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Abstract. This paper introduces a new method for an adaptive synthesis of a wavelet transform using a fast neural network with a topology

based on the lattice structure. The lattice structure and the orthogonal lattice structure are presented and their properties are discussed.

A novel method for unsupervised training of the neural network is introduced. The proposed approach is tested by synthesizing new wavelets

with an expected energy distribution between low- and high-pass filters. Energy compaction of the proposed method and Daubechies wavelets

is compared. Tests are performed using sound and image signals.
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1. Introduction

A wavelet transform plays an important role in a signal analy-

sis, compression and processing. During last years it has ac-

quired a lot of attention from the researchers and it seems

that is has become more popular than other linear transforms

like DFT, DHT or DCT. Unlike these transforms Discrete

Wavelet Transform (DWT) doesn’t have one strictly defined

set of basis functions. So far many wavelets have been de-

signed, each with its unique properties. It is important that

the chosen wavelet basis function precisely corresponds to

characteristics of analysed signal. Therefore, it is necessary

to develop methods for an adaptive synthesis of a wavelet

best suitable for particular task.

Some attempts in that field have already been made. In [1]

parametrization of Daubechies wavelets was proposed. This

allowed to adjust wavelet’s properties by changing the parame-

ters. In [2] and [3] lattice structure for designing two-channel

perfect reconstruction filters was presented. This approach was

based on representing a filter bank in form of parametrized lat-

tice structure. Parameters were optimized using well-known

numerical methods (e.g. quasi-Newton method) and the re-

sulting values, together with the lattice structure, defined the

filter.

This paper presents a novel approach to adaptive synthe-

sis of a wavelet transform. Generalized lattice structure and

orthogonal lattice structure are presented. Fast neural network

with topology based on this structures is discussed. Network’s

weights correspond to lattice structure parameters and they are

modified during learning process leading to optimization of

defined objective function. Main contribution of this paper is

demonstration of effective method for unsupervised training

of such multilayer network using backpropagation algorithm.

2. Lattice structure

Wavelet synthesis method presented in this paper is based

on lattice structure introduced and described in [4]. Lattice

structure is based on two-point base operations
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where k stands for the index of operation (see Fig. 1a). Such

two-point base operation can be written in form of a matrix

equation
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Let us assume that Dk is invertible, i.e. condition

wk
11w

k
22 − wk

12w
k
21 6= 0 (3)

holds true. Hence there exists inverse transformation D−1

k

such that

DkD−1

k = I, (4)

where I is the identity matrix (Fig. 1b).

Forward lattice structure is composed of K/2 stages, each

containing Dk operations repeated N/2 times, where K and

N are the lengths of the filter’s impulse response and of

a processed signal respectively (see Fig. 1c). On each stage of

the lattice structure, elements of the signal are processed in

pairs by Dk base operations. After each stage base operations

are shifted down by one and the lower input of the last base

operation in the current stage is connected to the upper output

of the first base operation in the preceding stage (t1 and t2 in

Fig. 1c).

Inverse lattice structure is created by reversing forward

lattice structure and replacing each Dk operation with its in-

verse operation D−1

k . Cyclic shift is performed in the opposite

direction (Fig. 1d).

The presented lattice structure is used to calculate DWT.

Upper outputs (b1 in Fig. 1a) of base operations in last layer

is referred to as the “low-pass outputs” and lower outputs (b2

in Fig. 1a) will be referred to as the “high-pass outputs”. In

Fig. 1c and 1d all Dk operations within one layer are identi-

cal, however it is possible to design lattice structure in which

operations within one layer are different.

∗e-mail: jan.stolarek@p.lodz.pl

9



J. Stolarek

Fig. 1. a) forward base opertaion, b) inverse base opertaion, c) for-

ward lattice structure for K = 6, N = 8, d) inverse lattice structure

for K = 6, N = 8

3. Orthogonal lattice structure

Let us assume that Dk transform is orthogonal. By definition

scalar product of Dk basis functions (i.e. rows or columns of

Dk transform) equals zero:

wk
11w

k
21 + wk

12w
k
22 = 0. (5)

Therefore

Dk · DT
k = D, (6)

where DT
k is transpose of Dk matrix and D is a diagonal

matrix (entries outside the main diagonal are all zero). This

means, that although orthogonal Dk transform can be invert-

ed by simply transposing the transformation matrix, it doesn’t

preserve signal’s energy. Energy is preserved however, when

each of the basis functions (each row or column of Dk matrix)

has unit norm, which implies that

Dk · DT
k = I, (7)

where I is the identity matrix. Such transform is called or-

thonormal.

Equation (5) is explicitly satisfied when:

• w21 = w12 and w22 = −w11. This implies that transform

is symmetric:

Sk = ST
k =
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If condition

w2
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holds true, then

Sk = ST
k = S−1

k . (10)

• w21 = −w12 and w22 = w11. This implies that transform

is asymmetric:
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]
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If Eq. (9) holds true, then

FT
k = F−1

k . (12)

Matrices given by Eqs. (8) and (11) have different proper-

ties and not every transform can be represented in form of both

of these matrices. Let us consider Haar transform [5]. It is

a 2-tap transform, therefore it can be performed using one

layer lattice structure. Haar low-pass filter is given by coeffi-

cients
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and the high-pass filter is given by co-

efficients
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. Therefore Dk transform correspond-

ing to Haar transform is given by matrix
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which is equivalent to Eq. (8) with w11 = w12 =

√
2

2
. We

notice that the Haar transform can’t be represented in form of

Fk matrix (Eq. (11)).

4. Fast neural network for wavelet synthesis

A fast neural network is used for determination of optimal

lattice structure parameters, leading to synthesis of a wavelet.

In this approach every Dk base operation is replaced by a pair

of linear neurons, each of them with two inputs and one

output, which guarantees a straightforward relation between

the weights in a neural network and coefficients of the lat-

tice structure1. All neurons within one layer have identical

weights. To represent orthogonal lattice structure, orthogonal

neural network [6] must be used. In such case each Dk base

operation is represented using Basic Orthogonal Operation

Neuron (BOON) corresponding to Eq. (8) or (11).

4.1. Training methods. In order to determine lattice struc-

ture coefficients using a neural network, objective function

must be defined. This function is minimized during learning

process and it shows how well network realizes transform of

a signal.

First approach is the supervised teaching. In this case for

each training pattern expected output value is known, which

means that transform the network is supposed to learn must be

1In further text term “neuron” refers to a pair of linear neurons representing Dk base oparation.
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known a priori. Objective function minimized in the learning

process is a standard square error function [7]:

E =
1

2

N
∑

i=1

(di − yi)
2, (14)

where N denotes number of outputs from the network, yi de-

notes signal value on i-th output and di denotes expected value

for i-th output. This method however doesn’t lead to synthe-

sis of any new transforms and therefore it is only a proof of

concept, that the network is able to learn a wavelet transform.

It has been shown [8] that network with topology based on

proposed lattice structure is able to learn Daubechies wavelets.

To synthesize a new wavelet unsupervised teaching must

be used, since expected output values for patterns in a train-

ing set are unknown. In such a case square error, shown in

Eq. (14), can’t be used as an objective function. Therefore

a new objective function must be designed. Following criteria

for teaching a single neuron are proposed:

• each neuron preserves energy,

• energy ratio between the outputs of each neuron is fixed to

some desired value.

Error function for a single neuron is given by formula

E =
1

2

2
∑

i=1

(d2
i − b2

i )
2, (15)

where b2
i is the energy of i-th output of a neuron and d2

i is the

expected energy on that output. Therefore expression (d2
i −b2

i )
is interpretated as error on i-th output. Given expected energy

proportions h1 and h2, where h1 + h2 = 1, expected output

values are determined using formula

d2
i = hi · (a2

1 + a2
2), (16)

where i ∈ {1, 2}, a1 and a2 are neuron’s inputs (see Fig. 1a).

Objective function for a single layer is given by formula

E =
1

2

N/2
∑

j=1

2
∑

i=1

(d2
ji − b2

ji)
2, (17)

where j is the index of neuron in a layer, b2
ji is the ener-

gy of i–th output of a j-th neuron and d2
ji is the expected

energy on that output. Expected energies dji are calculated

independently for each neuron, based on its actual inputs.

The above teaching method is suitable for one–layer net-

work. The problem arises when multilayer network must be

trained. One of the solutions to this problem is forward prop-

agation of input signal through the network and then training

layers independently with different energy proportion defined

for each layer [9]. In this paper defining expected energy

proportion only for the output layer and teaching the net-

work using backpropagation algorithm is demonstrated. For

a straightforward determination of objective function’s gradi-

ent in respect to the weights Signal Flow Graphs (SFG) are

used [7, 10]. Due to non-standard form of objective function,

adjustment of backpropagation algorithm is required. Since

each output of the network is raised to the power of two before

comparing it to the expected value, it is necessary to multiply

error value backpropagated for each output by −2bji [7, 10].

Weights modification is performed according to the steep-

est descent algorithm:

wn+1 = wn − η∇E(w), (18)

where wn is weights vector in n-th iteration, η is the learn-

ing step and ∇E(w) is error function’s gradient calculated in

respect to network’s weights. However, this method doesn’t

preserve norm of weights, which is not acceptable in case

of orthonormal transform, since the preservation of energy

requires that weight vector for each base operation has unit

norm. Therefore, for preservation of energy, weights must be

normalized after each update.

It is important to notice, that it is not possible to find

such weights of the neuron, that it produces expected ener-

gy proportions for each input signal. It is however possible

to determine such weights that, for a given class of signals,

energy proportions are true in a statistical sense. Therefore, it

is important, that the network is trained using signals of some

particular classes, e.g. image or sound.

5. Experimental validation

5.1. Network and dataset preparation. Neural network

with topology based on lattice structure and orthonormal sym-

metric base operations was designed for experiments. Tests

were carried out using two different classes of signals: sound

and image. For each class two different data sets were pre-

pared. One set – containing 400 patterns – was used to train

the network, the other – containing 1000 patterns – was used

for testing. Image data was taken from rows of a grayscale

images. Sound data was taken from songs containing vocals,

drums, two guitars and a bass guitar. Each pattern in a set

was a 64-element vector with its coordinates scaled to fit into

[0, 1] range. Network’s initial weights were chosen randomly

from range [−1, 1] and then normalized, so each row of base

operation would have unit length.

Experiments were carried out using 4-tap, 6-tap and

8-tap transforms (two-, three-, and four-layer networks respec-

tively). Network was trained using off-line teaching [7]. Opti-

mal values of parameters (e.g. number of teaching epochs or

learning step) may differ depending on number of layers in

the network and desired energy distribution.

5.2. Results and discussion. Tables 1 and 2 present the re-

sults. First column shows expected percentage of input en-

ergy located on low-pass outputs of the network. Remaining

amount of energy is located on high-pass outputs of network,

summing up to give a total of 100%. Remaining columns

show testing result obtained on both training and testing sets,

expressed as actual percentage of energy located on low-pass

outputs of network in a particular data set. Seven different

energy distributions were tested. Presented results are average

values obtained from 10 independent tests. Tables present also

energy distribution for Daubechies wavelets.
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Table 1

Results of training performed on image data

Expected energy

of low-pass outputs

Actual results

4-tap transform 6-tap transform 8-tap transform

training testing training testing training testing

0% 1.82% 3.1% 1.71% 3.8% 1.67% 3.91%

10% 8.14% 9.69% 7.95% 9.46% 8.39% 9.5%

30% 29.32% 29.43% 29.05% 30.48% 29.38% 29.01%

50% 49.99% 50.74% 49.9% 49.95% 49.99% 49.80%

70% 71.21% 71.21% 70.77% 71.23% 70.86% 69.87%

90% 91.6% 92.92% 91.77% 90.43% 91.87% 89.93%

100% 97.29% 98.7% 98.33% 97.09% 98.28% 95.71%

Daubechies 98.43% 97.5% 98.43% 97.37% 98.44% 97.31%

Table 2

Results of training performed on sound data

Expected energy

of low-pass outputs

Actual results

4-tap transform 6-tap transform 8-tap transform

training testing training testing training testing

0% 4.71% 4.07% 4.7% 4.14% 4.64% 4.1%

10% 6.04% 5.95% 6.01% 5.73% 5.44% 5.01%

30% 27.27% 28.21% 27.23% 28.15% 27.47% 26.81%

50% 49.62% 50.9% 50.03% 50.45% 50.88% 50.88%

70% 72.85% 74.08% 73.06% 72.67% 72.51% 73.93%

90% 94.18% 94.27% 94.27% 94.59% 94.6% 94.95%

100% 95.39% 95.86% 95.4% 95.84% 95.43% 95.88%

Daubechies 95.11% 96.34% 95.14% 96.23% 95.3% 96.06%

Results show, that proposed unsupervised training method

for neural network based on lattice structure is effective. There

is no problem with achieving equal energy distribution, with

error less than 1%. In case of image data other obtained results

are mostly within 2% from expected value. In case of sound,

the results are not so accurate. If expected energy on low-pass

outputs is less then 50%, the network has a tendency to al-

locate less energy to these outputs than necessary. Opposite

tendency can be noticed when expected energy is greater than

50%. In case of both sound and image it is impossible to allo-

cate all of signal’s energy only to low- or high-pass outputs.

Results also show, that proposed method performs similary

to Daubechies wavelets in terms of energy compaction. In

most cases Daubechies method outperforms presented neural

network approach, but in a few cases neural network offers

a slight improvement.

6. Conclusions

In this paper a new method for unsupervised training of neural

network based on the orthogonal lattice structure was present-

ed. A new objective function for estimating network’s error

was defined and an appropriate adjustment of the backprop-

agation algorithm was discussed. It was demonstrated that

proposed method can be effectively used for the adaptive syn-

thesis of a new wavelet with the desired energy distribution

for a signal of a particular class, which is the most important

contribution of this paper. Presented neural network approach

was compared with Daubechies wavelets in terms of energy

compaction. Results have shown that Daubechies wavelets in

general perform slightly better, however in some cases they

can be outperformed by presented adaptive method.

It was shown, that symmetric and asymmetric orthogonal

base operations have different properties. Therefore within the

further development of proposed orthogonal lattice structure

it is necessary to determine relation between type of base

operation and the class of orthogonal wavelet transforms pos-

sible to synthesize. Possibility of applying presented method

to tasks other than signal compression should be investigated

as well.
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