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Abstract. The problem of identification of a structural damage is considered. The identification of location and/or dimensions of a damaged
area or local defects and inclusions is performed using the measurements of vibration frequency and eigenvalues of real structure and the
corresponding finite element model. The proper distance norms between the measured and calculated structural response are introduced and
minimized during the identification procedure.
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1. Introduction

The prediction of a location and a degree of damage in ex-
isting engineering structures is of great importance from the
point of view of their serviceability and safety. A visual in-
spection and an extensive testing can be employed to locate
and measure the degradation of structure by non-destructive
techniques such as an acoustic emission, ultrasonic methods,
thermography, or the modal testing. In the present paper, we
study the damage or fault detection by analyzing the dynamic
response of structures. In particular, the structural modal pa-
rameters, such as natural frequencies with their related modes
are considered. In fact, eigenfrequencies and mode shapes
vary with structural stiffness and their variation can be used in
order to identify the stiffness reduction and damage localiza-
tion. Two typical identification problems are: i) a specification
of a single crack (an localized damage) with its size, location
and orientation as unknown parameters, and ii) the specifi-
cation of a distributed damage within a structure regarded as
a distributed stiffness reduction. A related problem is con-
cerned with the effect of damage on structural performance
and safety.

There are numerous papers devoted to these classes of
problems. An extension review of damage identification tech-
niques in structural and mechanical systems, based on changes
of vibration response, was provided by [1]. In most papers
it is assumed that the eigenfrequencies and eigenmodes of
an undamaged structure are known and their variations in-
duced by damage are used in the identification procedure.
However, when the accurate measurement of mode shapes is
not feasible, then the damage should be identified by using
only measured eigenfrequencies and their variation with re-
spect to the reference (undamaged) model. The eigenmodes
of undamaged structure are assumed as known and their vari-
ation for damaged structure is assessed analytically or ne-
glected, cf. Dems and Mróz [2]. However, when the mode

shape changes are measured, then the identification proce-
dure is augmented by using modal assurance criteria, mode
curvature or an energy distribution in consecutive structural
elements, and variation of position of mode lines. The papers
by Pandey et al. [3], Hearn and Testa [4] provide good exam-
ples of these approaches. A general sensitivity study of natural
frequencies and modes with respect to cracks and holes was
presented, for instance, by Gudmundson [5], Garstecki and
Thermann [6] as well as Dems and Mróz [7] for geometri-
cally non-linear vibration and stability problems. The damage
identification using some additional control parameters in or-
der to increase the sensitivity of structural response with in-
creasing damage and to maximize the assumed distance norm
between the measured and structural model response was also
presented in [2].

Apart from the above mentioned methods, other approach-
es can be also used in order to determine the degree of
structural damage. Some interesting approach basing on im-
age analysis of cracked specimen was presented by Glinicki
et al. [8].

2. Damage identification using frequency

changes

When the damage identification is based on the free frequen-
cies measurement, their variations are used in the identifica-
tion procedure.

Consider the undamaged structure shown in Fig. 1a and
the damaged one shown in Fig. 1b. These structures can be
treated either as the real structure or as its finite element mod-
el, obtaining using the finite element approach, cf. Hinton and
Owen [9]. The stiffness and mass matrices of real structure
can be obtained, if necessary, from measurements, while the
respective matrices for finite element model follow from cal-
culations.
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a) b)

Fig. 1. Undamaged (a) and damaged structure (b)

Let assume that the stiffness and mass matrices of a dis-
cretized linear elastic structure are symmetric and the free
vibration state is described by the equation specifying the
eigenvalue problem. This equation describing the behavior of
undamaged discretized structure has the form:

(K0 − λ0iM0)Φ0i = 0, i = 1, 2, . . . , n, (1)

where the eigenvalues λ0i = ω2
0i are the squares of free fre-

quencies, K0 and M0 denote the stiffness and mass matrices
and Φ0i are the corresponding eigenmodes. The eigenvalues
follow from (1) and can be expressed by the Rayleigh quo-
tients as follows:

λ0i =
ΦT

0iK0Φ0i

ΦT
0iM0Φ0i

, i = 1, 2, . . . , n (2)

or, using the K0 – orthogonality and M0 – normalization of
all eigenvectors, in the equivalent form:

δijλ0j = ΦT
0iK0Φ0i, ΦT

0iM0Φ0j = δij ,

i, j = 1, 2, . . . , n,
(3)

where δij denotes the Kronecker’s symbol.
Assume next that the stiffness matrix K of a damaged

structure can be expressed as follows:

K = Ko + δK, (4)

where the stiffness matrix variation δK has the form:

δK = −

ne
∑

l=1

K
e
0lδkl, 0 ≤ δkl ≤ 1 (5)

and δkl are the non-dimensional parameters specifying the
fraction of stiffness reduction in damaged elements and K

e
0l

is an element stiffness matrix of undamaged structure. For
damaged structure we can write:

(K − λiM)Φi = 0. (6)

Now the mass matrix of damaged structure can be written
as M = Mo + δM and its eigenvalues are λi = λ0i + δλi and
the variation of eigenvectors of damaged structure (Φi

∼= Φ0i)
is neglected. It is usually assumed that δM = 0, M = Mo

and the damage affects only the stiffness matrix. Thus, the
Eq. (6) can be rewritten in the form:

[K0 + δK − (λ0i + δλi)M0]Φ0i = 0. (7)

The variation of eigenvalues of damaged structure, follow-
ing from (7), can be expressed by the Rayleigh quotients and
now it equals:

δλi = ΦT
0iδKΦ0i, i = 1, 2, . . . , n, (8)

where once again the mode normalization and orthogonality
specified by (3) is used. Let us note that one only needs to cal-
culate or measure the eigenvalues and associated eigenmodes
in order to estimate the eigenvalues of damaged structure and
their variations.

Let us introduce the relative change of i-th eigenvalue as
the measure of damage of structure, namely:

DIi =
λ0i − λi

λ0i

= 1 −
λi

λ0i

= −
δ λi

λ0i

, (9)

where DI i can be called the ‘damage index’ associated with
i-th natural frequency [2]. The variation of λi specified by (8),
in view of (5), can be now expressed as follows:

δλi = −

ne
∑

l=1

ΦT
0iK

e
0lΦ0iδkl = −Dilδkl, (10)

where Dil is the (nxne) eigenvalue sensitivity matrix. Equa-
tion (10) can be used in specification of δkl by generating
inverse or generalized inverse solution. This solution can be
constructed by minimizing the properly defined norm of δK

and δλ and is discussed in details in [10]. Now, the damage
index DI i expressed by (9), in view of (10), takes the form:

DIi = −
δ λi

λ0i

=
−Dilδkl

λ0i

, i = 1, 2, . . . , n. (11)

Besides the damage index DI i associated with i-th natural
frequency, additionally the ‘global damage index’ can be also
introduced and it is expressed as the sum of damage indices
for first n natural frequencies, given in the form

Ig =

n
∑

i=1

DIi. (12)

The identification problem can thus be stated as follows:

min.
d

G(d) subject to (K − λkM)Φk = 0,

k = 1, 2, . . . , n,
(13)

where G(d) denotes the proper defined distance norm between
the calculated (for the model) and measured (for the real struc-
ture) structural responses and d is a set of parameters defining
the location, size and orientation of local defect or damage
area. In particular, the problem (13) can be formulated as:

min.
d

G1(d) =
1

2

[

Ig(d) − Im
g (d)

] 2

subject to (K − λkM)Φk = 0,

(14)

where Ig(d) and Im
g (d) denote the calculated and measured

global indices (12). Another form of identification prob-
lem (13) can be based on the calculated and measured eigen-
values, and it is expressed in the form:

min.
d

G2(d) =
1

2

n
∑

j=1

(λi − λm
i )2

subject to (K − λkM)Φk = 0.

(15)

The square norms (14) and (15) were successfully used
in identification of location and magnitude of beam or plate
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damage. The illustrative examples of using both norms can
be found in Dems & Mróz [2, 7, 11].

3. Damage identification using modal changes

The idea of identification presented in the previous Section
is based on the concept of measurement of free frequencies
of structure. Another approach to damage identification can
be based on measurements not only the eigenvalues associ-
ated with free vibration problem but also the corresponding
eigenmodes. Consider once again the free vibration problem
for the undamaged discretized elastic structure, described by
Eq. (1). The eigenvalues following from (1) are expressed by
Eqs. (3). The respective eigenvalues for the damaged structure
problem are expressed by (6) and then:

δijλj = ΦT
i KΦi, ΦT

i MΦj = δij ,

i, j = 1, 2, . . . , n,
(16)

where once again the mode normalization and orthogonality
conditions are used.

Assume, as previously, that K = Ko + δK, M = Mo

and λi = λ0i + δλi are the respective stiffness matrix and
eigenvalues of the damaged structure. Moreover, the eigen-
vectors of that structure are now assumed as Φi = Φ0i +δ Φi.
Since the damage affects only the stiffness matrix and not
the mass matrix, it follows from (3) and (16) that the differ-
ence of eigenvalues, neglecting the higher order terms, can be
expressed as follows:

δλi = λi −λ0i = ΦT
i δKΦi + δΦT

i K0Φi + ΦT
i K0δΦi. (17)

It follows from (17), that now the variation of i−th eigen-
value depends not only on the variation of structural stiffness
matrix but also on the variation of i-th eigenmode, that should
be calculated. Let us note that in order to use now the norms
(14) or (15) for damage identification, there is a need to solve
the free vibration problem at each iteration step of constrained
minimization algorithm, what is a time consuming task. More-
over, the application of distance norms based not on eigen-
values but eigenmodes of damaged structures suffer the same
inconvenience. To overcome this difficulty, one can express
the eigenvectors for actual model of damaged structure as the
sum of eigenvectors for undamaged model and their incre-
ments due to damage growth. Next, these increments can be
calculated using different simplified approaches, where there
is no need to resolve the free vibration problem at each iter-
ation step.

Now, let us discuss briefly two approaches to approximate
calculation of eigenmode variation associated with damage
growth within structure domain.

The first approach is based on Eq. (6) describing the be-
havior of damaged structure that can be rewritten in the form:

[(K0 + δK) − (λ0i + δλi)M0](Φ0i + δΦi) = 0. (18)

Making use of (1) and neglecting the second order term
δλiδΦi

∼= 0, it follows from (18), that:

δΦi
∼= (K0 + δK − λ0iM0)

−1(δλiM0 − δK)Φ0i, (19)

where δλi can be calculated from (8) or can be obtained
from measurement. Thus, using this approach, we overcome
the need to solve the free vibration problem at each iteration
step, but instead of that we need to invert the non-singular
matrix K0 + δK − λ0iM0, what is also the time consuming
problem.

The other approach uses the static correction method
to calculate the increments of eigenmodes due to damage
growth [12]. Following the analysis presented in [12], we can
write:

Φi = Φ0i + δΦi,

δΦi = −BΦ0i + B
2
Φ0i − B

3
Φ0i + . . . ,

(20)

where
B = K

−1
0 δK. (21)

Let us note, that in order to calculate the eigenmode Φi

and its variation δΦi we need only once to calculate the eigen-
vectors and associated eigenmodes for undamaged structure
and moreover to invert only once the stiffness matrix K0 for
undamaged structure. This will save considerably the time of
calculations necessary at each iteration step of identification
procedure.

Taking into account only the linear terms in the second
equation of (20), the eigenmode of damaged structure and its
variation can be expressed as:

Φi
∼= (I − K

−1
0 δK)Φ0i,

δΦi
∼= K

−1
0 δKΦ0i.

(22)

The eigenvalues of damaged structure and its variation
follow from (17) and, in view of (22), can be rewritten in the
form:

λi = λ0i + δλi,

δλi = ΦT
0i{(I − K

−1
0 δK)T δK(I − K

−1
0 δ K)+

+ (K−1
0 δK)T

K0(I − K
−1
0 δK)+

+ (I− K
−1
0 δK)T

K0K
−1
0 δK}Φ0i.

(23)

The damage identification problem can be still formulated
by (14) or (15) using the better approximations (23) of eigen-
values and then the global damage index than those discussed
in the previous Section. However, knowing also the approxi-
mation of eigenmodes (22) for damaged structures, the other
identification functional based on eigenmode measurements
can be introduced.

Firstly, one can use the square of distance norm being the
‘angular distance’ between the eigenvectors of real damaged
structure and its model, cf. Fig. 2, given in the form:

G3 =

m
∑

k=1













arccos













p
∑

j=1

ΦkjΦ
m
kj

√

p
∑

j=1

(Φkj)
2

p
∑

j=1

(

Φm
kj

)2

























2

(24)

where Φkj and Φm
kj denotes the model and measured eigen-

vectors, respectively, and p denotes the number of components
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of eigenvectors and m is the number of considered eigen-
modes. The functional (24) attains its global minimum equal
to zero, when the eigenvectors of real structure and its model
coincide. Thus, the optimization problem can be now formu-
lated as:

min.
d

G3(d) =
m

∑

k=1













arccos













p
∑

j=1

ΦkjΦ
m
kj

√

p
∑

j=1

(Φkj)
2

p
∑

j=1

(

Φm
kj

)2

























2

subject to (K − λkM)Φk = 0.
(25)

Fig. 2. Angular’ distance norm between the eigenvectors ∆α and
differences of eigenvectors α and αm

The other approach is based on the correlation of differ-
ence between the eigenvectors of damaged and undamaged
structures for real structure and its model. In this case, the
identification functional is expressed in the form:

G4 = −

m
∑

k=1

p
∑

j=1

∆Φkj∆Φm
kj

√

m
∑

k=1

p
∑

j=1

(∆Φkj)
2

m
∑

k=1

p
∑

j=1

(

∆Φm
kj

)2
, (26)

where ∆Φm
ki = Φm

ki − Φm
0ki and ∆Φki = Φki − Φ0ki denote

the difference of eigenvectors for real structure and its model.
The functional G4 attains the global minimum equal to −1
for full correlation of real structure and its model and maxi-
mum equal to 1 when there is no correlation. The optimization
problem can now be stated in the form:

min.
d

G4(d) = −

m
∑

k=1

p
∑

j=1

∆Φkj∆Φm
kj

√

m
∑

k=1

p
∑

j=1

(∆Φkj)
2

m
∑

k=1

p
∑

j=1

(

∆Φm
kj

)2

subject to (K − λkM)Φk = 0.
(27)

4. Identification algorithm

To perform the identification task (14), (15), (24) or (27), dif-
ferent identification systems can be used. They can be based
on gradient-oriented or evolutionary algorithms or can con-
stitute a hybrid identification system composed from in se-
ries connected evolutionary and gradient-oriented algorithms,
shown in Fig. 3. The first module performs the initial identifi-
cation using the floating point evolutionary algorithm starting
from randomly selected initial model solution.

Fig. 3. Flowchart of hybrid identification system

The termination of the algorithm was established by the
fitness convergence. The fitness function, being the measure
of design quality, was assumed in the form:

fi = e

�
−a

(Gi−Gmin)
(Gmax−Gmin)

�
, (28)

where Gi denotes the value of respective objective functional
associated with i-th individual in the current population, and
Gmax and Gmin are its maximal and minimal values in this
population. The definition of the fitness function guarantees
its non-negativity and makes the difference of individual fit-
ness more controllable, which is an important factor for the
selection stage. The positive factor a is used to control the
probability of the individuals being selected to create a new
population. The increasing value of a causes higher probabil-
ity for selection of the individual with higher value of fitness
function. The negative sign in front of a converts a minimum
problem to problem of maximization of fitness function. Next,
in order to increase the efficiency of identification process, the
variable metric algorithm starting from the last, best solution
generated by evolutionary algorithm is used in the second
module of a system. The finite element method is applied
in both modules to model the real damaged structure and to
perform the analysis step, where the eigenvalues and/or eigen-
vectors of actual model of structure or their approximations
are calculated. In addition, this method is also used in final
identification module for performing the sensitivity analysis
of eigenvalues and eigenvectors in order to obtain the gradient
information for identification functional.

It is worth to add that also only the evolutionary or
gradient-oriented algorithm can be used during the identi-
fication procedure.
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5. Illustrative examples

To illustrate the presented idea of identification procedure two
simple examples of damage identification within a beam will
be presented. Consider a beam shown in Fig. 4. The damage
in the beam was modeled by decreasing the bending stiffness
of one of beam element. On this stage of analysis the response
of real beam was also modeled using finite element approach
and in order to make the ‘measurements’ more realistic, some
randomly distributed error of magnitude 1% was introduced
to calculated values of eigenfrequencies and eigenvectors. The
response of actual finite element model of the ‘real’ beam was
calculated exactly. To increase the structural response and its
sensitivity to the damage, some additional rigid or elastic sup-
port can be introduced within beam domain, as it is shown
in Fig. 4.

Fig. 4. Beam with additional rigid support

Firstly, we shall present the example of identification based
on the functional (15). The beam was modeled using 20 fi-
nite elements with 21 nodes equally spaced. To increase the
structural response, the additional supports were assumed to
be installed consecutively at 3 nodes: 5, 11 and 17. Figure 5
presents graphically the results of identification for a beam
with element 10 weakened, so that (EI)10 = 0.6EI. In the
numerical process, the sensitivity gradient identification was
applied and stiffness moduli of different number of finite el-
ements (EI)i were identified. The prediction 1 was generated
for seven varying element stiffness moduli, and the predic-
tion 2 was obtained for 5 varying stiffness moduli.

Fig. 5. Identification of a cantilever beam with damage in element 10

Let us note that there was no constraint set on the stiffness
variation, and then the model predicts some element stiffness
moduli higher than EI. The analysis presented here was based
on the work of Dems and Mróz [2] which has been concerned
with the damage identification method using parameter depen-
dent evolution of natural frequencies.

In the second example we present the application of
eigenmodes in identification procedure and use the functional
(24) or (26). Thus, we solve the identification problem (25)

or (27) using only the evolutionary algorithm. We consider
once again the beam shown in Fig. 4, now simply supported
on the both ends with no additional supports. The ‘measured’
node amplitudes of vibrating beam was disturb with random
error not increasing the 1% of amplitude magnitude. The in-
fluence of the random measurement error on the values of
functional (24) and (26) for varying location of damage ele-
ment in finite element model of real structure is depicted on
the Fig. 6a and 6b, respectively. On both figures, the con-
tinuous line shows the value of respective functional for the
case of “exact” measurements (with no error), while the dot-
ted lines show their values for three cases of the randomly
distributed measurement error with its maximal value not in-
creasing 1% of the amplitude magnitude at measuring points.
It can be seen that the character of plot of both functional for
error free and error weighted measurements are very similar
the global minima are located very closely.

a)

b)

Fig. 6. Plot of functional G3 (a) and G4 (b) versus damage location
in a model beam

The identification solutions of damage located in real
structure at x = 300 mm, basing on functional (24) and (26)
were performed using the evolutionary algorithm. The calcu-
lations were repeated 1000 times with randomly selected start-
ing population. The averaged value of identified location was
equal x = 299.10 mm for functional (24) and x = 299.06 mm
for functional (26), while the standard deviation were equal
to 9.054 and 9.116, respectively.
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6. Concluding remarks

The present paper is concerned with the damage identifica-
tion method using parameter dependent various structural re-
sponse. In particular, the evolution of natural frequencies and
eigenvectors due to occurrence of damage or its growth con-
stitutes the basis for nondestructive identification of location,
orientation and size of internal defects and cracks within struc-
ture domain.

Four different identification funtionals were introduced
and the proper identification problems were formulated bas-
ing on these functionals. Using the concept of damage indices,
being the measures of relative changes of eigenvalues due to
damages, two first identification functionals were based on the
measurements of eigenvalues of real structure and calculated
eigenvalues of its discrete model. When the eigenvectors of
real structure and its discrete model were also available, an-
other two identification functionals were introduced based on
the angular distance norm between the measured and calculat-
ed eigenvectors, as well as on the correlation factor between
these vectors. In these two last cases, in order to avoid the time
consuming solution of eigenvalue problems at each iteration
step during the identification procedure, two approaches for
approximate calculation of eigenmode variations associated
with damage growth were proposed.

To solve the formulated identification problems, the nov-
el hybrid identification system was proposed. This system
was composed from evolutionary and gradient-oriented al-
gorithms, with exponential fitness function being the measure
of design quality.

To increase the accuracy and convergence of identification
procedure in presented examples, some additional control pa-
rameters, associated with additional rigid or elastic support,
were also introduced in order to increase the sensitivity of
the measured and structural model responses. The obtained
results indicate that the presented methods can be combined

with parameter dependent eigenvalues and eigenmodes mea-
surements and calculations.
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