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Abstract. This paper gives a concise overview of the techniques we have used to find out the degree of measuring the quality of rendered

images and a level of noise in particular. First part of the paper presents designed and conducted psychophysical experiment involving human

subjective judgment. Then, two of the existing numerical image comparison methods are considered in the context of assessing the level of

noise produced by global illuminations algorithms. The results of the participants’ subjective responses are correlated with the data obtained

from objective mathematical metrics. The main goal of research was to determine the objective and perceptual measure of quality for images

with fixed sampling strategy. The results will help to establish the measures of identifying the human perception in the assessment of images

generated with global illumination algorithms.
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1. Introduction

Images rendered using global illumination algorithms often

appear more photorealistic than images rendered using on-

ly direct illumination algorithms. However, such images are

much slower to generate and consequently more expensive.

Ironically, what we perceive as being „realistic” in an im-

age has more to do with our expectations of it, rather than

a faithful account of the real world. We get used to certain

conventions, and any deviation from them brings the risk of

being regarded as unnatural. For instance, despite the fact that

the photographic grain does not exist in the physical world,

we can consciously claim that the concrete image is realistic

exactly because it contains so called noise. Therefore, inves-

tigation of image features determining the level of perceived

visual realism is crucial for achieving photorealistic render-

ing. Separating specific image features in complex scenes is

a difficult task, but beyond any doubt, the level of noise is the

key feature, that affects perception of any scene.

Despite the fact, that several computational methods for

assessing the quality of computer generated images and the

level of noise in particular have been proposed, precise scales

and threshold are still not defined. Most of the existing objec-

tive quality metrics are algorithms designed to characterize

the quality of video compression and predict viewer MOS

(Mean Opinion Score). Two of them will be presented, and

the main intention of this work is to review them for suitability

in global illuminations algorithms.

Another approach to noise evaluation is to use standard

psychophysical test. The most typical subjective methods

compare images based on perceptual appearance. The idea

for this investigation is to design and conduct such experi-

ment involving human subjective judgment, and compare ob-

tained results with the numerical data. If the subjects’ respons-

es are correlated with the mathematically calculated values,

then such numerical methods for noise measurement could be

successfully used to speed up existing rendering techniques

directly targeting human perception limitations.

2. Variance in the estimates in the global

illumination algorithms

A synthesis of photorealistic images becomes possible in the

latter half of the 90s. Algorithms for simulating the physics of

light and light transport can be divided into two major tech-

niques: point sampling and finite elements. The physically

based simulation of all light scattering in the synthetic model

is called Global Illumination.

Methods based on finite elements compute the equilibri-

um of the light exchange between surfaces of geometry model.

This is done by discretization of the model into small patch-

es that can form a basis for the final light distribution. The

lighting distribution is found by solving a set of linear equa-

tions for the light exchange between all patches. This approach

is impractical in complex models due to the division of the

geometry into the large number of patches.

Actually the most popular methods in the computer graph-

ics is based on point sampling. Point sampling methods have

been extended with Monte Carlo Methods (MC). The basic al-

gorithms for this group are: Path Tracing, Light Tracing, Bidi-

rectional Path Tracing and Metropolis Light Tracing. Many of

rendering engines use follow techniques to reproduce behav-

ior of light. These algorithms permit simulation of all types of

light scattering. In MC the rays are distributed stochastically

to simulate all paths from the light source. Stochastic sampling

gives possibility to compute effects such as soft shadows, mo-

tion blur, and depth of field. MC point sampling methods is

a straightforward extension to ray tracing that makes it pos-

sible to compute lighting effects that requires evaluation of

integration problems such as area lights and indirect light

reflected by a diffuse surface. In this methods the unknown

lighting distribution function is sampled by tracing rays sto-
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chastically along all possible light paths. By averaging a large

number of sample rays for a pixel we get an estimate of the

integral over all light paths through that pixel. Mathematical-

ly, it is a continuous Markov chain random walk technique for

solving the rendering equation. When the rendering equation

is solved by stochastic methods we get a variance seen as the

noise in rendering images (Fig. 1).

Fig. 1. Reference photograph (top), rendered color (middle) and

grayscale image (bottom)

Eliminating this noise requires a large number of sample-

rays. The number of sample-rays depends on how much noise

is acceptable in an image, and geometry complex. The rays are

generated randomly with the same distribution as the emitted

power of the light. The rays are also sent from points distrib-

uted on the surface of the light. The noise level in a Monte

Carlo solution decreases with the square root of the num-

ber of samples taken. To reduce the noise by a‘ factor of 2, 4

times more samples are needed [1]. The goal is to find a com-

promise between a reasonable rendering time and quality of

rendered images. The best way is to find an automatic quantity

to measure the quality of images connected with noise.

3. Perceptual test for noise evaluation

This part of the paper describes the proposed experimental

method for subjective evaluation of the variance in the esti-

mates. The perceptual method, as well as numerical approach

presented in the next paragraph, can be performed by rat-

ing the set of images with different scale of manipulation of

certain feature [2, 3], in this case the level of noise. The ex-

act purpose of conducting this test is to see whether there

is a correlation between the subjects’ responses and the ob-

jective mathematical metrics. While performing this test we

should also assess the perceived distance between visually in-

distinguishable level of noise and acceptable quality of the

rendered images [4].

3.1. Creating test images. For the purpose of overall experi-

ment we have created the 3D representation of the conference

room, containing tables and chairs, with different types of

materials but without glass surfaces (Fig. 1).

The geometry of the scene must be sufficiently complicat-

ed in order to produce a broad scope of noise. The simplicity

of a typical cornell box itself causes that the image rendered

using light-tracing algorithm with even less than 10 rays per

pixel contains an imperceptible variance in the estimates. All

images used in the experiment present the same scene renderd

with the ligh-tracing algorithm with the resolution of 800x600

considering parallel processor scheduling algorithms [5].

3.2. Test design. The experiment was undertaken under con-

stant and controlled illumination conditions with the 15.4”

monitors set to 1280×800. The distance between the eyes

and the screen was approximately 0.4 meter. The subjects

were presented with two series of controlled images grouped

into pairs. The first series contains only grayscale images and

the second set only RGB color images. Each pair of images

was preceded with the black screen with the assigned num-

ber. Subsequent images in each series varied according to

increasing number of sample rays used in rendering process,

and thereby decreasing level of noise. All other image factors

were constant [2]. The image presentation was automated with

2 seconds of time interval between the images. The subjects

ran their test in one sitting with short breaks between the

grayscale and the color series.

Before the start of the test the participants were given

minimum information about the context of the experiment, in

order to avoid responses biased toward what they were told.

For instance, to prevent situation, when responses are more

a reflection of subjects expectation of average score, rather

than their actual perception, subjects were not informed about

a number of pairs (150) in the series.

Each of the participants was tested separately and was

asked to answer the following questions concerning both the

grayscale and the color series:

1. Please indicate the number of the first pair for which you

cannot see the difference in the level of noise between the

pictures.

2. Please indicate the number of the first pair for which the

level of noise is negligible.

According to the first question, it was necessary to insert

a blank black screen displayed for approximately 0.5 second

between the pair of the images. Because of the stochastic na-

ture of the light-tracing algorithm, subjects could still observe

the relocation of the grain and interpret this shift as an expect-

ed difference, even if the actual difference in noise intensity

between the images was imperceptible. The applied interrup-

tion eliminated potential degeneration of subjects’ responses.
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The second question considered subject’s toleration of

noise in computer-generated image. Due to the lack of a fixed

reference image there might be a considerable distribution of

responses. Another difficulty is the lack of a clear definition

of what is meant by “negligible” in term of visual realism [6].

In this case prior experience and predilection of the subjects

may have played an important role. We want to investigate

the acceptable range of noise depending on the image char-

acteristics. The analysis and discussion on the obtained data

is presented in the final paragraph.

4. Numerical metrics for noise measurement

There are many numerical approaches to compare synthetic

images [7, 8]. They are mostly designed for digital images cre-

ated by digital camera. They focus on measuring the distance

between images. Most of the methods compute distance be-

tween the two images is computed by finding the MSE (mean

squared error) [9]

d(X, Y ) =

m,n∑

i=0,j=0

(xij − yij)
2

mn
, (1)

where X , Y are current images and xji, yji color values of

pixels.

This method is based on raw error measures and works

best when the distortion is due to an additive noise contami-

nation. Therefore it seems reasonable to use such metrics to

examine the noise associated with the global illumination al-

gorithms. Of course it does not necessarily correspond to all

aspects of the observer’s visual perception of the errors de-

gree of compressed image deformation [10]. We will verify

the usefulness of metrics for global illumination algorithms.

4.1. Peak-to-peak signal-to-noise ratio. The metric which is

used often in practice is PSNR(Peak-to-peak Signal-to-Noise

Ratio) [11], this metric is equivalent to Mean Square Error,

extended by logarithmic scale. It has the same disadvantages

as the MSE metric:

PSNR = 10 · log
10

MaxErr2 · w · h
w,h∑

i=0,j=0

(xij − yij)
2

, (2)

where MaxErr – maximum possible absolute value of color

components difference, w – image width, h – image height.

The main application of PSNR is comparing the com-

pressed images. The value of PSNR function is measured in

db, the bigger PSNR – the lesser is the difference between

images. Some analytical methods of determining extreme dy-

namic errors have been proposed in [12]. Our main goal is to

investigate whether there needs to be a consistency between

the levels of noise of the different elements within a images. It

seems reasonable to use PSNR to compare the noise measure-

ment between images. We use this method to find differences

in noise level (Fig. 2).

Fig. 2. Results of PSNR – difference between images with differ-

ent ray-samples (red pixels indicate the biggest difference, dark blue

pixels indicate the least difference)

A PSNR method for measuring the perceptual equivalence

between different ray-samples images of the same scene was

tested for 150 images with successively increased number of

ray samples. Results of noise in decibels between all current

images are presented below in Fig. 3.

Fig. 3. PSNR – difference between images with different ray-samples.

Log(psnr) = 5.894Ln(x), R2 = 0.9975

In the figure above we can notice a degradation of the

noise. This degradation will depend on the number of ray-

samples. It seems reasonable to find demarcation of quality

between the compared images. The first limit is made where

a number of samples indicate slight changes between the qual-

ities of compared images. The second limit will show the

smallest increase in the quality of the test images. The least-

squares fitting process give Equation of Trend estimation for

samples [13]:

y = 5.894Ln(x) + 21.384. (3)
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Coefficient of determination for analyzed data:

r2 =

n∑

i=1

(ŷi − ȳ)
2

n∑

i=1

(yi − ȳ)2
=

âcovxy

vary
= 0.9975. (4)

The collected data will be reviewed in terms of the tests

carried out on a random group of people in the final chapter.

4.2. DCT-based video quality evaluation. For multimedia

applications, there has been an increase in the use of quali-

ty measures based on human perception. Method VQM uses

DCT to correspond to human perception [14].

Before the described Methods Pixel-based Root Mean

Square Error is the dominant metric in practice. However,

it doesn’t take into account the spatial-temporal property of

a human’s visual perception that is the reason why it fails

under many circumstances. DCT-based video quality metric

(VQM) is based on Watson’s proposal, which exploits the

property of visual perception [11]. This method frequently

used in compression technology (quantization matrix, spatial

scalability, temporal scalability) affects video distortion. The

same group of images has been tested for VQM metrics, as

it is shown in Figs. 4 and 5.

Fig. 4. Results of VQM – difference between images with differ-

ent ray-samples (the brightest areas indicate the biggest difference,

darkest areas indicate the least difference)

Fig. 5. VQM – difference between images with different ray-samples.

Log (vqm) = - 0.7085 Ln(x)+3.5129, R2 = 0.7162

The method checks the better large lighting areas. In the

case of noise it seems more reasonable to use metrics like

PSNR. The least-squares fitting process gives Equation of

Trend estimation for samples [13]:

y = −0.7085Ln(x) + 3.5129. (5)

5. Results and conclusions

The performance of the objective quality measurement algo-

rithm is improved by comparing to the results of the subjective

test and the results of a PSNR measurement. Experimental da-

ta was obtained from 19 subjects aged from 18 to 40 including

authors. Subjects had either normal or corrected-to-normal vi-

sion. After performing the test, the preferences of statistical

viewer were obtained. The coefficient of consistency for in-

dividual test subjects was measured using the pair of images.

The answers of respondents give series of four values. The

received data for the first pair for which the level of noise is

negligible will be marked as: Qc in color, Qbw in grayscale.

Analogically, DNc and DNbw for the number of the first pair,

for which the difference in the level of noise between the pic-

tures cannot be seen. The results for the average of the values

obtained in four series are as follows:

AM(DNc) = 8.8125,

AM(DNbw) = 8.75,

AM(Qc) = 68.875,

AM(Qbw) = 64.25.

(6)

The results for the median of the values obtained in four

series are as follows:

µ1/2(DNc) = 5.5,

µ1/2(DNbw) = 6.5,

µ1/2(Qc) = 68.5,

µ1/2(Qbw) = 61.

(7)

The relative increase of the PSNR function can be

found by:

dt/t−1 =
yt − yt−1

yt−1

. (8)

The most significant differences were observed between

the pairs from 1 to 9 (d9/8 = 0.1627). After this value a rise

between subsequent images is decidedly gentle Fig. 6. The
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value indicated by the respondents fluctuates around 8 rays

per sample. Without loss of generality, we can assume that

the PSNR of noise between 8 and 9 rays per sample (33 [db])

can represent the critical point of distinguishing noise for hu-

man perception (AM(DNc) = 8). Hence the results of the

perceptual test are coherent to the curve of PSNR function.

Therefore the data metrics such as PSNR can be used to an-

alyze noise in the images generated with global illuminations

methods based on the point sampling algorithms.

Fig. 6. VQM and PSNR – difference between images with different

ray-samples marked with points obtained in test

In response to the second question, received values fluctu-

ate around the 70 rays per sample. Thus, we can theoretically

calculate PSNR for 1 to 70 ray-sample, it gives 22 [db] or

for 69 to 70 it gives 46 [db]. But it is difficult to determine the

amount of this value only for one test scene. In future work, it

will be important to identify other checkable necessary condi-

tions for different tests scenes. More measurements and user

tests, similar to the one proposed, should be performed. The

data collected from such experiments can be used to further

validate or refine the outcomes.

In our experiments we found that results of numerical met-

rics used for noise measurement did correlate with subjects’

responses. The received measure can be helpful to speed up

rendering algorithms, based on modified metrics that can di-

rectly target observers’ perception.
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