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Numerical methods of solving equations of hydrodynamics

from perspectives of the code FLASH
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Abstract. In this paper we review numerical methods for hydrodynamic equations. Internal complexity make numerical solutions of these

equations a formidable task. We present results of advanced numerical simulations for a complex system with a use of a publicly available

code, FLASH. These results proof that the numerical methods cope very well with this task.
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1. Introduction

A variety of physical phenomena are described by fluid equa-

tions. Both soil, water, air and fire on some scales behave

as fluids [1]. The mathematical description of fluid motion

makes use of partial differential (e.g., the Boltzmann) equa-

tions which propagate the fluid variables in time. A simple

mathematical tool to model a fluid is hydrodynamics (HD).

Like solutions of nonlinear equations perturbations described

by HD equations may result in large gradients which are dif-

ficult for any treatment. Finite-difference numerical methods

are one of several different techniques available to solve the

HD equations. They are simple to implement, easily adaptable

to complex geometries, and well suited to handle nonlinear

terms and large gradients. To represent adequately these gradi-

ents most numerical schemes were based on artificial viscosity

which was originally introduced by Neumann and Richtmey-

er [2], and later used by a number of authors [3, 4]. The

use of standard numerical schemes of second-order accuracy

or higher (e.g., the Lax-Wendroff method) generates spuri-

ous oscillations which destroy monotonicity of the solution.

Lower-order schemes [5] are generally free of oscillations, but

they are too dissipative to lead to acceptable results. There-

fore, a development of more advanced schemes, which would

adequately represent the large gradient profiles, was required.

Up to now many numerical schemes were developed for

HD equations facing and trying to overcome the above report-

ed problems. The aim of this paper is to review numerical

methods for solving HD equations. We pay particular atten-

tion to those methods which were recently implemented in

the code FLASH [6], described briefly in Sec. 4. HD equa-

tions are presented in Sec. 2. Mathematical properties of HD

equations are discussed in Sec. 2. Finite-volume numerical

methods for Euler equations are discussed in Sec. 3. Results

of numerical simulations of waves in a strongly stratified at-

mosphere are presented in Sec. 4. This paper is completed by

summary of the main results.

2. Mathematical properties of hydrodynamic

equations

Hydrodynamic systems are described by Navier-Stokes equa-

tions which were derived in the first half of the nineteenth cen-

tury independently by M. Navier and G. Stokes. In Cartesian

coordinates, the Navier-Stokes equations for two-dimensional

flows (with z being the invariable coordinate) can be written

in the conservation form as










̺

̺u

̺v

E











,t

+











̺u

̺u2 − τxx

̺uv − τxy

(E + p)u − uτxx − vτxy + hx











,x

+











̺v

̺vu − τyx

̺v2 − τyy

(E + p)v − uτyx − vτyy + hy











,y

= S.

(1)

Here S is the source term which may contain external

forces like gravity, V = [u, v, 0] denotes velocity, and E is

the total energy density such that the gas pressure p is

p = (γ − 1)

[

E − 1

2
̺(u2 + v2)

]

. (2)

The specific heats ratio γ = cp/cv is such that γ =
(m+2)/m, where m is the number of internal degrees of free-

dom of the fluid molecules, cp and cv are the specific heats at

constant pressure and volume, respectively. For a monoatom-

ic fluid (diatomic molecules) m = 3 (m = 5), leading to

γ = 5/3 (γ = 1.4). Heat transfer by thermal conduction is

proportional to the local temperature T gradient

hx = −κT,x, hy = −κT,y (3)

with κ being the thermal conductivity coefficient. Partial

derivatives with respect to time t and spatial coordinates x, y
are denoted by ,t, ,x, and ,y, respectively.
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In the late seventeenth century Isaac Newton discovered

that shear-stress τ in a fluid is proportional to velocity gra-

dients. Such fluids are called Newtonian fluids in opposite to

non-Newtonian fluids (such as blood) for which this depen-

dence does not exist. For Newtonian fluids Stokes showed that

the normal (τxx, τyy) and shear (τxy, τyx) stresses are

τxx = λ∇ · v + 2µu,x, τyy = λ∇ · v + 2µv,y,

τxy = µ(u,y + v,x), τyx = τxy .
(4)

Here µ is the molecular viscosity coefficient and λ is the

bulk viscosity coefficient. The normal stresses are related to

the time rate of change of volume of a moving fluid element

i.e., ∇ · v, whereas the shear stresses are associated with the

time rate of change of the shearing deformation of the fluid

element. Stokes made the hypothesis that λ = −2µ/3. This

relation is frequently used but is not definitely confirmed.

Quirk [7] assumed that for gases the viscosity coefficient µ
varies according to Sutherland’s law,

µ = µ0

(

T

T0

)3/2
T0 + 110

T + 110
. (5)

Here normal conditions are denoted by the subscript 0.

We discuss now the one-dimensional (1D) case by setting

v = 0 and ∂/∂y = 0 in Eq. (1). It is convenient to introduce

the conservative state vector

q(x, t) =







q1

q2

q3






=







̺(x, t)

̺u(x, t)

E(x, t)






(6)

and the flux

f(q) =









̺u

̺u2 + p

u(E + p)









=

=















q2

1

2
(3 − γ)

q2
2

q1
+ (γ − 1)q3

q2

q1

(

γq3 −
γ − 1

2

q2
2

q1

)















.

(7)

Then, by dropping all non-ideal (τ = h = 0) and source

(S = 0) terms in Eq. (1) we get Euler equations

q,t + f(q),x = 0. (8)

We rewrite these equations in the quasi-linear form

q,t + Acq,x = 0, (9)

where Ac is the Jacobian matrix

Ac = f,q =

=









0 1 0
1
2 (γ − 3)

q2
2

q2
1

(3 − γ) q2

q1
γ − 1

−γ q2q3

q2
1

+ (γ − 1)
q3
2

q3
1

γ q3

q1
− 3

2 (γ − 1)
q2
2

q2
1

γ q2

q1









=

=







0 1 0
1
2 (γ − 3)u2 (3 − γ)u γ − 1

u[(γ − 1)u2

2 − H ] H − (γ − 1)u2 γu






.

(10)

Here

H =
E + p

̺
(11)

is the total specific enthalpy and E is the total energy density.

We can express Euler equations in its non-conservative

form. To do so we specify the non-conservative state vector,

w, such as

w =







w1

w2

w3






=







̺

u

p






. (12)

We rewrite Euler equations in their quasi-linear form

w,t + Anw,x = 0, (13)

where the non-conservative Jacobian is

An =











u ̺ 0

0 u
1

̺

0 ̺c2
s u











.

The eigenvalue problem for Ac or An is

Amri
m = λiri

m, m = c, n, i = 1, 2, 3. (14)

Here ri
m is the right eigenvector and λi denotes the cor-

responding eigenvalue. We present the former for the case of

the conservative form of Euler equations for which we have

the diagonalizable equation

R−1
c AcRc = Λ (15)

with the eigenvector matrix Rc whose columns consist of the

right eigenvectors, viz.

Rc = (r1
c , r

2
c , r

3
c) =









1 1 1

u − cs u u + cs

H − ucs
u2

2
H + ucs









. (16)

Here a sound speed cs =
√

γp/̺ and the matrix Λ is

Λ =







λ1 0 0

0 λ2 0

0 0 λ3






=







u − cs 0 0

0 u 0

0 0 u + cs






. (17)
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The full set of eigenvectors for An is

Rn = (r1
n, r2

n, r3
n) =







1 1 1

−cs/̺ 0 cs/̺

c2
s 0 c2

s






. (18)

Note that the right eigenvectors of Ac and An differs.

The eigenvalues of Ac and An are identical and they are

λ1(q) =
q2

q1
− cs,

λ2(q) =
q2

q1
,

λ3(q) =
q2

q1
+ cs.

(19)

As these eigenvalues are real and they correspond to a set

of linearly independent eigenvectors r1
m, r2

m, r3
m, m = c, n,

we conclude that Euler equations are hyperbolic. The above

eigenvalues are associated with the fact that information from

any point in the flow propagates according to the characteristic

equations
dx

dt
= u, (20)

dx

dt
= u ± cs. (21)

We define now the entropy s(x, t) as

s = cvln

(

p

̺γ

)

+ s0, (22)

where s0 is a constant. Then, Eq. (20) defines a trajectory

x = x(t), along which the entropy s is constant. As a result,

evolution of the entropy is governed by the advection equation

s,t + us,x = 0. (23)

Following Toro [8] we define now generalized Riemann

invariants as relations which are satisfied across the wave,

dw1

ri
n1

=
dw2

ri
n2

=
dw3

ri
n3

, i = 1, 2, 3. (24)

Here ri
nj, j = 1, 2, 3, is the j-th component of the i-th

right eigenvector of the Jacobian An.

Equation (21) defines then the Riemann invariants

R± = u ±
∫

γdp

̺cs
, (25)

which are constant along the trajectories x = x(t) defined

by Eq. (21). These trajectories follow forward and backward

sound waves in the frame moving with the speed u.

We find that

∂λ2

∂q
= λ2

,q =

(

− q2

q2
1

,
1

q1
, 0

)

. (26)

As

λ2
,q · r2

c = 0, (27)

we infer that the right eigenvector r2
c is linearly degenerate.

As a result, with r2
c is not associated neither shocks nor rar-

efaction waves but contact discontinuities across which there

is a jump in the mass density but the gas pressure and flow

velocity are continuous [8]. The other eigenvalues, r1
c and

r3
c , might be either shocks or rarefaction waves. The sce-

nario depends on a choice of the left, ql, and right, qr, states

in a discontinuous representation of q. For the shock wave

(rarefaction wave) all of the state variables are discontinuous

(continuous).

2.1. Rankine-Hugoniot condition. We consider now a dis-

continuity in a solution of Eq. (8) which propagates with

the speed c. This speed depends on the jump in the solu-

tion q(x, t) across the discontinuity. Suppose a discontinuity

moves from left to right; at time t = t1 (t = t2) the dis-

continuity is at the spatial position x = x1 (x = x2), where

x1 < x2 and t1 < t2. Let the values of q be given as ql on

the left hand side of the discontinuity and as qr on the right

hand side of it. We integrate Eq. (8) to get

(ql − qr)(x2 − x1) = [f(ql) − f(qr)](t2 − t1). (28)

In the limits x2 → x1 and t2 → t1 we have

c[q] = [f ] (29)

with c = (x2 − x1)/(t2 − t1) and

[q] = qr − ql, [f ] = f(qr) − f(ql). (30)

Equation (29) is called the Rankine-Hugoniot jump con-

dition which can be applied to shocks and contact disconti-

nuities.

For a scalar equation we get

c =
f(qr) − f(ql)

qr − ql
. (31)

Hence we infer that any discontinuity between ql and qr is

allowed, and it propagates with the speed c that is expressed

by the above formula. For the case of a system of equations,

only selected jumps in q are allowed, namely those for which

vectors [q] and [f ] are parallel one to each other. For a system

of linear equations with the flux f(q) = Aq, from Eq. (29)

we obtain

c[q] = A[q]. (32)

Hence we conclude that only jumps are allowed, for which

[q] and c are respectively an eigenvector and the associated

eigenvalue of the matrix A.

2.2. Riemann problem for Euler equations. The Riemann

problem corresponds to the Cauchy’s problem with a piece-

wise constant initial data

q(x, t = 0) =

{

ql for x < 0,

qr for x > 0.
(33)

Here, ql and qr are constants which denote the left and

right states, respectively. Such two adjacent arbitrary states

will evolve into a set of left- and right-going shocks, rarefac-

tions and an intermediate wave.

For Euler equations we can always solve exactly or ap-

proximately the Riemann problem [8]. The solution consists

of waves traveling with finite velocities. These waves may

either be discontinuous shock waves or smooth rarefaction
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waves and a contact wave laying between these waves. The

procedure for constructing the solution of a Riemann problem

is called a Riemann solver. In the Riemann problem, we look

for states q∗
l and q∗

r and speeds c1 < c2 < c3 such that the

Rankine-Hugoniot condition of Eq. (29) is satisfied

c1(q
∗

l − ql) = f(q∗

l ) − f(ql), (34)

c2(q
∗

r − q∗

l ) = f(q∗

r ) − f(q∗

l ), (35)

c3(qr − q∗

r ) = f(qr) − f(q∗

r ). (36)

According to LeVeque [9] we have c2 = u(q∗

l ) = u(q∗
r ),

where u is the flow speed. As a result of that the intermediate

wave, which is termed a contact wave, propagates with the

flow speed λ2 = u. Moreover, as p(q∗
l ) = p(q∗

r ) the pressure

is continuous across this wave, while mass density experi-

ences a jump there, hence termed a ’contact wave’. Note that

across shocks all dependent variables change discontinuously.

The left most wave is a shock if the entropy condition is satis-

fied λ1(ql) > c1 > λ1(q
∗

l ). Otherwise, this jump would be a

rarefaction wave. Analogously, the right most wave is a shock

if λ3(q
∗
r ) > c3 > λ3(qr). Otherwise, this wave would be

a rarefaction wave.

We display schematically in the x- and t-coordinates a so-

lution of the Riemann problem in Fig. 1. Here the left wave

corresponds to a rarefaction wave, the intermediate wave is

a contact wave and the right wave in a shock. In general,

the left and right waves are combination of shocks and rar-

efaction waves, while the middle wave is always a contact

wave. We can obtain a general solution involving these waves

from a nonlinear algebraic equation [8]. This equation can

be solved by any iterative method. As this is clearly a com-

putationally expensive task, approximate methods are often

required. These methods are described in the following part

of the paper.

Fig. 1. Riemann fan for the one-dimensional Euler equations

HLL solver. Harten, Lax, and van Leer [10] devised a simple

approximate Riemann solver which is commonly called HLL.

In this solver the contact wave is removed from the system

and the solution is approximated by two waves which prop-

agate with their speeds c− and c+ such that they correspond

to the minimum and maximum characteristic speeds of the

system [11]. Strengths of these waves are

∆q1 = q∗ − ql, ∆q2 = qr − q∗. (37)

We choose the middle state, q∗, to satisfy the conservation

constraint,

(c+ − c−)q∗ = c+qr − c−ql − (f(qr) − f(ql)). (38)

Hence we obtain the intermediate state

q∗ =
1

c+ − c−
[c+qr − c−ql − (f(qr) − f(ql))]. (39)

As the Euler equations evolve three distinctive waves, with

its speeds given by Eq. (19), obviously the HLL Riemann

solver suffers from a drawback being the solver diffusive and a

more appropriate solver is required. Although the HLL solver

is known to be very diffusive, it provides robustness of nu-

merical solutions as the solver always maintains positive states

of density and pressures, especially in strong rarefaction re-

gions. A solver which includes the intermediate wave is called

HLLC. The details of this solver can be found in Toro [8].

In the following part of the paper we describe a very popular

solver which was developed by Roe [12].

Roe solver. In the Riemann problem of Roe [12], we can use

the quasi-linear system of Eq. (9). Roe [12] proposed to intro-

duce an average Jacobian A, which approximates the Jacobian

A = f,q. The average Jacobian (called also the Roe matrix)

is such that for any given left and right pair of states (ql,qr)
the U property is satisfied:

(i) A is a linear mapping from the vector space q to the

vector space f ;

(ii) A(ql,qr) → f,q as ql and qr → q;

(iii) A(ql,qr) has real eigenvalues and a complete set of

linearly independent eigenvectors;

(iv) A(qr − ql) = fr − fl for any ql and qr.

In the original Roe scheme, the average state q that was

used to linearize the problem, is not (ql + qr)/2. Instead, it

is taken such as the property (iv) is satisfied. Such averaging

leads to mass density as

̺ =
√

̺l̺r. (40)

The remnant variables (V, E), which are symbolically

denoted here by φ, are averaged as [13]

φ =

√
̺lφl +

√
̺rφr√

̺l +
√

̺r
. (41)

Once all the averaged variables are obtained, the linearized

Riemann problem is considered at each interface. The ex-

act solution of this approximate problem can be expressed in

terms of right eigenvector rm of A as

[q] =

3
∑

m=1

αmrm. (42)

We determine the coefficient αm by multiplying the above

equation by each left eigenvector lj. With a use of

ljrm = δjm, (43)

we get

αm = lm[q]. (44)

According to property (iv), with a use of Eq. (42) we get

the flux increment, [f ], expressed as a product of [q] and the

corresponding eigenvalues λm, viz.

[f ] =

q
∑

m=1

αmλmrm. (45)
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Einfeld et al. [14] and Donat and Marquina [15] have

pointed out that linearized Riemann solvers may fail in some

extreme situations such as, for instance, in the case of strong

rarefactions or shocks. Then mass densities or pressures can

occasionally acquire negative values.

A relaxation solver.Jin and Xin [16] in their relaxation

scheme replaced Eq. (8) by the coupled equations,

q,t + v,x = 0, (46)

v,t + B2q,x =
1

τ
(f(q) − v). (47)

Here q, v ∈ Rq and B2 ∈ Rq×q is a positive definite

matrix. In the original scheme this matrix was chosen to be

a diagonal matrix with positive diagonal elements [16]. The

relaxation time is denoted by τ > 0.

We consider now the condition

|λ| ≤ bmax, (48)

where λ is an eigenvalue of the Jacobian matrix f,q and

bmax = maxm{bm} is the spectral radius of B which cor-

responds to positive eigenvalues of B,

bm > 0, m = 1, 2, 3. (49)

Now, as τ → 0 from Eq. (47) we get

v → f(q) (50)

if Eq. (48) is satisfied.

We advance Eqs. (46) and (47) with a use of a fractional

step method [17]. First, we advance over time step ∆t the

homogenous equations

q,t + v,x = 0, (51)

v,t + B2q,x = 0. (52)

This step leads to q∗ and v∗ which we update to qn+1

and vn+1 by solving

q,t = 0, (53)

v,t =
1

τ
(f(q) − v). (54)

From Eq. (53) we have

qn+1 = q∗. (55)

We can treat Eq. (54) implicitly

vn+1 = f(qn+1) + e−∆t/τ [v∗ − f(qn+1)]. (56)

In the limit of τ → 0 we simplify this expression to

vn+1 = f(qn+1). (57)

In summary, the relaxation scheme consists of solving

Eq. (51) with the use of Eq. (57). An approximate Riemann

solver is defined then as follows. Given values ql and qr we

compute vl = f(ql) and vr = f(qr) and then solve the Rie-

mann problem for Eq. (46) with the data [18]
{

ql ,

f(ql) ,

{

qr ,

f(qr) .
(58)

3. Finite-volume numerical methods

For physically motivated equations, it is important to insure

that a numerical method satisfies conservation of the physical

quantities such as mass, momentum, and energy. Therefore,

it is often advisable to use a finite-volume method in which

qn
i is considered as an approximation to the average value

of q(x, t) over a grid cell rather than a pointwise value of q.

This average value is the integral of q over the cell divided by

its volume. A finite-volume scheme is based on the discrete

equations which are constructed by expressing the integral

conservation law on a discrete set of control volumes. The

spatial derivative terms are expressed as a surface integral of

fluxes which are approximated with a use of solutions at two

adjacent finite-volumes. We approximate the state vector q by

its average value over the i-th numerical cell at a discrete time

tn = n∆t as, for the case of 1D,

qn
i =

1

∆xi

xi+1/2
∫

xi−1/2

q(x, tn) dx. (59)

Here ∆xi = xi+1/2 − xi−1/2, the index i corresponds to the

cell center and i − 1/2 (i + 1/2) to its left (right) interface.

We consider Eq. (8). The integral form of this equation,

applied to the numerical cell of index i, over a single time-step

dt is

xi−1/2+∆xi
∫

xi−1/2

[q(x, tn+1) − q(x, tn)]dx =

tn+1
∫

tn

[f(q(xi−1/2, t)) − f(q(xi−1/2 + ∆xi, t))]dt.

(60)

Hence, dividing by ∆xi and using Eq. (59) we get

qn+1
i = qn

i − ∆t
f

n

i+1/2 − f
n

i−1/2

∆xi
. (61)

Here f
n

i±1/2 is an approximation to the average flux

f
n

i±1/2 =
1

∆t

tn+1
∫

tn

f(q(xi±1/2, t))dt. (62)

From the above discussion it follows that finite-volume

methods mimic conservational properties of the evolution

equations. Henceforth these methods are reviewed in this pa-

per. For simplicity reasons, we use qn
i instead of qn

i .

3.1. Von Neumann stability analysis. In the numerical

schemes, there are typically some restrictions on the time-

step ∆t and the spatial grid size ∆x. We explain this for the

advection equation

q,t + cq,x = 0. (63)

Although this equations consists an oversimplified version

of the Euler equations the idea of studying stability of a nu-

merical scheme remains same for the latter. We discretize the
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advection equation by a numerical scheme with a use of a uni-

form grid. Temporal and spatial derivatives are approximated

by a forward (in time) Euler scheme,

q,t|i,n =
qn+1
i − qn

i

∆t
+ O(∆t), (64)

and a centered (in space) Euler scheme

q,x|i,n =
qn
i+1 − qn

i−1

2∆x
+ O(∆x2). (65)

Substituting (64) and (65) into (63), we obtain a forward

time, centered space discrete representation

qn+1
i − qn

i

∆t
+ c

qn
i+1 − qn

i−1

2∆x
= 0. (66)

To check whether this scheme is stable we introduce a Fourier

mode

qn
i = Anejki∆x, (67)

where j2 = −1, k is a wave vector and A = A(k) is called the

amplification factor which in general is a complex function

of wavenumber k. Note that a difference equation is called

stable in the von Neumann sense if

|A(k)| ≤ 1 (68)

for some k [2]. To find A(k) we substitute (67) into (66).

Dividing by An, we get

A(k) = 1 − j
c∆t

∆x
sin (k∆x). (69)

Hence, we get that for all k

|A(k)| > 1. (70)

As there is no such ∆t which would satisfy stability con-

dition (68) we infer that the discretization of Eq. (66) is un-

conditionally unstable and therefore it is useless in practice.

Stable schemes can be easily constructed. In the following part

of the paper we present examples of such stable schemes.

3.2. Godunov-type numerical schemes. In the original Go-

dunov [5] approach, the upwind finite-volume flow solver was

implemented and the solution was considered to be piecewise

constant over each grid cell at a fixed time, i. e.

q(x) = qi, xi−1/2 < x < xi+1/2. (71)

As a result, discontinuities are placed at cell interfaces

xi±1/2. Fluid evolves to the next time-step through wave in-

teractions, which originate at adjacent cell boundaries and

specify Riemann problem. As such approach mimics much of

the relevant physics, Godunov schemes suppose to result in

accurate and well-behaved treatment of shock waves. Howev-

er, as the Godunov method is first-order accurate it exhibits

strong numerical dissipation, and discontinuities in the solu-

tion are considerably smeared over several grid zones.

The low accuracy and the complexity of the Godunov

method meant that other methods needed to be developed.

Such development effort was undertaken by Kolgan [19] who

proposed to suppress spurious oscillations and produced in

this way a non-oscillatory Godunov-type scheme of second or-

der spatial accuracy. Further, more well-known, developments

are due to van Leer [20] who extended to second-order spatial

accuracy by the MUSCL approach. His approach consists of

two key steps: (a) an interpolation (projection or reconstruc-

tion) step where, within each cell, the data is approximated by

linear functions; (b) an upwind step where the average flux-

es at each interface are evaluated by taking into account the

wind direction. A great deal of effort was spent to enhance

the accuracy of the interpolation step, and to improve the ef-

ficiency and robustness of the upwind step [12, 21]. Accurate

interpolations are derived by assuming that the data is smooth.

However, in the presence of a shock, these interpolations lead

to oscillations which can be prevented by an introduction of

a monotonicity constraint for a numerical scheme [20]. In this

scheme the accuracy was increased by constructing a piece-

wise linear approximation of q(x, t) at the beginning of each

time-step, viz.

q(x, t) = qi + si(x − xi), xi−1/2 < x < xi+1/2. (72)

Here si is a slope and xi = (xi + xi+1)/2 = xi + ∆x/2
is the center of the grid cell. So, q(xi, t) = qi. Moreover, it is

required that the average value of q(x, t) over the cell is equal

to qi. The slope si can be constructed by many ways such as

si =
qi+1 − qi−1

2∆x
(centered slope, Fromm’s scheme), (73)

si =
qi − qi−1

∆x
(upwind slope, Beam-Warming scheme), (74)

si =
qi+1−qi

∆x
(downwind slope, Lax-Wendroff scheme), (75)

si = minmod

(

qi − qi−1

∆x
,
qi+1 − qi

∆x

)

(minmod slope). (76)

Here the minmod function,

minmod(a, b) =











a for |a| < |b| and ab > 0,

b for |a| > |b| and ab > 0,

c for ab ≤ 0,

(77)

returns the smallest argument in magnitude if the arguments

are of the same sign, and zero if they are not. Note that choos-

ing si = 0 in the above expressions leads to the Godunov

method.

A PPM scheme is a further extension of the MUSCL

scheme. The key difference from MUSCL is that q is allowed

to be piecewise parabolic within a cell, rather than piecewise

linear. Second-order accuracy in time is again achieved in the

same way as in MUSCL, via characteristic tracing and solving

Riemann problems.

Essentially non-oscillatory (ENO) schemes are again ex-

tensions of the basic Godunov approach. Arbitrarily high-

order polynomials are allowed to define q within a cell, yield-

ing arbitrarily high-order spatial accuracy [22].

Various shock-capturing schemes were compared by

Woodward and Colella [23] by computing a blast wave in-

teraction problem in one dimension. The result of that test

was an ordering of the schemes in terms of the accuracy.
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With the most accurate schemes listed first, that ordering was

as follows: PPM, MUSCL, and the Godunov scheme.

Godunov-type schemes are very robust and give reliable

results for a wide range of problems without needing to be

retuned. However, even these modern schemes are far from

being perfect. There are few instances in which a particu-

lar scheme produces inappropriate results [14, 15]. For in-

stance, most Godunov-type schemes lead to the generation

of a long wavelength noise, downstream nearly stationary

shock. This noise is not effectively damped by the dissipa-

tion of the scheme [15]. In few cases Roe solvers exhib-

it nonlinear instability, producing unphysical local features

which are called carbuncles. These features become more pro-

nounced for finer grid. In multi-dimensions a problem occurs

if a wave is far from aligned with the grid. Then, a grid-

oblique wave may be represented by grid-aligned waves, en-

hancing numerical dissipation and leading to a loss of reso-

lution.

Another deficiency of a Godunov-type scheme is that

while computing rarefaction waves, the scheme can produce

nonphysical expansion shocks in the computed flow. In this

case the true Riemann solution contains a transonic wave with

characteristic speeds that increase from negative to positive

values through the rarefaction fan. Then, the eigenvalue of

the average Jacobian A is such that λl < 0 to the left of

the wave while λr > 0 to the right of the wave. It leads

to information traveled partly to the left and partly to the

right, affecting cell averages on both sides. The Roe solver

approximates every wave by a single discontinuity that prop-

agates at a speed given by an eigenvalue c of A. In the

transonic rarefaction case this speed is approximately zero

and the proper spreading does not occur. This can lead to

numerical approximations with entropy violating discontinu-

ities.

Several ways to fix the problem of prevention Roe method

from admitting expansion shocks exist in the literature. For

instance, we can replace values of the numerical viscosity

µ smaller than some tolerance ε with higher values µ′ such

that

µ′ =







µ for |µ| ≥ ε,

µ

2

(

2µ2

ε
+

ε

2

)

for |µ| < ε.
(78)

For typical simulations ε is set to 0.2. This modification

is only applied to rarefaction waves. Although the depen-

dence on ε is small and this entropy works well, it suffers

from a drawback that a tunable parameter ε was introduced

into the scheme and there is little physical justification for

its use.

Note that in Roe method [12] one only needs an entropy

fix at sonic points.

3.3. Dimensionally split and unsplit schemes. We consid-

er a two-dimensional wave problem which is described by

a conservative system of equations:

q,t + ∇ · F = 0. (79)

Here q stands for a vector of conserved quantities

(q1, q2, q3)
T and F is the flux which is a 2 × 3-vector. In-

tegrating Eq. (79) with respect to time over time-step ∆t, and

with respect to space over a cell surface ∆x∆y, we find

qn+1
ij = qn

ij −
∆t

∆x∆y

4
∑

i=1

F(un
i ) · li, (80)

where Gauss’ theorem was applied to replace surface integral

by integral along the four cell edges, m = 1, ..., 4. The vector

lm is normal to the cell edge m and has the length of this

edge. In this case the cell of four edges is chosen. The quanti-

ty qn
ij stands for the average of cell ij, taken at time-step n∆t,

and qn
i denotes qn which is evaluated at the cell edge m.

Note that discretization (80) mimics the integral form of

Eq. (79). This property is of vital importance as the discretiza-

tion should be able to capture shocks. Differential form (79)

does not make sense for discontinuous profiles. However, the

corresponding integral form is still valid. The surface integral,
∫

F · dl, in Eq. (80) has been approximated by taking at each

cell edge an average flux F = F(un
i ), with un

i a suitably cho-

sen average for the particular cell edge i. The most accurate

choice for un
i would be to take the average of the left qn

l and

right qn
r values, i.e.

un
i =

qn
l + qn

r

2
.

Operator splitting schemes. A common approach when solv-

ing multi-dimensional hyperbolic equations is to apply an op-

erator splitting method [24]. The idea of the operator splitting

method is to iterate sequentially one dimensional equations;

in each time-step, multi-dimensional derivatives are split in-

to a set of one-dimensional derivatives, with variations in

other directions ignored temporarily. Then, each row and col-

umn in the grid is treated as a one-dimensional problem. Up-

dating the flow quantities along each row is done using the

one-dimensional solver. The popularity of these methods is

a consequence of the fact that the numerical schemes lead

to surprisingly good results [3] and that the strategy is very

simple as any multi-dimensional scheme consists of a system

of the one-dimensional problems. We explain this strategy for

the two-dimensional system of equations

q,t + Aq,x + Bq,y = 0 (81)

which can be split into one-dimensional subequations

q,t + Aq,x = 0, x−sweep, (82)

q,t + Bq,y = 0, y−sweep. (83)

In the x-sweep we would solve Eq. (82) along y = const,

updating q to q∗. In the y-sweep we then use u∗ for solving

Eq. (83) along x = const.

Such procedure will generally introduce a splitting error

unless AB = BA. We explain this in the following way.

Define the exact solution operator S∆t as the operator which

advances the exact solution q(x, y, t) of Eq. (81) by a time-

step ∆t. Analogously Sx
∆t and S

y
∆t are the operators which

advance exact solutions of Eq. (82) and (83), respectively.
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With a use of the Taylor expansion these operators can be

written as

Sx
∆t ≃ e−∆tA ∂

∂x ,

S
y
∆t ≃ e−∆tB ∂

∂y ,

S∆t ≃ e−∆t(A ∂
∂x +B ∂

∂y ),

(84)

where we introduced the notation

ea ∂
∂x = 1 + a

∂

∂x
+

1

2!

(

a
∂

∂x

)2

+
1

3!

(

a
∂

∂x

)3

+ · · · . (85)

A simple first-order (in time) splitting approach can be

written as:

Sx
∆tS

y
∆t = S∆t + O((∆t)2). (86)

Strang [25] showed that

Sx
∆t
2

S
y
∆tS

x
∆t
2

= S∆t + O((∆t)3). (87)

So, the above combination of one-dimensional solution

operators approximates the full evolution operator within

second-order accuracy.

The splitting error does not often exceed errors in other

numerical schemes, and the dimensional splitting can be a

very effective approach [24]. However, the operator splitting

methods have several disadvantages. For example, discontinu-

ities traveling obliquelly to the grid are smeared more than

those traveling in the coordinate directions, and implementa-

tion of boundary conditions may also be complicated using

this method.

Operator unsplit methods. In unsplit methods, information

is propagated in a genuinely multi-dimensional way. One-

dimensional Riemann problems can be solved at the inter-

faces. Limiter functions are applied to suppress numerically

induced oscillations which are usually generated by higher-

order derivative terms. The left-going and right-going waves

are split into parts propagating in the transverse direction by

solving Riemann problems in coordinate directions tangential

to the interfaces.

A class of conservative finite difference schemes for hyper-

bolic conservation laws in multi-dimensional spaces has been

developed by Colella [26]. These schemes do not make use

of operator splitting and instead the multidimensional wave

properties of the solution are used to calculate fluxes. In these

schemes some of the second-order terms are limited to sup-

press oscillations. Although the same Riemann problems ap-

pear in these schemes as in the operator split methods, these

schemes are somewhat more expensive, requiring twice as

many solutions to the Riemann problems as the correspond-

ing operator split algorithm.

3.4. Adaptive mesh refinement. If a numerical solution of

a flow-field containing complex flows which occur at high-

gradient regions has to be determined, an appropriate reso-

lution of these phenomena is of central importance for the

overall quality of the solution. The positions of these high-

gradient regions are usually unknown. At the same time it

is not possible to refine the whole discretization domain be-

cause of limited computer power and required cost efficiency.

A possible solution is to refine the grid locally where the high-

gradient regions are detected [27, 28, 29]. The adaptive grid

methodology makes it possible to achieve very high resolution

in the most interesting regions. The algorithm is particularly

well suited to unsteady flows.

The adaptive mesh refinement method (AMR) employs

a hierarchical grid structure which changes dynamically and

which is composed of grids of varying resolution. The grid

which covers the entire computational domain is called the

level 0 grid. There are also few additional levels of grid, each

finer than the rest. These finer grids do not cover the whole

domain but only those regions where more resolution is de-

termined to be needed. The mesh is refined locally based

on an estimate of the solution error [30]. By concentrating

mesh points where they are most needed, high-quality solu-

tions can be obtained at reasonable computational cost. By

that way, careful attention is paid to resolving efficiently the

disparate length scales. Various refinement criteria may be

employed. For example, the local velocity divergence can be

used to detect compressive phenomena, whereas the velocity

curl can be used to detect shear [30]. That is, for a cell with

a characteristic size ∆x, the compressibility dc and shear ds

detectors are

dc = |∇ · v|(∆x)3/2, ds = |∇ × v|(∆x)3/2. (88)

Cells are refined or coarsened if dc and ds is above or be-

low a specified threshold. Complex geometries can be treated

with the use of the cut-cell approach [31]. In this case, a

Cartesian grid is superimposed on the physical domain. Grid

points which fall outside of the flow field are discarded, re-

sulting in a series of intersected cells along the boundary

delimiting the flow field. While the discretization in the in-

terior of the flow field is unchanged, the discretization at the

boundaries must be altered to account for the cut-cells. For

complex flows, adaptive meshing can easily be implemented

by simple cell-subdivision.

It is noteworthy here that the remeshing technique is rel-

atively easy for triangular grids [32]. The refinement can be

performed through triangle subdivision, where a triangle is

branched into two triangles by cutting it on its longest side.

The coarsening can be obtained through node removal. The

node is flagged for removal if all its neighboring triangles are

to be coarsened. This node removal leaves an open polygon,

which is then remeshed [32].

4. Numerical results

As a consequence of complexity of hydrodynamic waves in

highly inhomogeneous medium it is necessary to understand

simpler phenomena which may play the role of elementary

building blocks in the construction of a more elaborated the-

ory. As a result, our strategy is to develop simpler models

at the initial stage of the research and progressively extend

and generalize them to more complex models at subsequent

stages. Therefore in this study, we assume that at the equilib-

rium the solar atmosphere is settled in a two-dimensional and
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still (V = 0) environment. At the equilibrium, equilibrium

gas pressure and mass density are given as

p(y) = p0 exp



−
y

∫

yr

dy′

Λ(y′)



 , (89)

̺(y) =
p(y)

gΛ(y)
. (90)

Here

Λ(y) = kBT (y)/(mg) (91)

is the pressure scale-height, and p0 denotes the gas pressure

at the reference level, y = yr.

We adopt a temperature profile T(y) which is displayed

in Fig. 2. Note that T attains a value of about 5700 K at the

top of the photosphere which corresponds to y = 0.5 Mm.

At higher altitudes T(y) falls off until it reaches its minimum

of 4350 K at the altitude of y ≃ 0.95 Mm. Higher up T(y)
grows gradually with height up to the transition region which

is located at y ≃ 2.7 Mm. Here T(y) experiences a sudden

growth up to the coronal value of 1.5 MK at y = 10 Mm.

Having specified T(y) with a use of Eqs. (89) and (90) we

can determine mass density and gas pressure profiles.

Fig. 2. Temperature (in Kelvins, logarithmic scale) profile vs. altitude

y (in Mm) in the solar atmosphere.

We excite waves in the solar atmosphere by launching ini-

tially, at t = 0, the impulse in a vertical component of velocity

Vy, i.e.

Vy(x, y, t = 0) = Av exp

[

− x2

w2
− y2

w2

]

. (92)

Here Av is the amplitude of the initial Gaussian pulse and

w = 0.3 Mm is its width.

Euler equations of Eq. (8) are solved numerically using the

code FLASH [6, 27] which implements a second-order un-

split Godunov solver and AMR which originates from Para-

mesh, the AMR mesh package used in FLASH. FLASH is

a component-based massively parallel multiphysics simula-

tion code with a wide user base. The time integration in

FLASH was originally designed using Strang operator split-

ting for hydrodynamics. A directionally unsplit solver is a new

high-order Godunov hydrodynamics solver in FLASH. The

second-order accurate MUSCL-Hancock type method [8] is

implemented in the code as the default. The unsplit method is

able to solve 1D, 2D and 3D problems by switching between

different types of Riemann solvers (Roes linearized solver,

HLL, HLLC), slope limiters (Monotonized central-difference,

Minmod, van Leers).

In our simulations, we set the simulation box as

(−15, 15) Mm ×(−0.5, 29.5) Mm. At all boundaries we fixed

all plasma quantities to their equilibrium values. In our studies

we use AMR grid with a minimum (maximum) level of re-

finement blocks set to 5 (8). The refinement strategy is based

on controlling numerical errors in a gradient of mass density.

Such settings result in an excellent resolution of steep spa-

tial profiles, which significantly reduces numerical diffusion

within the simulation region.

Figure 3 illustrates spatial profiles of log̺ and velocity

vectors at t = 200 s (left top), t = 300 s (right top), t = 400 s

(left bottom), t = 600 s (right bottom) for the initial pulse am-

plitude Av = 5 km s−1. The initial pulse splits in a usual way

into counter-propagating waves. The wave propagating up-

wards grows in its amplitude as a result of the rapid decrease

of mass density in the chromosphere. As a consequence of that

a shock results in. Photospheric and chromospheric plasma is

lifted up by underpressure which settles in below the shock.

The pressure gradient force overwhelms gravity and it pushes

the photospheric and chromospheric material towards the so-

lar corona. This scenario is clearly seen at t = 250 s. At a later

time the plasma becomes attracted by gravity and as a result is

falls off towards the low layers. However, the secondary shock

which results from the original pulse works against this fall

off as it lifts up the photospheric and chromospheric plasma.

As a result a complex bi-directional flows arises. The whole

scenario bares many features of solar spicules. Note a devel-

opment of vertices which are clearly seen at t = 300 s and

later on. These vertices cascade into smaller scale vertices

which propagate horizontally. Such a horizontal propagation

can be justified on analytical basements [33].

This scenario consists the building block of 1D rebound

shock model of Hollweg [34] who proposed that the sec-

ondary shock (or rebound shock) lifts up the transition re-

gion higher than the first shock thereby resulting in a spicule

appearance at observed heights. The process is well studied

in the frame of 1D numerical simulations. However, our 2D

numerical simulations introduce new interesting features in

comparison to the 1D rebound shock scenario.

There are few conclusions which result from our simula-

tions:

a) according to the theory of Klein-Gordon equation an ini-

tial pulse generates a wave front and a trailing wake which

oscillates with acoustic cut-off frequency [34];

b) even a small amplitude initial pulse launched at the top

of the photosphere exhibits a tendency to generate shocks.

These shocks result from a nonlinear wake.
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Fig. 3. Mass density (contour plots, log scale) and velocity (arrows) profiles at t = 200 s (top panel), t = 300 s, t = 400 s, and t = 600 s

(bottom panel) for (x0 = 0, y0 = 0.5) Mm and Av = 2 km s−1. Mass density and velocity are expressed in units of 10−12 kg m−3 and

1 Mm s−1, respectively.

5. Summary

This paper presents several mathematical aspects in numerical

methods for hydrodynamic equations. Although this presen-

tation is far from complete as the emphasis is on the methods

which are the most effective and the best known to the au-

thors.

There are several conditions that numerical schemes

should satisfy: accuracy and speed of numerical simulations,

adequate representation of complex flows and steep profiles,

without generation spurious oscillations as well as robustness.

A computer code is described as being robust if it has the

virtue of giving reliable results to a wide range of problems
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without needing to be retuned. Numerical schemes such as

shock-capturing schemes described in this paper satisfy these

conditions.

Existing numerical models such as was used in Sec. 4

with an adaptation of the FLASH code demonstrate the feasi-

bility of fluid simulations in obtaining at least qualitative and,

to some extent, quantitative features in the fluid media. With

continued improvements in computational methods and com-

puter resources, the usefulness and capability of the numerical

approach should continue to improve.

The FLASH code has been developed by the DOE-

supported ASC/Alliance Center for Astrophysical Thermonu-

clear Flashes at the University of Chicago.
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