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Abstract. The paper deals with the application of neural networks for state variables estimation of the electrical drive system with an elastic

joint. The torsional vibration suppression of such drive system is achieved by the application of a special control structure with a state-space

controller and additional feedbacks from mechanical state variables. Signals of the torsional torque and the load-machine speed, estimated

by neural networks are used in the control structure. In the learning procedure of the neural networks a modified objective function with the

regularization technique is introduced. For choosing the regularization parameters, the Bayesian interpretation of neural networks is used.

It gives a possibility to calculate automatically these parameters in the learning process. In this work results obtained with the classical

Levenberg-Marquardt algorithm and the expanded one by a regularization function are compared. High accuracy of the reconstructed signals

is obtained without the necessity of the electrical drive system parameters identification. Simulation results show good precision of both

presented neural estimators for a wide range of changes of the load speed and torque. Simulation results are verified by the laboratory

experiments.
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1. Introduction

In the recent years an increase of the neural networks (NN)

applications in electrical drives has been observed. NN mod-

els are often implemented in control of the speed or posi-

tion of the drive systems [1], state variable estimation of the

electrical motors [2], control of the power electronics sys-

tems [3] or in the fault detection and diagnosis of industrial

processes [4]. Most papers appearing in the technical liter-

ature concern drive systems with a stiff connection of the

motor and load machine. However, in the real drives, con-

necting elements of the mechanical part of the drive system

are characterized by a limited stiffness, e.g. rolling-mill drives,

conveyer belt or cage host drives. In many cases the appear-

ing elasticity of connecting shaft in the drive can consider-

ably deteriorate precision of the speed or position control,

and in special cases can even lead to the loss of stability.

These complications of the system work are caused by os-

cillations of the state variables resulting from the elastici-

ty of the mechanical part of a drive. One of the methods

often applied for solving this problem is a modification of

the control structure by introducing additional feedbacks from

chosen state variables [5, 6]. Therefore, the problem of get-

ting the information about required feedback signals appears,

as in the most of real systems the measurements of all me-

chanical state variables necessary for the control structure are

impossible (problem with sensors’ installation) or associat-

ed with the increasing costs (additional measuring arrange-

ments).

The application of NN for the state variables estimation

of electrical drives with the elastic coupling enables obtaining

the required signals without necessity of parameter identifi-

cation of the drive required in algorithmic estimators [7].

The issue of the state variables estimation in the two-

mass drive system is more complicated than in the drive with

perfectly stiff shaft. In the system with an elastic shaft we

can deal with the shaft torque influenced also the electro-

magnetic torque of the drive. This phenomenon is very im-

portant as the electromagnetic torque (or current) is usually

incorporated into the input vector of the NN estimator. There-

fore applying techniques taken from the theory of neural net-

works for improving their generalization properties is advan-

tageous [8].

The data generalization realized by the NN appoints the

degree of the possibility and accuracy for solving the assumed

task by trained network in the case of appearing the input vec-

tor elements not taken into account in the training process.

One of the most effective methods used for improving

this ability of NN is a regularization. It consists in the mod-

ification of the objective function used in the training algo-

rithm, which is minimized in the each iteration. In the ex-

tended form of such cost function, elements dependent on

values of the inter-neural-connection coefficients are added to

the standard function. A problem of the selection of the reg-

ularization parameters in the modified objective function is

appearing.

In this work the regularization method based on the

Bayesian interpretation of NN is applied. This algorithm gives

analytical formulas for the automatic computation of the opti-

mal regularization parameters [9–14]. Simulation and experi-

mental results presented in this paper, lead to the conclusion,
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that the Bayesian regularization method can improve signif-

icantly the quality of state variables estimation of the drive

system with an elastic joint.

The paper is divided into six sections. After a short in-

troduction the mathematical model of the two-mass drive

system is presented. Then the speed control structure with

additional feedbacks from the shaft torque, the motor and

the load speeds, is described. Next the issues related to the

Bayesian regularization and neural networks are presented.

The influence of the regularization in the classical Levenberg-

Marquardt algorithm on the quality of the state variable esti-

mation is presented. The designed NN estimators are applied

in the control structure and tested under simulation and ex-

perimental research.

2. Mathematical model of the two-mass drive

system and control structure

The electrical drive with elastic joint can be described by dif-

ferent mathematical models, depending on the exactness of

the elastic shaft modeling. Usually, such a drive is analyzed

as a system composed of two masses connected by an elastic

shaft, where the first mass represents the moment of inertia of

the drive and the second mass refers to the moment of inertia

of the load side. In the case of a small value of the shaft in-

ertia in comparison with the motor and load inertia moments,

the mechanical coupling is treated as inertia free. Also the

internal damping of the shaft is often neglected. With these

assumptions, the mechanical part of the considered two-mass

drive can be described by the following mathematical model

(in per unit system [p.u.]), where nonlinear phenomena, like

backlash or friction torques are neglected:

T1

dω1(t)

dt
= me(t) − mc(t), (1)

T2

dω2(t)

dt
= mc(t) − mL(t), (2)

Tc

dmc(t)

dt
= ω1(t) − ω2(t), (3)

where ω1, ω2 – the motor and load speeds, mc, mL – the shaft

and load torques, T1, T2 – the mechanical time constants of

the motor and load machine, Tc – the stiffness time constant.

The classical cascade control structure consists of two ma-

jor control loops: the inner control loop contains the current

controller, the power converter and the motor. After optimiza-

tion, the current control loop can be replaced by the first-order

inertial component with small time constant. During the de-

sign process of the speed loop the dynamics of the torque loop

is very often neglected [6]. In most of applications, classical

PI or PID speed controllers are applied [5, 6]. In this paper

the state controller with an integral action is applied for speed

control. Structure of the drive with two-mass system and the

state-space controller is presented in Fig. 1.

Fig. 1. The block diagram of the control structure

Gain values of this control structure can be adjusted ac-

cording to the pole placement method. So the speed controller

parameters and gains of the feedbacks from such state vari-

ables as: the motor and load side speeds as well as the tor-

sional torque are calculated using following formulas:

k1 = 4T1ζrωr, (4)

k2 = T1Tc

(
2ω2

r + 4ζ2

r ω2

r −
1

TcT2

−
1

TcT1

)
, (5)

k3 = ω2

rk1T2Tc − k1, (6)

KI = T1T2Tcω
4

r , (7)

where ωr, ξr – are the assumed values of the resonant frequen-

cy and the damping coefficient of the closed-loop structure.

In the control structure, presented above, different state

feedbacks are introduced, so the information about the shaft

torque mc, motor speed ω1 and load speed ω2 is required. The

measurement of the motor speed ω1 is simple and trouble free,

but the measurement of the shaft torque and the load speed

can be difficult or expensive. In this case special estimation

structures based on neural network (NN) can be used.

In the technical literature many methods for neural net-

works structure optimization can be found. Most of them

require the initial choice of NN structure and then selected

neural connections are eliminated. One of the simplest ways

to choose a connection between nodes for elimination is an

analysis of absolute values of NN weights. The other method

consists in checking the influence of each connection on the

generalization error, as in [15, 16]. Other solution for this

problem is adding the regularization element to the cost func-

tion [17]. It consists in the modification of the objective func-

tion used in the training algorithm, which is minimized in any

iteration. In the extended form of such cost function elements

dependent on the values of the inter-neural-connection coef-

ficients are added to the standard function. A problem of the

selection of regularization parameters in the modified objec-

tive function is appearing. In this work regularization method

based on the Bayesian interpretation of NN is applied. This

algorithm gives analytical formulas for the automatic compu-

tation of the optimal regularization parameters [9–14], so it is

much more convenient in the practical applications and thus

is used in this paper for the neural estimator optimization of

state variables of the two-mass drive system.
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3. Bayesian regularization in neural networks

The neural networks training process can be defined as a min-

imization of the objective function. In the considered case an-

alyzed cost function is described by the following equation:

F = αEW + βED, (8)

where element ED is a sum of squares of NN calculation er-

rors for each input sample, and EW is a regularization term

presented below:

ED =

M∑

j=1

(dj − yj)
2, (9)

EW =

W∑

i=1

w2

i , (10)

where dj – desired output values; yj – actual output values

of the neuron; M – dimension of the vector d, wi – weights;

W – the total number of weight and biases in the network.

In relation to the objective function (8), a problem of the

parameters α and β selection is appearing. The regularization

parameters describe the influence of the additional term in

the cost function. The second coefficient decides on matching

of the training data and the first one enforces the smooth-

ness of NN output signals [17]. If β is relatively significant

in comparison with α, the training error is smaller and effect

is like in the classical algorithm. In the other case training

causes smaller weights and leads to a smoother output sig-

nal of the network [11]. Therefore, to achieve a good qual-

ity of state estimation, the optimal values for these factors

are important. In many cases those parameters can be chosen

using cross-validation techniques, but this procedure is very

time-consuming. In this paper, the comparison between the

classical Levenberg-Marquardt algorithm and after the regu-

larization procedure with parameters chosen by Bayesian op-

timization method is presented.

In the Bayesian interpretation of NNs, optimization of

inter-neural weights corresponds to the increasing of the prob-

ability:

P (w|D, α, β, A) =
P (D|w, β, A)P (w|α, A)

P (D|α, β, A)
, (11)

where w – weight coefficient vector, D – training data, A –

structure of the neural network, P (w|α, A) – describes the in-

formation on the weights’ values before introducing the train-

ing data, P (D|w, β, A) – probability of obtaining the estab-

lished response of the NN for suitable inputs, depending on

parameters of the network, P (D|αβ, A) – normalization ele-

ment.

Under assumption that noises in the input data (measure-

ments), used in the process of NN training is a Gaussian, as

well as probability of the weight distribution is a Gaussian,

suitable elements in the equation (11) are described by the

following formulas:

P (D|w, β, A) =
1

ZD(β)
exp(−βED) (12)

and

P (w|α, A) =
1

ZW (α)
exp(−αEW ), (13)

where

ZD(β) =

(
π

β

)M

2

(14)

and

ZW (α) =
(π

α

) W

2

(15)

thus we get

P (w|D, α, β, A) =

1

ZD(β)

1

ZR(α)
exp(−(αER + βED))

P (D|α, β, A)
.

(16)

For the optimization of α and β parameters in the objec-

tive function, the following equation is taken into account:

P (α, β|D, A) =
P (D|α, β, A)P (α, β|A)

P (D|A)
. (17)

Under the assumption that a distribution of regularization

coefficients α and β is uniform, maximal values of the prob-

ability P (α, β|D, A) are obtained for the biggest values of

the element P (D|α, β, A). Probability P (D|A) is independent

from those parameters.

After suitable transformations, equations describing α

and β parameters for minimization of the objective functions

are obtained [9–11]:

α =
γ

2EW (wMP)
(18)

and

β =
M − γ

2ED(wMP)
, (19)

where

γ = W − 2α trace(H)−1 (20)

and wMP – minimum point of the objective function, H –

hessian matrix of the cost function.

The parameter γ means effective number of parameters

of the NN, however W is a number of all parameters of the

network.

4. Simultation results

The NN estimators are tested in the control structure with

the state space controller and additional feedbacks from the

shaft torque, motor and the load speeds of the two-mass drive.

The main parameters of the drive system are the following:

T1 = T2 = 203 ms and Tc = 2.6 ms. The assumed values

of the resonant frequency and the damping coefficient of the

drive are respectively: ωr = 45 s−1 and ξr = 0.7. A sampling

time taken in a simulation for the NN training and testing is

set to 0.1 ms.

The structure of the NN estimators is the same for both

presented estimators and is described as follows:

{NN} = {6-7-8-1}, (21)

which means: 6 inputs, 7 neurons in the first hidden layer,

8 neurons in the second hidden layer, 1 output neuron. The
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decision about a number of the hidden layers was taken ba-

sis on the Kolmogorov theorem [16] and practical experience

with the application of neural network in the analyzed problem

[15]. For the hidden layers the nonlinear tangensoidal activa-

tion functions are applied. The linear activation functions are

selected as the output function of the neural estimators.

a) b)

c) d)

e) f)

Fig. 2. Simulated transients of the reference speed (a), load torque (b), real and estimated torsional torque mc (c,d) and load speed ω2 (e,f)

and their estimation errors for NN trained with classical Levenberg-Marquardt algorithm (c,e) and after adding Bayesian regularization (d,f)
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Input signals of the NN are the torque me and the speed

of the motor ω1. However, the outputs signals of NN are es-

timated state variables: torsional torque mc and speed of the

load machine ω2. In an addition, for better precision of state

variable estimation, the input vector is expanded by histori-

cal elements including samples of the electromagnetic torque

and the motor speed delayed by one and two periods. Thus

the input vector is defined in the following way:

X=[ω1(k), ω1(k−1), ω1(k−2), me(k), me(k−1), me(k−2)].
(22)

For the disturbance reduction of the high dynamic inputs

signals and measurement noise, the first-order filters are ap-

plied.

Results of states variables estimation obtained using the

classical Levenberg-Marquard training algorithm as well as

the algorithm with the Bayesian regularization, are presented

in Fig. 2.

In order to obtain a quality measure of the estimated sig-

nals, the estimation errors of NNs are calculated in the fol-

lowing way:

Err =

N∑

i=1

|xi − x̂i|

N
· 100, (23)

where xi – real value, x̂i – estimated value, N – number of

samples.

The estimation errors (average error per sample) for neural

networks trained with the classical Levenberg-Marquardt al-

gorithm are about 7.93 for the load speed, and about 1.93 for

the shaft torque. Such big estimation errors, especially in the

case of the load speed estimate (also in a steady-state), cause

the oscillation in the closed-loop drive system, when estimat-

ed state variables are included in the state feedbacks and can

lead to an unstable operation of the drive. After application

of the Bayesian regularization, both neural estimators present

much higher quality of the estimation and estimation errors

are: 1.64 for the load speed and 0.15 for the shaft torque.

Steady-state errors are not observed now in the load speed

estimate. Analyzed state variables are estimated with a high

precision, which is very important in the situation, when those

estimators are included in the feedback loops of the drive sys-

tem.

5. Experimental results

The laboratory set-up is composed of two DC machine motors

(0.5 kW each). The motor is connected to a load machine by

an elastic shaft (a steel shaft of 5 mm diameter and 600 mm

length). The stiffness of the connection depends on the shaft

diameter. The speeds of the driven motor and the load ma-

chine are measured by incremental encoders (36000 pulses

per rotation). On the laboratory set-up the LEM sensors for

current measurements are implemented. Measured data and

control signals are connected with digital and analog I/O of

the dSPACE 1102 card. The motor is driven by a power con-

verter. The load machine in the drive system is controlled

using DSP also (Fig. 3).

Fig. 3. Schematic diagram of the experimental set-up, where:

1 – motor machine, 2 – load machine, 3,4 – encoders, 5 – shaft,

6 – resistor, 7 – rectifier, 8 – control structure, 9 – power converter

In Fig. 4 transients of the closed-loop control structure,

with NN state estimators in feedback loops, is presented.

The assumed value of the resonant frequency of the closed-

loop system is ωr = 45 s−1 and the damping coefficient is

ξr = 0.7. There is no shaft torque sensor in the laboratory

set-up. Therefore, in order to check the estimated shaft torque

shape, the Kalman filter is applied [7]. The input filters of NN

estimators are applied with the following time constant: for

the motor speed Tω1 = 0.01 s, for the electromagnetic torque

(current) Tme = 0.05 s. In experiments only state estimators

obtained with the application of the Bayesian regularization

during the training process of NN, are tested.

Presented results are obtained for estimators implemented

in the closed-control-loop. At the time about t = 1.4 s the pas-

sive load torque TL = 1.4 [p.u.] is applied. Despite the load

torque is bigger than used in the training process, the neural

estimator of the torsional torque is able to estimate it proper-

ly, due to the generalization ability of the NN. The estimation

error of the torsional torque obtained in the control structure

is about 4.23, however imprecision of the load speed estima-

tion is very low and close to 0.86. The NN estimators provide

the very good estimation accuracy and the operation of the

closed-loop system with estimators in the feedback paths is

stable, with good ability of torsional vibration dumping.
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a) b)

Fig. 4. Experimental transients of the real and estimated torsional torque mc (a) and load speed ω2 (b), and their estimation errors for NN

estimators trained according to the Levenberg-Marquardt algorithm with Bayesian regularization

6. Conclusions

The use of artificial neural networks for state variable estima-

tion, in the implementation of drive systems with elastic cou-

plings, allows the reconstruction of chosen signals with very

high accuracy. Their main advantage is the design simplicity,

as the neural estimators do not need a mathematical model

and system parameters, only the training data is required.

The described regularization procedure implemented in

the NN training enables improvement of the ability to the

data generalization. Application of the Bayesian regulariza-

tion eliminates the problem of the selection of regularization

parameters. Introduction of the automatic regularization into

the Levenberg-Marquardt learning algorithm leads to better

results of the load speed and shaft torque reconstruction than

those obtained using a classical algorithm. Correct work of

the designed estimators in the closed-loop system is confirmed

experimentally in the laboratory set-up.
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