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Active fault-tolerant control design for Takagi-Sugeno fuzzy systems
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Abstract. In this paper, a virtual actuator-based active fault-tolerant control strategy is presented. After a short introduction to Takagi-Sugeno

fuzzy systems, it is shown how to design a fault-tolerant control strategy for this particular class of non-linear systems. The key contribution

of the proposed approach is an integrated fault-tolerant control design procedure of fault identification and control within an integrated

fault-tolerant control scheme. In particular, fault identification is implemented with the suitable state observer. While, the controller is

implemented in such a way that the state of the (possibly faulty) system tracks the state of a fault-free reference model. Consequently,

the fault-tolerant control stabilizes the possibly faulty system taking into account the input constraints and some control objective function.

Finally, the last part of the paper shows a comprehensive case study regarding the application of the proposed strategy to fault-tolerant

control of a twin-rotor system.
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1. Introduction

Fault-Tolerant Control (FTC) [1] is one of the most important

research directions underlying contemporary automatic con-

trol. FTC can also be perceived as an optimized integration

of the advanced fault diagnosis [2, 3] and control [1] tech-

niques. There is no doubt that the theory (and practice, as a

consequence) of fault diagnosis and control is well-developed

and mature for linear systems only [2]. There is also a num-

ber of different approaches that can be employed to settle the

robustness problems regarding model uncertainty [3]. Such

a robustness is especially important in practical implemen-

tations where various sources of uncertainty may be present,

e.g. differences between various copies of a given component,

time-varying properties, noise, external disturbances, etc. An-

other kind of solutions that may increase the performance of

the FTC scheme is based on an appropriate scheduling of the

control test signals in such a way to gain as much information

as possible about the system being supervised [4]. Unfortu-

nately, in spite of its originality, this technique can be used for

linear systems only. In the light of the above discussion, it is

clear that the development of new approaches for non-linear

systems is justified. From this discussion, it is clear that FTC

has become an important issue in modern automatic control

theory and practice. This justifies the objectives of that aims

at presenting an FTC for Takagi-Sugeno fuzzy systems.

In general, FTC systems are classified into two distinct

classes [5]: passive and active. In passive FTC [6–9], con-

trollers are designed to be robust against a set of presumed

faults, therefore there is no need for fault detection, but such a

design usually degrades the overall performance. In the con-

trast to passive ones, active FTC schemes, react to system

components faults actively by reconfiguring control actions,

and by doing so the system stability and acceptable perfor-

mance is maintained. To achieve that, the control system re-

lies on the Fault Detection and Isolation (FDI) [2, 3, 10, 11]

as well as an accommodation technique. Most of the existing

works treat FDI and FTC problems separately. Unfortunately,

perfect FDI and fault identification are impossible and hence

there always is an error related to this process. Thus, there is

a need for integrated FDI and FTC schemes for both linear

and non-linear systems. One of the approach to the active fault

tolerant control is control reconfiguration that creates depend-

able systems by means of the appropriate feedback control.

It responds to severe component faults that open the control

loop by on-line restructuring the controller [1]. It is possible

to solve the reconfiguration problem by redesigning a new

controller for the faulty system for every isolated fault. An

optimal controller can be redesigned with the same optimiza-

tion problem as in the nominal case as is shown in [12, 13],

but the redesign step can become too complex for the large

systems. Also if the controller is a human being, the replace-

ment of the controller for reconfiguration implies the need for

strong training efforts.

This paper relies on the idea of keeping the nominal con-

troller in the loop, it avoids the implication of a complete

controller redesign. By using a virtual actuator as introduced

in [1, 14–16] it is possible to do so. It was also already demon-

strated that the design of virtual actuators can be applied au-

tomatically after the fault has been detected. Prevention of

a fault in one component (for example actuator) from caus-

ing system wide failures is the aim of control reconfiguration.

The approach based on the use of virtual actuators is shown

in Fig. 1, also it is worth mentioning that similar approach can

be used for sensors faults, by using virtual sensors, but this is

beyond the scope of this paper (see, e.g. [1]). The idea used
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in this paper is to place a block between the controller output

u and the input of all available actuators uf . The goal of this

block is to provide a signal which has the same effect as the

broken actuator would have in the nominal system, therefore

it is called a virtual actuator.

Fig. 1. Virtual actuators and virtual sensors in a fault tolerant control

system

Successful application of the virtual actuator makes it pos-

sible to keep the behaviour of the faulty plant indistinguish-

able from that of the fault-free one [14]. The virtual actuator

can be designed based on the open-loop behaviour, despite the

fact that its purpose is to work in a closed-loop system. There-

fore, the reconfiguration problem can be restated in terms of

the open-loop system.

It might seem that this approach is more complex, but it

has a considerable advantage over the redesign of the con-

troller. Usually, the controller design is not an easy task and

may be time consuming process, which involves several cy-

cles of deriving and testing new controller parameters. Hence

the redesign can be problematic to achieve on-line after the

fault has been discovered. In this paper, the virtual actuator

is used in addition to the original controller, which allows for

the knowledge accumulated in designing the controller to be

preserved and the reconfigured control loop can leverage on

it. In comparison, the design of the virtual actuator itself is

much more limited in the scope. As it presents fewer degrees

of freedom it is easier to automate on-line in comparison to

a complete controller redesign.

This paper is organised as follows. In Sec. 2 is presented

background info about Takagi-Sugeno (T-S) fuzzy systems. In

Sec. 3 an improved design technique for an integrated FTC

and fault identification strategy for Takagi-Sugeno fuzzy sys-

tems is proposed that allows to include input constraints into

FTC system. The proposed strategy is considerably less re-

strictive than the one presented in [17]. Indeed, the control

matrix is not constant and the use of parameter-varying Lya-

punov functions [18] is less conservative to the more usual

approach of employing a common P matrix. subsequently the

input constraints for the FTC and considered, which are fol-

lowed by the regulator problem for T-S fuzzy system. The

final part of the paper (Sec. 4) presents a comprehensive case

study regarding the application of the proposed strategy to

fault-tolerant control of a twin-rotor system.

2. Elementary background on T-S fuzzy systems

A non-linear dynamic system can be described in a simple

way by a Takagi-Sugeno fuzzy model, which uses series of

locally linearised models from the nonlinear system, parame-

ter identification of an a priori given structure or transforma-

tion of a nonlinear model using the nonlinear sector approach

(see, e.g. [2, 19, 20]). According to this model, a non-linear

dynamic systems can be linearised around a number of oper-

ating points. Each of these linear models represents the local

system behaviour around the operating point. Thus, a fuzzy

fusion of all linear model outputs describes the global sys-

tem behaviour. A T-S model is described by fuzzy IF-THEN

rules which represent local linear I/O relations of the non-

linear system. It has a rule base of M rules, each having p
antecedents, where i-th rule is expressed as

Ri : IF w1
k is F i

1 and . . . and wp
k is F i

p,

then

{
xk+1 = Aixk + Biuk,

yk = Cixk,

(1)

in which xk ∈ R
n stands for the reference state, yk ∈ R

m

is the reference output, and uk ∈ R
r denotes the nominal

control input, also i = 1, . . . , M , F i
j (j = 1, . . . , p) are fuzzy

sets and wk =[w1
k, w2

k, . . . , wp
k] is a known vector of premise

variables [2, 19].

Given a pair of (wk, uk) and a product inference engine,

the final output of the normalized T-S fuzzy model can be

inferred as:

{
xk+1 =

∑M
i=1

hi(wk)[Aixk + Biuk],

yk =
∑M

i=1
hi(wk)Cixk,

(2)

where hi(wk) are normalized rule firing strengths defined as

hi(wk) =
T p

j=1µF i
j
(wj

k)
∑M

i=1
(T p

j=1
µF i

j
(wj

k))
(3)

and T denotes a t-norm (e.g., product). The term µF i
j
(wj

k) is

the grade of membership of the premise variable wj
k. More-

over, the rule firing strengths hi(wk) (i = 1, . . . , M ) satisfy

the following constraints

{ ∑M
i=1

hi(wk) = 1,

0 ≤ hi(wk) ≤ 1, ∀i = 1, . . . , M.
(4)

3. FTC strategy for T-S fuzzy systems

Let us consider the following T-S reference model:

xk+1 = Akxk + Bkuk, (5)

yk+1 = Ck+1xk+1, (6)
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with

Ak =

M∑

i=1

hi(wk)Ai,

Bk =

M∑

i=1

hi(wk)Bi,

Ck+1 =

M∑

i=1

hi(wk+1)C
i

for i = 1, . . . , M .

Let us also consider a possibly faulty T-S system described

by the following equations:

xf,k+1 = Akxf,k + Bkuf,k + Lkfk, (7)

yf,k+1 = Ck+1xf,k+1, (8)

with Lk =
∑M

i=1
hi(wk)Li. Where xf,k ∈ R

n stands for the

system state, yf,k ∈ R
m is the system output, uf,k ∈ R

r de-

notes the system input, fk ∈ R
s, (s ≤ m) is the fault vector,

and Li stands for its distribution matrices which are assumed

to be known.

The main objective of this paper is to propose a control

strategy which can be used for determining the system input

uf,k such that:

• the control loop for the system (7)–(8) is stable,

• xf,k+1 converges asymptotically to xk+1 irrespective of

the presence of the fault fk.

The subsequent part of this section shows the development

details of the scheme that is able to settle such a challenging

problem.

The crucial idea is to use the following control strategy:

uf,k = −Skf̂k + K1,k(xk − x̂f,k) + uk, (9)

where f̂k is the fault estimate. Note that it is not assumed that

xf,k is available, i.e. an estimate x̂f,k can be used instead.

Thus, the following problems arise:

• to determine f̂k,

• to design K1,k in such a way that the control loop is stable,

i.e. the stabilisation problem.

3.1. Fault identification. Let us assume that the following

rank condition is satisfied at any given moment1

rank(Ck+1Lk) = rank(Lk) = s. (10)

This implies that it is possible to calculate

Hk+1 = (Ck+1Lk)+ =

=
[
(Ck+1Lk)T Ck+1Lk

]−1
(Ck+1Lk)T .

(11)

By multiplying (8) by Hk+1 and then substituting (7), it can

be shown that

fk = Hk+1(yf,k+1−Ck+1Akxf,k −Ck+1Bkuf,k). (12)

Thus, if x̂f,k is used instead of xf,k then the fault estimate

is given as follows

f̂k = Hk+1(yf,k+1−Ck+1Akx̂f,k −Ck+1Bkuf,k). (13)

and the associated fault estimation error is

fk − f̂k = −Hk+1Ck+1Ak(xf,k − x̂f,k). (14)

Unfortunately, the crucial problem with practical implementa-

tion of (13) is that it requires yf,k+1 and uf,k to calculate f̂k

and hence it cannot be directly used to obtain (9). To settle

this problem, it is assumed that there exists a diagonal matrix

αk such that f̂k
∼= f̊k = αkf̂k−1 and hence the practical

form of (9) boils down to

uf,k = −Skf̊k + K1,k(xk − x̂f,k) + uk. (15)

In most cases the matrix αk should be equivalent to an

identity matrix, i.e. it would simply mean an one time–step

delay, which should have a negligible effect on the outcome.

In cases where the fault behaviour is a linear one, it is pos-

sible to design the matrix αk based on the previous changes

of faults. In cases where faults changes in a nonlinear fash-

ion and one time–step delay is unacceptable, one could try to

predict the nature of the faults by using for example neural

networks.

3.2. Stabilisation problem. By substituting (9) into (7), it

can be shown that

xf,k+1 = Akxf,k − BkSkf̂k + BkK1,kek+

+BkK1,kef,k + Bkuk + Lkfk,
(16)

where ek = xk − xf,k stands for the tracking error.

Let us assume that Sk at any moment satisfies the following

equality BkSk = Lk, e.g. for actuator faults Sk = I . Thus

xf,k+1 = Akxf,k + Lk(fk − f̂k)+

+BkK1,kek + BkK1,kef,k + Bkuk.
(17)

Finally, by substituting (14) into (17) and then applying the

result into ek+1 = xk+1 − xf,k+1 yields

ek+1 = (Ak − BkK1,k)ek+

+(LkHk+1Ck+1Ak − BkK1,k)ef,k.
(18)

where ef,k = xf,k−x̂f,k stands for the state estimation error.

3.3. Observer design. As was already mentioned, the fault

estimate (13) is obtained based on the state estimate x̂f,k. This

raises the necessity for an observer design. Consequently, by

substituting (12) into (7) it is possible to show that

xf,k+1 = Akxf,k + Bkuf,k + Lkyf,k+1, (19)

where
Ak = (I − LkHk+1Ck+1)Ak,

Bk = (I − LkHk+1Ck+1)Bk,

Lk = LkHk+1.

1It is not easy to guarantee that, unless matrices Ck and Lk are time invariant, i.e. C1 = Ci and L1 = Li for all i = 1, . . . , M . However in real life

cases, checking if rank condition is satisfied for every pair of matrices, i.e. rank(CiLi) = rank(Li) = s for all i = 1, . . . , M is usually sufficient.
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Thus, the observer structure, which can be perceived as

an unknown input observer (see, e.g. [3, 21]), is given by

x̂f,k+1/k = Akx̂f,k + Bkuf,k + Lkyf,k+1,

x̂f,k+1 = x̂f,k+1/k + K2,k+1(yf,k+1 − Ck+1x̂f,k+1/k),
(20)

Finally, the state estimation error can be written as follows:

ef,k+1 = (Ak − K2,k+1Ck+1Ak)ef,k. (21)

3.4. Integrated design procedure. The main objective of

this section is to summarise the presented results within an

integrated framework for the development of fault identifica-

tion and fault-tolerant control scheme. First, let us start with

two crucial assumptions:

• the pair (Ak, Ck+1) is detectable,

• the pair (Ak, Bk) is stabilisable.

Under these assumptions, it is possible to design the ma-

trices K1,k and K2,k in such a way that the extended error

ek =

[
ek

ef,k

]
, (22)

described by

ek+1 =

=

[
Ak−BkK1,k LkHk+1Ck+1Ak−BkK1,kef,k

0 Ak−K2,k+1Ck+1Ak

]
ek.

(23)

converges asymptotically to zero.

It can be observed from the structure of (23) that the eigen-

values of the matrix are the union of those of Ak −BkK1,k

and Ak − K2,k+1Ck+1Ak. This clearly indicates that the

design of the state feedback and the observer can be carried

out independently (separation principle). So, let us start with

the controller design with the corresponding tracking error

defined by

ek+1 = [Ak − BkK1,k]ek = A0(h(wk))ek, (24)

where

K1,k =

M∑

i=1

hi(wk)Ki
1

and the matrix A0(h(wk)) belongs to a convex polytopic set

defined as

A0 =

{
A0(h(wk)) :

M∑

i=1

hi(wk) = 1, 0 ≤ hi(wk) ≤ 1

A0(h(wk)) =

M∑

i=1

M∑

j=1

hi(wk)hj(wk)A0,i,j ,

A0,i,j =
1

2
(Ai − BiK

j
1 + Aj − BjKi

1)

}
.

(25)

By adapting the general results of the work of [18], the

following definition is introduced:

Definition 1. The tracking error described by (24) is robust-

ly convergent to zero in the uncertainty domain (25) iff all

eigenvalues of A0(h(wk)) have magnitude less than one for

all values of h(wk) such that A0(h(wk)) ∈ A0.

Theorem 2. The tracking error described by (24) is robust-

ly convergent to zero in the uncertainty domain (25) if there

exist matrices Qi,j ≻ 0, G1, W j such that
[
G1 + GT

1 − Qi,j ∗

N 0,i,j Qm,n

]
≻ 0, (26)

for all i, m = 1, . . . , M and j ≥ i, n ≥ m, where

N0,i,j =
1

2
[(Ai + Aj)G1 − BiW j − BjW i].

Proof. See [18].

Finally, the design procedure boils down to solving the set

of

[
1

2
M(1 + M)]2

LMIs (26) and then determining Ki
1 = W iG

−1
1 . Since the

controller design procedure is provided, then the observer syn-

thesis procedure can be described. To tackle this problem, it is

proposed to use a modified version of the celebrated Kalman

filter, which can be described as follows:

x̂f,k+1/k = Akx̂f,k + Bkuf,k + Lkyf,k+1,

P k+1/k = AkP kA
T

k + Uk,

K2,k+1 = P k+1/kCT
k+1

(
Ck+1P k+1/kCT

k+1 + V k+1

)−1

,

x̂f,k+1 = x̂f,k+1/k + K2,k+1(yf,k+1 − Ck+1x̂f,k+1/k),

P k+1 = [I − K2,k+1Ck+1] P k+1/k,

where Uk = δ1I and V k = δ2I with δ1 and δ2 sufficiently

small positive numbers.

It is important to note that the Kalman filter is applied

here for state estimation of a deterministic system (7)–(8) and

hence Uk and V k play the role of instrumental matrices only

(see [3] and the references therein for more details).

3.5. Constraints on the control input. When the initial

tracking error is known (i.e., the deviation of a faulty sys-

tem state from a nominal system state), an upper bound on

the norm of the control input ůf,k = K1(xk − xf,k) can

be found as follows [22]. Let us assume that initial tracking

error e0 lies in an ellipsoid of diameter γ, i.e., ‖e0‖ ≤ γ,

then the constraint on a control input described as follows

‖ůf,k‖max , maxl|ů
l
f,k| ≤ λ is enforced at all times if the

LMIs
[

X ∗

0.5(W T
i + W T

j ) G1 + GT
1 − Qi,j

]
� 0,

Qi,j � γ2I, diag(X) � λ2I,

(27)
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hold, where W i, W j satisfy conditions given by (26) for all

i = 1, . . . , M and j > i.

3.6. Regulator problem. In order to solve the regulator prob-

lem it is needed to find a state feedback controller such that

the following objective function is minimized,

J∞ =

∞∑

0

(
ẙ

T
f,kQRẙf,k + ů

T
f,kRRůf,k

)
(28)

where ẙf,k = yf,k − yk, QR � 0 and RR ≻ 0 are suitable

weight matrices.

However system described in this paper is uncertain and

thus only the upper bound of the objective function can be

minimized. Therefore the following Theorem 3 only gives

a sub-optimal solution for the regulator problem [18].

Theorem 3. The upper bound for the objective function (28)

for initial tracking error e0 lying in an ellipsoid of diameter

γ can be obtained by solving the following LMI optimization

problem

min
Qi,j ,G1,W i

η

subject to





G1 + GT
1 − Qi,j ∗ ∗ ∗

N0,i,j Qm,n ∗ ∗

0.5Q
1/2

R (Ci + Cj)G1 0 ηI ∗

0.5R
1/2

R (W i + W j) 0 0 ηI




≻ 0,

Qi,j � γ2I

(29)

for all i, m = 1, . . . , M and j ≥ i, n ≥ m, where

N 0,i,j =
1

2
[(Ai + Aj)G1 − BiW j − BjW i]

and local feedbacks gains are Ki
1 = W iG

−1
1 .

Proof. See [18].

3.7. Implementation details. This section is presented to

clarify the order of use of the equations and by doing so

avoid some potential confusion about implementing the pre-

sented technique.

The initial stage is to compute virtual actuator gains Ki
1

for all i = 1, . . . , M , by solving LMIs described by (26)

or (29) (if a regulator is needed), also specific input con-

straints (27) can also be considered in either case if required.

By doing so a virtual actuator is achieved presented on Fig. 2.

Also if system matrices Bi, Li, Ci are time invariant similar

approach can be used to design observer matrices Ki
2 instead

of using a somewhat more complicated modified version of

the Kalman filter. After initial design steps of a FTC system

the following procedure must be executed in every time step.

Fig. 2. Virtual actuator for Takagi-Sugeno fuzzy systems

The first step is to compute the virtual actuator output de-

scribed by (15), to do so there is a need to use the current

control input, difference between a previously estimated state

of a possibly faulty system and a state of a nominal system,

also because current fault estimate is not available there is

a need to use f̊k = αkf̂k−1. As it was mentioned before,

using one time step delay (i.e. αk = I) in most cases should

be sufficient, otherwise one can use a linear approximation

of the faults (not recommended for abrupt faults) for example

αk = diag(α1
k, . . . , αs

k), αi
k = f̂

i

k−1/f̂
i

k−2, i = 1, . . . , s or

some other nonlinear methods.

Afterwards it is possible to find output of a possibly faulty

system achieved by using new control input (from virtual actu-

ator) and also find reference system state using nominal input

on (5). By doing so it is possible to compute estimate of the

state of a possibly faulty system by using (20). And finally

compute fault estimate by using (12).

4. Illustrative example

The selected non-linear system is based on the twin-rotor mul-

tiple input multiple output (MIMO) system (TRMS), being a

laboratory set-up developed by Feedback Instruments Limit-

ed [24] for control experiments. Due to its high non-linearity,

cross coupling between its two axes, and inaccessibility of

some its outputs and states for measurements, the system is of-

ten perceived as a challenging engineering problem. Extensive

research on modelling of such system can be found here [23]

and in the references therein. The TRMS as shown in Fig. 3 is

being driven by two d.c. motors. It has two propellers perpen-

dicular to each other and joined by a beam pivoted on its base,

so that it can rotate in such a way that its ends move on spher-

ical surfaces. The joined beam can be moved by changing the

input voltage of its motor, which controls the rotational speed

of the propellers. The system is equipped with a pendulum

counterweight fixed to the beam and it determines a stable

equilibrium position. Additionally the system is balanced in

such a way, that when the motors are switched off, the main

rotor end of beam is lowered. In certain aspects the behaviour

of the TRMS system resembles that of a helicopter [23]. For

Bull. Pol. Ac.: Tech. 59(1) 2011 97



Ł. Dziekan, M. Witczak, and J. Korbicz

example, there is a strong cross-coupling between the main

rotor (collective) and the tail rotor, like a helicopter. However,

the system is different from a helicopter in many ways, the

main differences are: location of pivot point (midway between

two rotors in TRMS vs main rotor head in helicopter), ver-

tical control (speed control of main rotor vs collective pitch

control), yaw control (tail rotor speed vs pitch angle of tail

rotor blades) and lastly, cyclical control (none vs directional

control).

Fig. 3. Aero-dynamical model of the Twin Rotor MIMO System

The mathematical model of the TRMS can be described by

a set of four non-linear differential equations with two linear

differential equations and four non-linear functions [24]. Some

of the parameters can be obtained from manual, whereas oth-

ers should be obtained by experimentations, e.g., inertia, mag-

nitudes of physical propeller, coefficients of friction and im-

pulse force. The inputs of the system are defined by the input

vector u = [uh, uv]T , where uh is the input voltage of the tail

motor and uv is the input voltage of the main motor. Whereas

the state vector is defined as x = [Ωh, αh, ωt, Ωv, αv, ωm]T ,

where Ωh is the angular velocity around the vertical axis, αh

is the azimuth angle of beam, ωt is the rotational velocity of

the tail rotor, Ωv is the angular velocity around the horizon-

tal axis, αv is the pitch angle of beam, ωm is the rotational

velocity of the main rotor. For the complete physical model

of such a system refer here [23, 24].

A normalized T-S model, which approximates the non-

linear TRMS system, is obtained by linearising system around

five operating points [25]. The system can be described in the

following way:





xk+1 =

5∑

i=1

hi(αh,k)[Aixk(t) + Bi(uk − ui) + Lifk]

yk = Cixk + di

(30)

The matrices Ai, Bi, Ci, ui and di (trend) are acquired by

linearising the initial system around five points chosen in the

operating range of the considered system, with the premise

variable wk = αh,k and membership functions as shown in

Fig. 6. Five local models guarantee good approximation of

the state of the real system by the T-S model in the operat-

ing range. The following numerical values, with the sampling

time 50 ms, were used:

A
1

=

26666666640.9812 −0.0105 0.1847 0 0 0

0 0.9657 0 0 0 0

0 0 0.8780 0 0 0

0 0.0152 −0.0254 0.9908 −0.1718 0

0 0.0004 0.1367 0.0498 0.9957 0

0.0495 0.0276 0.0047 0 0 1

3777777775 ,

d1 =

264 0

−0.9326

0

375 ,

A
2

=

26666666640.9814 −0.0103 0.1841 0 0.0004 0

0 0.9657 0 0 0 0

0 0 0.8780 0 0 0

0 0.0200 −0.0254 0.9908 −0.1718 0

0 0.0005 0.1367 0.0498 0.9957 0

0.0495 0.0274 0.0046 0 −0.0010 1

3777777775 ,

d2 =

264 0.1074

−0.9257

64.1737

375 ,

A
3

=

26666666640.9818 −0.0098 0.1830 0 0.0007 0

0 0.9657 0 0 0 0

0 0 0.8780 0 0 0

0 0.0405 −0.0254 0.9908 −0.1718 0

0 0.0010 0.1367 0.0498 0.9957 0

0.0495 0.0268 0.0045 −0.0001 −0.0020 1

3777777775 ,

d3 =

264 0.2146

−0.9133

127.7300

375 ,

A
4

=

26666666640.9826 −0.0090 0.1809 0 0.0010 0

0 0.9657 0 0 0 0

0 0 0.8780 0 0 0

0 0.0734 −0.0254 0.9908 −0.1717 0

0 0.0018 0.1367 0.0498 0.9957 0

0.0496 0.0256 0.0044 −0.0001 −0.0030 1

3777777775 ,

d4 =

264 0.3199

−0.8895

189.7399

375 ,

A
5

=

26666666640.9837 −0.0079 0.1774 0 0.0013 0

0 0.9657 0 0 0 0

0 0 0.8780 0 0 0

0 0.1126 −0.0254 0.9908 −0.1712 0

0 0.0028 0.1367 0.0498 0.9957 0

0.0496 0.0239 0.0043 −0.0001 −0.0039 1

3777777775 ,

d5 =

264 0.4211

−0.8501

249.3018

375 ,
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B1 =





0.0047 −0.0003

0 0.0491

0.0469 0

−0.0005 0.0004

0.0035 0

0.0001 0.0007





,

B2 =





0.0047 −0.0003

0 0.0491

0.0469 0

−0.0005 0.0005

0.0035 0

0.0001 0.0007





,

B3 =





0.0047 −0.0002

0 0.0491

0.0469 0

−0.0005 0.0010

0.0035 0

0.0001 0.0007





,

B4 =





0.0046 −0.0002

0 0.0491

0.0469 0

−0.0005 0.0018

0.0035 0

0.0001 0.0006





,

B5 =





0.0045 −0.0002

0 0.0491

0.0469 0

−0.0005 0.0028

0.0035 0

0.0001 0.0006





,

Li = Bi, ∀i∈{1,...,4},

C1 =




0 0 0 0 0 1

0 0 0 0 1 0

0 896.2360 0 0 0 0



 ,

C2 =




0 0 0 0 0 1

0 0 0 0 1 0

0 894.1477 0 0 0 0



 ,

C3 =




0 0 0 0 0 1

0 0 0 0 1 0

0 879.0008 0 0 0 0



 ,

C4 =




0 0 0 0 0 1

0 0 0 0 1 0

0 851.0135 0 0 0 0



 ,

C5 =




0 0 0 0 0 1

0 0 0 0 1 0

0 810.7468 0 0 0 0



 ,

u1 =

[
0

0

]
, u2 =

[
0

0.05

]
,

u3 =

[
0

0.1

]
, u4 =

[
0

0.15

]
,

u5 =

[
0

0.2

]
,

The reference input is defined by

uh = uk,1 = 0,

uv = uk,2 =






0, k < 4000

0.05, 4000 6 k < 7000

0.10, k > 7000

The actuators fault scenario, i.e. a decrease of the performance

of the two rotors, is described as follows

fk,1 =

{
0, k < 7000

0.007 sin(0.005k), k > 7000

fk,2 =

{
0, k < 5400

0.035 + 0.025 sin(0.01k), k > 5400

The regulator for FTC system was designed with the follow-

ing parameters γ = 0.05 and weighting matrices, based on

Bryson’s rule [26]

QR =
1

γ2

[
1 0

0 1

]
, RR =

1

0.04

[
1 0

0 1

]
.

Also due to the high transients of the systems in the initial

phase, the FTC system was not enabled until 4000th itera-

tion, but the control input were also at the neutral state (i.e.,

u = [0, 0]T ) at that time period.

Figure 4 presents the results achieved for the proposed

FTC strategy (with αk = I). As a result, Fig. 4 clearly shows

that the faults can be estimated with a very high accuracy

(especially the second fault estimator). The estimator for the

first fault presents some deviation of nominal value due to the

abrupt changes in the reference input and modelling errors in

the consequence of the high non-linearity of the system, par-

ticularly its high cross-coupling between the main rotor and

the tail rotor. But after about 250 samples, in both faultless

and faulty state, estimation achieves very high accuracy, even

though the fault is time variable.
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Fig. 4. Faults fk and their estimates

Fig. 5. Trajectories of uk and uf,k

Fig. 6. Outputs of the system yf,k with FTC control disabled and

enabled, also fuzzy sets used in Takagi-Sugeno model (lower right

figure)
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From Fig. 5 it can be observed that uf,k is close to uk

until the occurrence of the fault fk. After that time the control

strategy uf,k was changed. The only deviations from expect-

ed behaviour can be seen in the cases where the faults were

overestimated, due to the reasons stated above.

The final conclusion is that the FTC is stabilizing the sys-

tem with a high performance (Fig. 6), even in the presence

of the faults the original trajectories are unchanged. This is

because of the proposed control strategy for which xf,k con-

verges to xk and consequently zk = yf,k − yk converges

to zero. Whereas the system without FTC control deviates

from original trajectories quite badly. Especially interesting

is the fact that sometimes even small uncompensated fault,

as a fault of the tail motor, can lead to catastrophic failure,

which can be seen by the trajectories of the pitch angle of

beam αh.

5. Conclusions

In this paper, an active FTC strategy was proposed, which al-

lows for on-line reconfiguration of the control after the occur-

rence of actuator faults. This approach was developed in the

context of the Takagi-Sugeno fuzzy systems. The key contri-

bution of the proposed approach is an integrated FTC design

procedure of the fault identification and fault-tolerant control

schemes. The design procedure also allows including input

constraints into the FTC system. Fault identification is based

on the use of an observer. Once the fault have been identi-

fied, the FTC controller is implemented as a state feedback

controller. This controller is designed such that it can stabi-

lize the faulty plant using Lyapunov theory and LMIs. The

designed controller is called a virtual actuator, because it is

a block which takes the signal for the broken actuators as

input and produces the intended effects on the output of the

plant by using the remaining actuators. Also design procedure

for the regulator for T-S fuzzy systems was shown, that allows

to minimize objective function similar to the LQR controller

for the linear systems. A twin-rotor based illustrative example

for the non-linear system described by T-S fuzzy models is

provided that shows the effectiveness of the proposed FTC

approach.
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