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Abstract. In this paper a greedy algorithm for some variants of the sequencing by hybridization method is presented. In the standard version

of the method information about repetitions is not available. In the paper it is assumed that a partial information of this type is a part of the

problem instance. Here two simple but realistic models of this information are taken into consideration. The first one assumes it is known

if a given element of a spectrum appears in the target sequence once or more than once. The second model uses the knowledge if a given

element of a spectrum occurs in the analyzed sequence once, twice or at least three times. The proposed greedy algorithm solves the variant

of the problem with positive and negative errors. Results of a computational experiment are reported which, among others, confirm that

the additional information leads to the improvement of the obtained solutions. They also show that the more precise model of information

increases the quality of reconstructed sequences.
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1. Introduction

The DNA sequencing is one of the most important problems

in computational and molecular biology. The goal is to de-

termine the sequence of nucleotides DNA consists of. There

are many methods to solve it. One of them is sequencing

by hybridization (SBH) [1, 2]. This approach is comprised of

two stages: a biochemical one and a computational one. In the

first phase a set of l-long oligonucleotides (called also l-mers)

composing the original DNA sequence is determined. In the

second stage a combinatorial problem must be solved. The

information about l-mers composition is used to reconstruct

the target sequence.

The biochemical stage utilizes a DNA chip [3, 4] contain-

ing a full l-long oligonucleotide library. It is a kind of matrix

divided into cells. Each cell contains a number of identical

l-mers representing one of the oligonucleotides from the li-

brary. When such a chip is put into a solution of a number

of copies of the single stranded target DNA sequence, some

fragments of the examined DNA hybridize to complementary

l-mers on the chip. If the copies of the analyzed sequence

are radioactively or fluoroscently labelled then one can obtain

an image of the DNA chip corresponding to the set of l-mers

composing the target DNA. This set of l-long oligonucleotides

is called spectrum.

In the ideal case the biochemical experiment provides full

and proper information about l-mers present in the target se-

quence. However, during the experiment some errors may oc-

cur. There are two types of errors: positive ones and negative

ones. The positive error occurs when the target sequence hy-

bridizes to an oligonucleotide on the chip which is not per-

fectly complementary to it. As a result a spectrum containing

additional l-mers that are not a part of the target sequence is

obtained. An opposite situation may also take place. The tar-

get sequence do not need to hybridize to the complementary

l-mer on the chip. In this case some information about l-mer

composition of the examined DNA sequence is missed. The

missing l-mers are negative errors. Another source of negative

errors are repetitions in the target sequence of length equal or

greater than l. Since in the classical SBH method spectrum is

a set, not a multiset, the information about repetitions is lost.

In the classical SBH approach the output of the biochem-

ical phase is the binary information about oligonucleotide

presence in the target sequence (i.e. a given l-mer is or is not

present in the target DNA). If the examined DNA sequence is

repetitive then negative errors resulting from repetitions oc-

cur. However, the development of the DNA chip technology

enables to take into account an information about an intensity

of the chip signals. This intensity can be, at least to some

extent, correlated with the multiplicity of a given l-mer in the

target sequence. Unfortunately, the precision of this informa-

tion decreases when the number of occurrences of an l-mer in

the sequence increases. It is possible to easily distinguish the

signal coming from one occurrence and many occurrences,

but differentiating the shining of, for example, seven and

eight occurrences would be very hard (or even impossible).

Nevertheless, even partial information about repetitions can

be very useful [5, 6].

In this paper two realistic models of the multiplicity in-

formation are considered. In the first of them, called “one and

many”, it is assumed that the information coming from the hy-
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bridization experiment allows for distinguishing between one

and more than one occurrences of any l-mer in the analyzed

DNA sequence. According to the second model, called “one,

two and many”, it is possible to distinguish between one, two

and more than two occurrences of an l-mer. The assumptions

are well justified by the current DNA chip technology.

2. Problem definition

In this paper we consider DNA sequencing by hybridization

with positive and negative errors. The source of an error (rep-

etitious sequence or imperfect experiment hybridization) is ir-

relevant. In order to precisely define various variants of SBH

problems with additional information it is necessary to intro-

duce four types of spectra [5].

Let S(Q) denote a spectrum of sequence Q and let

S(is)(Q) denote an ideal spectrum of this sequence. The ideal

spectrum consist of all and only those types of l-mers but not

all of these l-mers, which compose the target sequence Q. All

of these l-mers compose an ideal multispectrum of sequence

Q, which will be denoted by S(im)(Q). Note that the num-

ber of occurrences of any l-mer in the ideal multispectrum is

equal to the number of repetitions of this l-mer in sequence Q.

Let S(m)(Q) be a multispectrum of sequence Q. This spec-

trum may not contain full information about oligonucleotide

repetitions and in addition it can contain some positive errors

(l-mers which are not a part of the target sequence) or nega-

tive errors (some l-mers can be missed). For every sequence

(l-mer) si ∈ S(Q) let mi be the number of occurrences of si

in S(m)(Q).
Assuming there does not exist the additional multiplici-

ty information the combinatorial problem may be defined as

follows (cf. [7]):

Problem 1. Lack of the multiplicity information

Instance: set S(Q), length n of sequence Q

Answer: sequence Q′ of length n containing the maximum

number of elements of S(Q). Moreover, Q′ can contain some

l-mers which are not elements of S(Q).

Let us assume that it is possible to obtain from the bio-

chemical experiment the partial multiplicity information of

type “one and many”. Then the sequencing problem may be

stated as follows [5]:

Problem 2. Multiplicity information of the type “one and

many”

Instance: set S(Q), length n of sequence Q, parameter

mi ∈ {1, 2} for every si ∈ S(Q)
Answer: sequence Q′ of length n containing at most one oc-

currence of si if mi = 1 and at least one occurrence of si

if mi = 2. Moreover, Q′ can contain some l-mers which are

not elements of S(Q).

Finally, let us assume there exists approximate multiplici-

ty information of type “one, two and many”. In this case the

sequencing problem may be defined is as follows [5]:

Problem 3. Multiplicity information of the type “one, two

and many”

Instance: set S(Q), length n of sequence Q, parameter

mi ∈ {1, 2, 3} for every si ∈ S(Q)
Answer: sequence Q′ of length n containing at most one

occurrence of si if mi = 1, one or two occurrences of si

if mi = 2 and at least two occurrences of of si if mi = 3.

Moreover, Q′ can contain some l-mers which are not elements

of S(Q).

It is possible to transform any problem stated above into

a variant of the travelling salesman problem (TSP). The clas-

sical TSP has a directed or undirected graph as an input. Each

arc or edge has assigned a weight (cost). The goal is to find

the minimal cost Hamiltonian cycle (cycle which contains all

vertices).

One should apply the following modification on the travel-

ling salesman problem to obtain a problem which is equivalent

to the sequencing by hybridization. Firstly, the goal should be

to find a path not a cycle. The cost of the path is constrained

by the length n of the target sequence. Moreover, the first

vertex on the path should correspond to the first l-mer in the

sequence. Finally, acceptable solutions need not to visit all

vertices and some vertices may be visited more than once

(i.e. according to the value of mi).

If the vertices in the directed input graph represent

oligonucleotides from the spectrum then the travelling sales-

man problem customized as mentioned above corresponds to

the sequencing by hybridization problem. The cost of an arc

is related to how the two l-mers overlap each other. The cost

of the arc is equal to the oligonucleotides length l minus the

length of the common fragment. For example, the cost of an

arc from the vertex representing oligonucleotide CGCTTA

to the vertex representing GCTTAT is equal to 1 because

they have an common subsequence GCTTA of length equal

to 5. Note that any two oligonucleotides may have more

than one common subsequence, so the input graph is in fact

a multigraph, where each arc represents one possible l-mers’

overlapping.

The traveling salesman problem is strongly NP -hard, so

there does not exist a polynomial time algorithm to solve it

(assuming P 6= NP ). The sequencing by hybridization is al-

so an intractable problem. The strong NP -hardness of the

classical SBH approach has been proved in [7] and of the

above variants with the additional information about oligonu-

cleotides multiplicity in [5] and [6].

3. Algorithm

The time of solving optimally an intractable problem increases

exponentially compared to the instance size and exact algo-

rithms for such problems have limited application in practice.

This justifies development of heuristic algorithms which en-

able to obtain an approximate solution in polynomial time.

This is a compromise between the quality of a solution and

the time needed to obtain it.

There exist many types of heuristic algorithms. One of

them is a greedy algorithm [8]. This approach constructs the

solution iteratively. In each step the current partial solution is

extended on the basis of the locally optimal choice. There is
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no guarantee the optimal solution will be found but it reduces

the time of computation.

The computational complexity of the sequencing by hy-

bridization was a motivation to develop a greedy algorithm

which could be useful in practice to obtain an approximate

sequence of nucleotides in the target sequence of DNA. The

greedy algorithm presented in this paper is a heuristic based

on the greedy algorithm defined in [9] for the SBH problem

with positive and negative errors. The original algorithm has

been extended to take into consideration the information about

l-mers multiplicity.

The algorithm starts at an initial oligonucleotide and adds

successive l-mers. This process ends if adding another l-mer

will violate the maximum length constraint. The obtained se-

quence cannot be longer than the target sequence of length n.

To make the local choice, the cost of appending all of

the remaining (not used yet) l-mers to the current vertex is

verified and the best option is chosen. The criterion of a new

nucleotide selection is the cost of overlapping of a current

l-mer and the new one plus the smallest cost of overlapping

of the new one and one of its possible successors.

For each l-mer (si) the number of occurrences in the cur-

rent solution is stored. If this number reaches the maximum

value according to the parameter mi then the oligonucleotide

is not considered any more as a possible successor of the last

vertex in the current solution.

The above algorithm uses as a part of the input data in-

formation about the first l-mer of the analyzed sequence. The

assumption that the first l-mer is known is well justified since

the PCR commonly used to obtain a large number of copies of

the target requires the knowledge of the first oligonucleotide.

4. Computational experiment

The algorithm described in the previous section has been test-

ed on the real DNA sequences obtained from GenBank. The

human DNA has been used. The sequences have been di-

vided into fragments of length 109, 209, 309, 409 and 509

nucleotides. For each sequence length an independent test set

with 1, 2, 3, 4 and 5 percent of negative errors coming from

repetitions has been prepared. Each test set contained 50 var-

ious sequences.

Spectra have been prepared for oligonucleotides of length

equal to 10. Hybridization errors in biochemical experiment

have been simulated by deletion of 15% random l-mers and

insertion of 15% random l-mers.

The similarity of an obtained sequence and the original

one has been measured using the Smith-Waterman algorithm

for calculating the local alignment [10]. The following values

of parameters have been used: match (the same nucleotides)

+1, mismatch (different nucleotides) −1, insertion (a nu-

cleotide in one sequence and the blank position in the second

sequence) −1. A solution, which is the same as the target,

obtains the highest score (similarity) equals to the number of

nucleotides in the sequence.

The average local alignment of the obtained results has

been shown in Table 1 (lack of multiplicity information), Ta-

ble 2 (multiplicity information of the type “one and many”)

and Table 3 (multiplicity information of the type “one, two

and many”). The results are presented as a function of the

sequence length and the percent of negative errors resulting

from repetitions. Each value is an average computed on the

basis of 50 sequences and for each sequence 20 independent

tests have been performed. Hence, each entry represents 1000

solutions. There are two values in each cell of the tables. The

first one is the score of the local alignment calculated using

the Smith-Waterman algorithm. The second one is a percent

value related to the maximum similarity score (100% if the

obtained solution is identical to the target sequence).

Table 1

Similarity – lack of the multiplicity information

Repetitions

count

Spectrum size

100 200 300 400 500

1% 100.64 180.23 244.57 293.49 317.59

92.33% 86.23% 79.15% 71.76% 62.39%

2% 100.83 172.93 238.01 278.68 320.33

92.50% 82.74% 77.03% 68.14% 62.93%

3% 96.32 171.05 223.75 261.88 296.96

88.37% 81.84% 72.41% 64.03% 58.34%

4% 92.17 161.12 220.86 257.80 290.33

84.56% 77.09% 71.47% 63.03% 57.04%

5% 91.91 151.46 211.36 248.95 275.94

84.32% 72.47% 68.40% 60.87% 54.21%

Table 2

Similarity – multiplicity information of the type “one, and many”

Repetitions

count

Spectrum size

100 200 300 400 500

1% 102.08 183.24 241.30 297.55 319.09

93.65% 87.68% 78.09% 72.75% 62.69%

2% 102.45 179.24 240.28 277.08 325.59

93.99% 85.76% 77.76% 67.75% 63.97%

3% 98.67 177.51 231.36 271.35 302.38

90.52% 84.93% 74.87% 66.34% 59.41%

4% 96.51 166.63 230.29 266.18 297.16

88.54% 79.73% 74.53% 65.08% 58.38%

5% 95.15 159.18 220.96 258.17 295.79

87.29% 76.16% 71.51% 63.12% 58.11%

Table 3

Similarity – multiplicity information of the type “one, two and many”

Repetitions

count

Spectrum size

100 200 300 400 500

1% 102.04 183.95 243.9 298.98 311.94

93.61% 88.01% 78.93% 73.10% 61.28%

2% 104.3 177.54 242.85 274.25 326.32

95.69% 84.95% 78.59% 67.05% 64.11%

3% 99.79 177.51 226.73 266.34 306.15

91.55% 84.93% 73.38% 65.12% 60.15%

4% 97.65 170.26 229.5 264.19 295.29

89.59% 81.46% 74.27% 64.59% 58.01%

5% 96.26 161.24 218.29 261.76 291.6

88.31% 77.15% 70.64% 64.00% 57.29%
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The results have shown that taking into consideration the

additional information about repetitions increases the qual-

ity (similarity) of the obtained solutions. Additionally, one

may suppose that the negative errors resulting from the rep-

etitions have much greater impact on the results quality than

the positive and negative errors resulting from biochemical

experiment (at least in the case of the greedy algorithm).

However, increasing the precision of the multiplicity infor-

mation does not clearly imply further quality improvement as

one may expect. It may be caused by a low repetitions count

for a given l-mer in the analyzed sequences, i.e. if the average

multiplicity of the repetitious l-mers in the tested sequences is

close to 2. An supplementary experiment has been developed

as follows to verify this hypothesis.

An additional test set has been prepared. It contained real

human DNA sequences of length from 109 to 509 nucleotides

with 1, 2, 3, 4 and 5 repetitions of exactly one l-mer. The

length of oligonucleotides in spectra was also 10. Hybridiza-

tion errors were simulated too. The number of deletions and

the number of insertions were the same as in the main exper-

iment, i.e. 15%. There were 25 different sequences of each

type (lenght & repetition count). Every sequence was tested

40 times, so results represent also 1000 solutions.

The more precise model of multiplicity information “one,

two and many” resulted in better alignment score only for

shorter sequences (see results in Table 4). This may be caused

by significantly higher hybridization errors rate in longer se-

quences. The maximum number of repetitions was 5 while

for a sequence of length 509 the number of insertions was 75

and the number of deletions was also 75.

Table 4

Using the model “one, two and many” – the influence on the alignment

score in comparison to the model “one and many” (insertions: 15%,

deletions: 15%)

Repetitions

count

Spectrum size

100 200 300 400 500

1 −0.08% 1.48% 0.36% −0.56% −0.43%

2 1.85% −0.06% 0.04% −0.27% 0.28%

3 1.42% 0.98% −0.19% 0.95% −0.46%

4 0.96% 0.57% −0.52% −0.01% −0.24%

5 0.36% 0.50% 0.16% 0.21% 0.50%

Table 5

Using the model “one, two and many” - the influence on the alignment

score in comparison to the model “one and many” (insertions: 5%,

deletions: 5%)

Repetitions

count

Spectrum size

100 200 300 400 500

1 0.21% −0.44% 0.39% −0.16% −0.90%

2 1.07% 0.44% −0.99% 0.69% 0.81%

3 1.21% 0.61% 0.07% 1.03% 1.72%

4 1.61% 0.54% 0.06% −0.01% −0.17%

5 1.13% 0.58% 0.46% 0.86% 0.68%

The insertions count and the deletions count have been

set to 5% and the experiment has been run again. This time

the results have shown that the model “one, two and many”

leads to the improvement of obtained solutions for longer se-

quences too (see Table 5). However, it is hard to observe the

superiority of any multiplicity information model if the ana-

lyzed sequence cointains only 1 repetition. In this case both

models are indistinguishable.

5. Conclusions

In this paper has been shown how the partial information

about repetitions in an analyzed sequence influences the re-

sequencing by hybridization results. The two simplest, but

realistic, models of such information have been taken into

consideration. The first one uses the knowledge if a giv-

en l-mer occurs in the analyzed sequence once or more

than once. The second model contains the information if

a given oligonucleotide occurs in the target sequence once,

twice or at least three times. This additional information is

not very precise, but the results have shown that it leads

to the quality improvement of the obtained solutions. Note

that the current DNA chip technology has some constraints

and cannot provide the precise number of repetitions of

a given l-mer. Currently, considering more accurate models

of multiplicity information does not have practical applica-

tions.

The sequencing by hybridization is an intractable prob-

lem (NP -hard in the strong sense) which justifies the im-

plementation of the greedy algorithm. It was used to verify

the impact of the partial information about the multiplicity on

the solutions quality. However, the greedy heuristic may be

used to obtain quickly (i.e. in polynomial time) an approxi-

mate sequence of nucleotides in the analyzed DNA sequence.

Moreover, it can provide an initial solution for more advanced

heuristics, e.g. tabu search. It is the subject of the current au-

thors’ research in this area.
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