in Secs. 3, 4 and 5. In Sec. 3

first systems of the second and third orders are analyzed. Next

the general case is solved. The systems with real poles by the

use of Gilbert method are analyzed. Systems with real poles

and zeros are considered in Sec. 5. Concluding remarks and

open problems are given in Sec. 6.

The following notation will be used: ℜ – the set of re-

al numbers, ℜn×m – the set of n × m real matrices, ℜn×m
+

– the set of n × m matrices with nonnegative entries and

ℜn
+ = ℜn×1

+ , ℜn×m[s] – the set of n × m polynomial matri-

ces in s with real coefficients, Mn – the set of n×n Metzler

matrices (real matrices with nonnegative off-diagonal entries),

In – the n × n identity matrix.

2. Preliminaries and the problem formulation

Consider the continuous-time linear system

ẋ(t) = Ax(t) + Bu(t), (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input

and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n,

D ∈ ℜp×m.

Definition 1. [1, 2] The system (1) is called (internally) posi-

tive if x(t) ∈ ℜn
+, y(t) ∈ ℜ

p
+, t ≥ 0 for any initial conditions

x(0) = x0 ∈ ℜn
+ and all inputs u(t) ∈ ℜm

+ , t ≥ 0.

Theorem 1. [1, 2] The system (2.1) is positive if and only if

A ∈ Mn, B ∈ ℜn×m
+ ,

C ∈ ℜ
p×n
+ , D ∈ ℜ

p×m
+ .

(2)

The transfer matrix of the system (1) is given by

T (s) = C[Ins − A]−1B + D. (3)

The transfer matrix is called proper if

lim
s→∞

T (s) = K ∈ ℜp×m (4)

and it is called strictly proper if K = 0.

Definition 2. Matrices (2) are called a positive realization of

transfer matrix T (s) if they satisfy the equality (3).

The realization is called (asymptotically) stable if the ma-

trix A is a (asymptotically) stable Metzler matrix (Hurwitz

Metzler matrix).
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Theorem 2. [2] The positive realization (2) is stable if and

only if all coefficients of the polynomial

pA(s) = det[Ins−A] = sn +an−1s
n−1 + ...+a1s+a0 (5)

are positive, i.e. ai > 0 for i = 0, 1, ..., n− 1.

The problem under considerations can be stated as follows.

Given a rational matrix T (s) ∈ ℜp×m(s), find its positive

stable realization

A ∈ MnS , B ∈ ℜn×m
+ , C ∈ ℜ

p×n
+ , D ∈ ℜ

p×m
+ , (6)

where MnS is the set of n×n (asymptotically) stable Metzler

matrices.

3. Problem solution

3.1. Particular case. First we shall consider the positive sys-

tem (1) with the transfer function

T (s) =
b2s

2 + b1s + b0

s2 + a1s + a0

. (7)

The positive system with (7) is (asymptotically) stable if and

only if ai > 0 for i = 0, 1 [2].

Knowing the transfer function (7) we can find the matrix

D by the use of the formula [2]

D = lim
s→∞

T (s) = b2 (8)

and the strictly proper transfer function

Tsp(s) = T (s) − b2 =
b1s + b0

s2 + a1s + a0

, (9)

where bi = bi − aib2, i = 0, 1.

It is assumed that the transfer function (7) (and also (9))

satisfies the condition

a2
1 − 4a0 ≥ 0 (10)

and it has two real negative poles

s1 = −α =
−a1 +

√

a2
1 − 4a0

2
,

s2 = −β =
−a1 −

√

a2
1 − 4a0

2
.

(11)

Theorem 3. There exists a positive stable realization of the

form

A =

[

−α 1

0 −β

]

, B =

[

0

1

]

,

C = [ b2(a1α − a0) − b1α + b0 b1 − b2a1 ]

(12)

of the transfer function (7) if and only if the following con-

ditions are satisfied:

1. the condition (10) is met,

2. b2(a1α − a0) − b1α + b0 ≥ 0 and b1 − b2a1 ≥ 0, (13)

3. b2 ≥ 0 (14)

Proof. The transfer function (9) has two real negative poles

if and only if the condition (10) is met. The matrices (12) are

the positive stable realization of the strictly proper transfer

function (9) since

C[I2s − A]−1B = [ b2(a1α − a0) − b1α + b0 b1 − b2a1 ]·

·

[

s + α −1

0 s + β

]−1 [

0

1

]

=

= [ b2(a1α − a0) − b1α + b0 b1 − b2a1 ]
1

(s + α)(s + β)
·

·

[

s + β 1

0 s + α

][

0

1

]

=

=
[ b2(a1α − a0) − b1α + b0 b1 − b2a1 ]

(s + α)(s + β)

[

1

s + α

]

=

=
b1s + b0

s2 + a1s + a0

= Tsp(s)

(15)

Note that C ∈ ℜ1×2
+ and D ∈ ℜ1×1

+ if and only if the condi-

tions (13) and (14) are satisfied.

Remark 1. The matrix

A =

[

−a1 a2

a3 −a4

]

ai>0,i=1,...,4 (16)

is a Metzler matrix if and only if it has two real eigenvalues

since its characteristic polynomial

det[I2s − A] =

∣

∣

∣

∣

∣

s + a1 −a2

−a3 s + a4

∣

∣

∣

∣

∣

=

= s2 + (a1 + a4)s + a1a4 − a2a3

(17)

satisfies the condition

(a1+a4)
2−4(a1a4−a2a3) = (a1−a4)

2+4a2a3 ≥ 0. (18)

Example 1. Find the positive stable realization of the transfer

function

T (s) =
2s2 + 7s + 7

s2 + 3s + 2
. (19)

The conditions of Theorem 3 are satisfied since

a2
1 − 4a0 = 9 − 8 > 0, b2 = 2 > 0,

s1 = −α = −1, s2 = −β = −2

and

b2(a1α − a0) − b1α + b0 = 2, b1 − b2a1 = 1.

Using (8) and (9) we obtain

D = lim
s→∞

T (s) = 2 (20)

and

Tsp(s) = T (s) − D =
s + 3

s2 + 3s + 2
. (21)

The positive stable realization of (21) has the form

A =

[

−α 1

0 −β

]

=

[

−1 1

0 −2

]

, B =

[

0

1

]

,

C = [ b2(a1α − a0) − b1α + b0 b1 − b2a1 ] = [ 2 1 ].
(22)
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The desired positive stable realization of (19) is given by (22)

and (20).

Now let us consider the positive system with the transfer

function

T (s) =
b3s

3 + b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

. (23)

In this case the matrix D has the form

D = lim
s→∞

T (s) = b3 (24)

and

Tsp(s) = T (s) − D =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

, (25)

where bi = bi − aib3, i = 0, 1, 2.

A realization of (25) has the form

A =







0 1 0

0 0 1

−a0 −a1 −a2






, B =







0

0

1






,

C = [ b0 b1 b2 ].

(26)

Note that the realization (26) for stable system is not pos-

itive since the stability of (25) implies ai > 0, i = 0, 1, 2 and

in this case A is not a Metzler matrix.

We are looking for a nonsingular matrix P ∈ ℜ3×3 such

that [10]

A = PAP−1 ∈ M3S , B = PB ∈ ℜ3
+,

C = CP−1 ∈ ℜ1×3
+ .

(27)

It is well-known [10, 15] that

det[I3s − A] = det[I3s − A] (28)

for any nonsingular matrix P ∈ ℜ3×3. It is easy to check

that if

P =







1 0 0

α 1 0

α2 2α 1






, (α – arbitrary). (29)

then

A = PAP
−1

=

264 1 0 0

α 1 0

α2
2α 1

375264 0 1 0

0 0 1

−a0 −a1 −a2

375 ·

·

264 1 0 0

−α 1 0

α2
−2α 1

375
=

264 −α 1 0

0 −α 1

α3
− a2α

2
+ a1α − a0 −3α2

+ 2a2α − a1 2α − a2

375,

(30a)

B = PB =







1 0 0

α 1 0

α2 2α 1













0

0

1






=







0

0

1






, (30b)

C = CP−1 = [ b0 b1 b2 ]







1 0 0

−α 1 0

α2 −2α 1






=

= [ b0 − b1α + b2α
2 b1 − 2αb2 b2 ].

(30c)

We choose α so that

p1(α) = α3 − a2α
2 + a1α − a0 ≥ 0 (31a)

and the matrix

A2 =

[

−α 1

−3α2 + 2a2α − a1 2α − a2

]

(31b)

has two real negative eigenvalues or equivalently its charac-

teristic polynomial

det[I2s − A2] = s2 + (a2 − α)s + a1 + α2 − a2α (31c)

has two real negative zeros

s1,2 =
α − a2 ±

√

(a2 − α)2 − 4(a1 + α2 − a2α)

2
. (31d)

This implies p2(α) = (a2 − α)2 − 4(a1 + α2 − a2α) =
−3α2 + 2a2α− 4a1 + a2

2 ≥ 0 and there exists α > 0 satisfy-

ing p2(α) = 0 if and only if

α1,2 =
2a2 ± 4

√

a2
2 − 3a1

6
(32)

is a real number, i.e.

a2
2 ≥ 3a1. (33)

Note that the polynomial p1(α) reaches its extremum for α

satisfying

dp1(α)

dα
= 3α2 − 2a2α + a1 = 0. (34)

In this case the matrix (31b) takes the form

A2 =

[

−α 1

0 2α − a2

]

. (35)

From (34) we have

a1 = −3α2 + 2a2α (36)

and substituting (36) into (31a) we obtain

p1(α) = a2α
2 − 2α3 − a0 ≥ 0 (37)

and

A =







−α 1 0

0 −α 1

−2α3 + a2α
2 − a0 0 2α − a2






. (38)

From (30c) it follows that C ∈ ℜ1×3
+ if

b0 − b1α + b2α
2 = b0 − b1α + b2α

2+

+ (−a2α
2 + a1α − a0)b3 ≥ 0,

b1 − 2αb2 = b1 − 2αb2 + (2a2α − a1)b3 ≥ 0,

b2 = b2 − a2b3 ≥ 0.

(39)

Therefore, the following theorem has been proved.
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Theorem 4. There exists a positive stable realization (38),

(30b) and (30c) of the transfer function (23) if the following

conditions are satisfied:

1. lim
s→∞

T (s) = b3 ∈ ℜ+,

2. the condition (33) is met and α can be chosen so that (37)

holds,

3. the conditions (39) are satisfied.

Example 2. Find a positive stable realization of the strictly

proper transfer function

T (s) =
s2 + 5s + 8

s3 + 7s2 + 16s + 10
. (40)

The transfer function (40) has one real pole s1 = −1 and two

complex conjugate poles s2 = −3 + j, s3 = −3 − j. In this

case the condition (33) is met since a2
2 − 3a1 = 72 − 48 = 1.

We choose α = 2 for which the conditions (37) and (39) are

satisfied since

p1(α) = 7 · (2)2 − 2 · 8 − 10 = 2,

b0 − b1α + b2α
2 = 8 − 10 + 4 = 2,

b1 − 2αb2 = 5 − 4 = 1,

b2 = 1

and the matrix C has the form

C = [ 2 1 1 ]. (41)

The matrices A and B are

A =







−α 1 0

0 −α 1

−2α3 + a2α
2 − a0 0 2α − a2






=

=







−2 1 0

0 −2 1

2 0 −3






, B =







0

0

1






.

(42)

The desired positive stable realization of (40) is given by (42),

(41) and D = [0].

3.2. General case. Consider the positive continuous-time lin-

ear system (1) with the transfer function

T (s) =
bnsn + bn−1s

n−1 + ... + b1s + b0

sn + an−1sn−1 + ... + a1s + a0

. (43)

The positive system with (43) is (asymptotically) stable if and

only if ai > 0 for i = 0, 1, ..., n− 1 [1, 2].

Knowing the transfer function (43) we can find the matrix

D by the use of the formula

D = lim
s→∞

T (s) = bn (44)

and the strictly proper transfer function

Tsp(s) = T (s) − D = C[Ins − A]−1B =

=
bnsn + bn−1s

n−1 + ... + b1s + b0

sn + an−1sn−1 + ... + a1s + a0

− bn =

=
bn−1s

n−1 + ... + b1s + b0

sn + an−1sn−1 + ... + a1s + a0

,

(45)

where bi = bi − aibn, i = 0, 1, ..., n− 1.

The transfer function (45) can be written as follows

Tsp(s) =

k
∑

i=1

Ti(s), (46a)

where Ti(s) may have one of the following forms

Ti(s) =











































Ti

s + si

,

b1s + b0

s2 + a1s + a0

,

b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

.

(46b)

The polynomial s2 +a1s+a0 has two real negative zeros and

the polynomial s3 + a2s
2 + a1s + a0 has one real negative

zero and two complex conjugate stable zeros.

The coefficients of Ti(s) can be found by the comparison

of the coefficients of (46a) and (45) at the same powers of s.

Theorem 5. Let Ai, Bi, Ci i = 1, ..., k be positive stable

realizations of the transfer functions (46b) of (46a), then the

desirable realization of (45) is given by

A = blockdiag[ A1 ... Ak ], B =









B1

...

Bk









,

C = [ C1 ... Ck ].

(47)

Proof. Using (47) and (45) we obtain

C[Is − A]−1B = [ C1 ... Ck ]·

·













Is − A1 0 ... 0

0 Is − A2 ... 0
...

...
. . .

...

0 0 ... Is − Ak













−1








B1

...

Bk









=

= [ C1 ... Ck ]·

·













[Is − A1]
−1 0 ... 0

0 [Is − A2]
−1 ... 0

...
...

. . .
...

0 0 ... [Is − Ak]−1













·

·









B1

...

Bk









=
k

∑

i=1

Ci[Is − Ai]
−1Bi =

k
∑

i=1

Ti(s) = Tsp(s).

The details of the procedure will be demonstrated on the fol-

lowing two examples.
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Example 3. Find a positive stable realization of the strictly

proper transfer function

Tsp(s) =
3s3 + 21s2 + 50s + 36

s4 + 9s3 + 30s2 + 42s + 20
=

=
3s3 + 21s2 + 50s + 36

(s + 1)(s + 2)(s + 3 + j)(s + 3 − j)
.

(48)

We decomposed (48) in the following two parts

Tsp(s) = T1(s) + T2(s), (49)

where

T1(s) =
2

s + 2
, T2(s) =

s2 + 5s + 8

s3 + 7s2 + 16s + 10
. (50)

Note that (48) can be also decomposed in two following parts

T 1(s) =
2.8s + 3.6

(s + 1)(s + 2)
, T 2(s) =

0.2s

(s + 3 + j)(s + 3 − j)
(51)

but the transfer function T 2(s) has not a positive stable real-

ization because the condition (10) is not satisfied.

A positive stable realization of T1(s) has the form

A1 = [−2], B1 = [1], C1 = [2] (52)

and a stable realization of T2(s) is given by (42) and (41).

Using (47) we obtain the desired positive stable realization of

(48) in the form

A =

[

A1 0

0 A2

]

=











−2 0 0 0

0 −2 1 0

0 0 −2 1

0 2 0 −3











,

B =

[

B1

B2

]

=











1

0

0

1











,

C = [ C1 C2 ] = [ 2 2 1 1 ].

(53)

Example 4. Find a positive stable realization of the strictly

proper transfer function

Tsp(s) =
2s4 + 18s3 + 62s2 + 92s + 46

s5 + 10s4 + 39s3 + 72s2 + 62s + 20
=

=
2s4 + 18s3 + 62s2 + 92s + 46

(s + 1)2(s + 2)(s + 3 + j)(s + 3 − j)
.

(54)

We decomposed (54) in two parts

Tsp(s) = T1(s) + T2(s), (55)

where

T1(s) =
s + 3

(s + 1)(s + 2)
=

s + 3

s2 + 3s + 2
, (56a)

T2(s) =
s2 + 5s + 8

(s + 1)(s + 3 + j)(s + 3 − j)
=

=
s2 + 5s + 8

s3 + 7s2 + 16s + 10
.

(56b)

A positive stable realization of (56a) is given by (22) and of

(56b) by (42) and (41).

Using (47) we obtain the desired positive stable realization

of (54) in the form

A =

[

A1 0

0 A2

]

=

















−1 1 0 0 0

0 −2 0 0 0

0 0 −2 1 0

0 0 0 −2 1

0 0 2 0 −3

















,

B =

[

B1

B2

]

=

















0

1

0

0

1

















,

C = [ C1 C2 ] = [ 2 1 2 1 1 ].

(57)

The considerations can be extended to multi-input multi-

output linear systems [10].

4. System with real poles

In this section using Gilbert method [14] a procedure for find-

ing positive stable realizations with system Metzler matrices

will be presented for transfer matrices with real negative poles.

Consider a linear continuous-time system with m-inputs,

p-outputs and the strictly proper transfer matrix

Tsp(s) =
N(s)

d(s)
∈ ℜp×m(s), (58)

where N(s) ∈ ℜp×m[s] and is the least common denominator

of all entries of the matrix

d(s) = sn + an−1s
n−1 + ... + a1s + a0 (59)

is the least common denominator of all entries of the matrix.

It is assumed that the equation d(s) = 0 has only dis-

tinct real negative roots s1, s2, ..., sn (si 6= sj for i 6= j), i.e.

d(s) = (s − s1)(s − s2)...(s − sn). In this case the transfer

matrix (58) can be written in the form

Tsp(s) =

n
∑

i=1

Ti

s − si

, (60)

where
Ti = lim

s→si

(s − si)Tsp(s) =

=
N(si)

n
∏

j=1,j 6=i

(si − sj)
, i = 1, ..., n. (61)

Let

rank Ti = ri ≤ min(p, m). (62)

It is easy to show [14] that

Ti = CiBi,

rank Ci = rank Bi = ri, i = 1, ..., n,
(63a)
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where

Ci = [ Ci,1 Ci,2 ... Ci,ri
] ∈ ℜp×ri ,

Bi =













Bi,1

Bi,2

...

Bi,ri













∈ ℜri×m.

(63b)

We shall show that the matrices are the desired positive stable

realization with system Metzler matrix

A = blockdiag[ Ir1
s1 ... Irn

sn ],

B =









B1

...

Bn









, C = [ C1 ... Cn ].
(64)

Using (64), (63) and (60) we obtain

Tsp(s) = C[Is − A]−1B = [ C1 ... Cn ]·

·
(

blockdiag[ Ir1
(s − s1)

−1 ... Irn
(s − sn)−1 ]

)

·

·









B1

...

Bn









=

n
∑

i=1

CiBi

s − si

=

n
∑

i=1

Ti

s − si

.

(65)

From (64) it follows that:

1. if s1, s2, ..., sn are real negative then the matrix A is stable

and is a Metzler matrix,

2. if

Ti ∈ ℜ
p×m
+ for i = 1, ..., n. (66)

Then we can find

Ci ∈ ℜ
p×ri

+ and Bi ∈ ℜri×m
+ for i = 1, ..., n (67)

and B ∈ ℜn×m
+ , C ∈ ℜ

p×n
+ , n =

n
∑

i=1

ri.

If T (∞) ∈ ℜ
p×m
+ then from

D = lim
s→∞

T (s) (68)

we have D ∈ ℜ
p×m
+ . Therefore, the following theorem has

been proved.

Theorem 6. There exists a positive stable realization (64) and

D ∈ ℜ
p×m
+ of the proper transfer matrix T (s) ∈ ℜp×m(s) if

the following conditions are satisfied:

1. The poles of T (s) are distinct real and negative si 6= sj

for i 6= j, si < 0, i = 1, ..., n.

2. Ti ∈ ℜ
p×m
+ for i = 1, ..., n,

3. T (∞) ∈ ℜ
p×m
+ .

If the conditions of Theorem 6 are satisfied the following

procedure can be used to find the desired positive stable re-

alization with system Metzler matrix.

Procedure 1.

Step 1. Using (68) find the matrix D and the strictly proper

transfer matrix Tsp(s) = T (s)−D and write it in the

form (58).

Step 2. Find the real zeros s1, s2, ..., sn of the polyno-

mial (59).

Step 3. Using (61) find the matrices T1, ..., Tn and their de-

composition (63).

Step 4. Using (64) find the matrices A, B, C.

Example 5. Using Procedure 1 find a positive stable realiza-

tion with system Metzler matrix of the transfer matrix

T (s) =









s + 3

s + 1

2s + 5

s + 2
1

s + 2

s + 4

s + 3









. (69)

Step 1. The matrix D with nonnegative entries has the form

D = lim
s→∞

T (s) =

[

1 2

0 1

]

(70)

and the strictly proper transfer matrix is given by

Tsp(s) = T (s) − D =









2

s + 1

1

s + 2
1

s + 2

1

s + 3









(71)

Step 2. The transfer matrix (71) can be written in the form

Tsp(s) =
1

(s + 1)(s + 2)(s + 3)
·

·

[

2(s + 2)(s + 3) (s + 1)(s + 3)

(s + 1)(s + 3) (s + 2)(s + 1)

]

=
N(s)

d(s)
.

(72)

In this case d(s) = (s + 1)(s + 2)(s + 3), s1 = −1,

s2 = −2, s3 = −3 and the condition 1) of Theo-

rem 6 is met.

Step 3. Using (51) and (53) we obtain

T1 =
1

(s + 2)(s + 3)
·

·

[

2(s + 2)(s + 3) (s + 1)(s + 3)

(s + 1)(s + 3) (s + 2)(s + 1)

]∣

∣

∣

∣

∣

s=−1

=

[

2 0

0 0

]

,

r1 = rankT1 = 1, T1 = C1B1,

B1 = [ 1 0 ], C1 =

[

2

0

]

,

(73a)
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T2 =
1

(s + 1)(s + 3)
·

·

[

2(s + 2)(s + 3) (s + 1)(s + 3)

(s + 1)(s + 3) (s + 2)(s + 1)

]∣

∣

∣

∣

∣

s=−2

=

[

0 1

1 0

]

,

r2 = rankT2 = 2, T2 = C2B2,

B2 = [ B21 B22 ] =

[

0 1

1 0

]

,

C2 = [ C21 C22 ] =

[

1 0

0 1

]

,

(73b)

T3 =
1

(s + 1)(s + 2)
·

·

[

2(s + 2)(s + 3) (s + 1)(s + 3)

(s + 1)(s + 3) (s + 2)(s + 1)

]∣

∣

∣

∣

∣

s=−3

=

[

0 0

0 1

]

,

r3 = rankT3 = 1, T3 = C3B3,

B3 = [ 0 1 ], C3 =

[

0

1

]

.

(73c)

From (73) it follows that the conditions 2) of Theorem 6

are satisfied.

Step 4. Using (64) and (73) we obtain

A =







Ir1
s1 0 0

0 Ir2
s2 0

0 0 Ir1
s3






=











−1 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 −3











,

B =







B1

B2

B3






=











1 0

0 1

1 0

0 1











,

C = [ C1 C2 C3 ] =

[

2 1 0 0

0 0 1 1

]

.

(74)

The desired positive stable realization of (69) is given by

(70) and (74).

This approach can be extended for transfer matrices with

multiple real negative poles [17].

5. Systems with real poles and zeros

Consider the stable strictly proper irreducible transfer function

Tsp(s) =
bn−1s

n−1 + ... + b1s + b0

sn + an−1sn−1 + ... + a1s + a0

=

=
bn−1(s − z1)...(s − zn−1)

(s − s1)(s − s2)...(s − sn)
,

(75)

where s1, ..., sn are the real negative poles and z1, ..., zn−1

are real negative zeros of the transfer function.

Theorem 7. There exists a positive stable realization of (75) if

sk < zk < sk+1 for k = 1, ..., n − 1. (76)

Proof. From (61) we have

Ti =
(si − z1)(si − z2)...(si − zn−1)

(si − s1)...(si − si−1)(si − si+1)...(si − sn)
> 0

for k = 1, ..., n
(77)

if the condition (76) is satisfied. By Theorem 6 the matrices

A = diag[ s1 ... sn ], B =









b1

...

bn









,

C = [ c1 ... cn ], Ti = bici, i = 1, ..., n

(78)

are a positive stable realization of the transfer function (75).

Example 6. Find a positive realization of the strictly proper

transfer function

Tsp(s) =
s + 2

s2 + 4s + 3
. (79)

In this case s1 = −1, s2 = −3, z1 = −2 and the condition

(76) is satisfied. Using (61) (or (73)) we obtain

T1 =
s + 2

s + 3

∣

∣

∣

∣

s=−1

=
1

2
, T2 =

s + 2

s + 1

∣

∣

∣

∣

s=−3

=
1

2

and

T1 = b1c1 =
1

2
, b1 = 1, c1 =

1

2
,

T2 = b2c2 =
1

2
, b2 = 1, c2 =

1

2
.

The desired positive realization has the form

A =

[

s1 0

0 s2

]

=

[

−1 0

0 −3

]

,

B =

[

b1

b2

]

=

[

1

1

]

,

C = [ c1 c2 ] =

[

1

2

1

2

]

.

(80)

Now let us consider the strictly proper transfer matrix (58)

rewritten in the form

Tsp(s) =
1

(s − s1)...(s − sn)
·

·









(s − z1
11)...(s − zn11

11 ) ... (s − z1
1,m)...(s − z

n1,m

1,m )
... ...

...

(s − z1
p,1)...(s − z

np,1

p,1 ) ... (s − z1
p,m)...(s − z

np,m

p,m )









,

(81)
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where s1, ..., sn are real negative poles and zk
ij , i = 1, ..., p;

j = 1, ..., m; k = 1, ..., nij are real negative zeros.

Theorem 8. There exists a positive stable realization of (81) if

sk ≤ zk
i,j ≤ sk+1

for i = 1, ..., p; j = 1, ..., m; k = 1, ..., nij.
(82)

Proof is similar to the proof of Theorem 7.

If the condition (82) is satisfied then a positive stable re-

alization (64) of (81) can be found by the use of Procedure 1.

Example 7. Using Procedure 1 find a positive realization of

the strictly proper transfer matrix

Tsp(s) =
1

(s + 1)(s + 3)(s + 5)
·

·

[

(s + 2)(s + 4) (s + 1)(s + 4)

(s + 2)(s + 5) (s + 2)(s + 4)

]

.

(83)

In this case we have s1 = −1, s2 = −3, s3 = −5, z1
11 = −2,

z2
11 = −4, z1

12 = −1, z2
12 = −4, z1

21 = −2, z2
21 = −5,

z1
22 = −2, z2

12 = −4 and the conditions (76) are satisfied.

Therefore, by Theorem 8 there exists a positive stable real-

ization of the transfer matrix (83). Using (61) and (83) we

obtain

T1 =
1

(s + 3)(s + 5)
·

·

[

(s + 2)(s + 4) (s + 1)(s + 4)

(s + 2)(s + 5) (s + 2)(s + 4)

]
∣

∣

∣

∣

∣

s=−1

=







3

8
0

1

2

3

8






,

rankT1 = 2, T1 = C1B1,

C1 =







3

8
0

1

2

3

8






, B1 =

[

1 0

0 1

]

,

(84a)

T2 =
1

(s + 1)(s + 5)
·

·

[

(s + 2)(s + 4) (s + 1)(s + 4)

(s + 2)(s + 5) (s + 2)(s + 4)

]
∣

∣

∣

∣

∣

s=−3

=







1

4

1

2
1

2

1

4






,

rankT2 = 2, T2 = C2B2,

C2 =







1

4

1

2
1

2

1

4






, B2 =

[

1 0

0 1

]

,

(84b)

T3 =
1

(s + 1)(s + 3)
·

·

[

(s + 2)(s + 4) (s + 1)(s + 4)

(s + 2)(s + 5) (s + 2)(s + 4)

]
∣

∣

∣

∣

∣

s=−5

=







3

8

1

2

0
3

8






,

rankT3 = 2, T3 = C3B3,

C3 =







3

8

1

2

0
3

8






, B3 =

[

1 0

0 1

]

.

(84c)

The desired positive stable realization has the form

A =







Ir1
s1 0 0

0 Ir2
s2 0

0 0 Ir3
s3






=

=





















−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −3 0 0 0

0 0 0 −3 0 0

0 0 0 0 −5 0

0 0 0 0 0 −5





















,

B =







B1

B2

B3






=





















1 0

0 1

1 0

0 1

1 0

0 1





















,

C = [ C1 C2 C3 ] =
1

8

[

3 0 2 4 3 4

4 3 4 2 0 3

]

.

(85)

6. Concluding remarks

Conditions for the existence of positive stable realizations with

system Metzler matrices of proper transfer function have been

established. It has been shown that a stable transfer function

of second order has a positive stable realization if and only

if the poles of the transfer function are real negative (The-

orem 3). Sufficient conditions for the existence of positive

stable realizations of a stable proper transfer function of third

order have been also established (Theorem 4). In general case

a method based on the decomposition of the transfer function

into first, second and third order transfer functions has been

proposed (Theorem 5). Using Gilbert method a procedure has

been proposed for computation of positive stable realizations

for transfer functions with real negative poles (Theorem 6)

and for transfer functions with real poles and zeros (Theo-

rem 7). The considerations have been illustrated by numerical

examples. The following are open problems:

1. find necessary and sufficient conditions for the existence of

positive stable realizations with system Metzler matrices of

proper transfer matrices,
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2. give a method for finding positive stable realizations with

system Metzler matrices which is not based on the simi-

larity transformation of proper transfer matrices.

An extension of the presented procedure for fractional lin-

ear systems [12, 13, 16] is also an open problem.
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