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Quantum analysis of the Cosserat media with application

to paramagnetic resonance

M. SIKOŃ∗

Faculty of Mechanics, Institute of Machine Design, Cracow University of Technology, 37 Jana Pawła II Ave., 31-864 Kraków, Poland

Abstract. This work is a continuation of the investigation which first results were presented in the Bulletin of the Polish Academy of
Sciences: Technical Sciences in 2009. In the work the Cosserat medium is defined there, where inter-atomic actions have non-central nature.
Non-central potential energy is introduced. As regards the Schrödinger equation the energetic state of the atom is described in the field of
the quantum mechanics. The analysis is carried out on the base of mechanical and magnetic properties of the atom. The obtained solution is
applied to write the resonance condition in the EPR spectrometer. The spectra, obtained for a loaded hydrated copper sulfate, were interpreted
from the point of view of the presented theory and experimental parameters of the Cosserat medium were written.
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1. Introduction

The analysis is related to the earlier research of Voigt [1] and
Cosserat brothers [2], as summarized by Nowacki [3], and to
the works [4–6]. According to the theory the transmission of
mechanical action through the surface dividing two neighbor-
ing unit cells of material occurs not only via a force vector,
but by a couple vector. Therefore, in addition to force stress-
es one observes couple stresses. Up to now this has not had
a complete experimental verification. However, there are well
established techniques of experimental investigations which
characterize the Cosserat media at the continuum level [7].
The aim of the work is to describe the experimental parame-
ters of the Cosserat medium in nano-scale and measure these
parameters in EPR spectrometer. A system of molecular in-
teractions (forces and couples) is interpreted as the result of
non-central interaction and the additional motion of an elec-
tron is generated, and it leads to the precession of the electron
orbits ωcouple [8]. The final result of such interactions is ap-
pearance of the additional magnetic field Bcouple leading to
magnetization Gcouple of the continuum [8].

2. Potential of the non-central action

The system of the two one-electron atoms is assumed. The
force action between the atoms P = −∇UP (r) is a result of
the potential energy UP (r); where: r is a distance between
the atoms; ∇ is the Hamilton operation. When the action P

is conducting non-central by electron e, Fig. 1, the moment
action is written:

M couple
= ρ × P, (1)

where ρ is the position vector of the electron e.

Fig. 1. Electron in the non-central mechanical system of load

The module of the moment (1) equals to:
∣

∣M couple
∣

∣ =
ρP sin ϕ; where ϕ is the angle defined as in Fig. 1. The angle
ϕ describes the preferential direction in the space around the
atom. This direction is perpendicular to the action P, Fig. 1,
and is described by the formula:

ϕ = arccos

∣

∣

∣
J couple

∣

∣

∣

|J | =
mechJ

√

J (J + 1)
, (2)

where
∣

∣

∣
Jcouple

∣

∣

∣
is the projection of the length |J | of the an-

gular moment J on the preferential direction; mechJ is the
mechanical quantum number and J is the resultant quantum
number of the moment J.

The change of the angle ϕ is possible by the rendition of
the work: dA = M coupledϕ = ρP sin ϕdϕ. This work gener-
ates the increase of additional potential energy of the atom to
the value: dUM = dA = ρP sin ϕdϕ. By integrating bilater-
ally the last formula, the potential energy formula is obtained:
UM = −ρP cosϕ + const. Finally, UM = −ρP is written
for const = 0.
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The minimum energy UM corresponds to the place of the
stable equilibrium of the atom when the vectors ρ and P have
a parallel orientation. The analysis of the mechanical state of
the atom under the action of the non-central loading, Fig. 1,
allows to write the equivalent formula which describes the
potential of the non-central action:

UM = −ωcoupleJ . (3)

For description of the total potential energy of the atom it
is required to include not only the energy which is the result
of the change of the distance between the atoms r but also
the effect of the rotation of the atom ϕ:

U = UP (r) + UM (ϕ) . (4)

3. Introduction to the molecular dynamic

of the Cosserat medium

Considering the system i = 1, 2, 3, ..., N of the interaction
atoms of the Cosserat medium, the moment action of the i-
atom is defined at the first step. For the atom with Z electrons
this moment is written as a sum:

M
couple
i =

[

Z
∑

k=1

(ρk × P k)

]

i

, i = 1, 2, 3, ..., N (5)

where ρk, P k are the position vector and the force which
belongs to electron k in the i-atom, respectively. The sum
(5) can be described according to the phenomena of the pre-
cession of the electron orbits in the field of the non-central
mechanical actions:
[

Z
∑

k=1

(ρk × P k)

]

i

= ω
couple
i × J i, i = 1, 2, 3, ..., N, (6)

where J i is the resultant angular moment of the atom num-
ber i which equals to the sum of the orbital Li and spinal Si

angular moment; ω
couple
i is the precession of the vector J i in

the plane perpendicular to the action P i =
Z
∑

1

P k.

For the system of the i = 1, 2, 3, ..., N atoms of the
Cosserat medium, the equations of the molecular dynamics
is written in the form of the Newton equation for straight line

notion mi

d2ri

dt2
= P i, where: mi, ri, P i stand for mass, posi-

tion and force action of the atom number i. Additionally, the
equation of the motion of the angular moment J i is including
every i-atom under the action of the moment M

couple
i :

dJ i

dt
= M

couple
i , i = 1, 2, 3, ..., N. (7)

When the force P i = −∇UP
i is related to the potential of

the central actions UP
i (r), the moment M

couple
i is described

by the potential of the non-central action UM
i (ϕ)

M
couple
i = −dUM

i

dϕi

= ω
couple
i × J i, i = 1, 2, 3, ..., N, (8)

where ϕi is the angle which describes the preferential direc-
tion in the space around the i-atom.

The aim of the analysis of the molecular dynamics of the
Cosserat medium is the solution of the additional system of
Eqs. (7) independent for the Newton equation for straight line
notion.

However, the aim of the presented work is to determine the
precession ω

couple
i experimentally in the spectrometer EPR.

4. Analogy of the description in macroscale

The description of the motion of the angular moment J i of
the i-atoms under the action of the moment M i, presented
by the system of equations (7), concerns the nanoscale. In the
macroscale description, the macroscopic vector of the angular
moment in the elementary volume V is defined in this form:

ℑ =
1

V

N
∑

1

J i. The state of the mechanical polarization is

written by the formula:

dℑ

dt
=

ℑ
couple − ℑ (t)

T
, (9)

where ℑ
couple is the stationary value of the vector ℑ; T is the

time constant of the mechanical polarization. The rotation of
the vector ℑ to the stationary state ℑ

couple is connected with
the rotation of the elementary volume V and belongs to the
continual Cosserat medium.

The mechanical polarization of the vector ℑ leads to the
couple stresses.

5. Quantum nature of the non-central

potential energy

The assumption to eliminate the orbital angular moment by
the action of the crystal field, L = 0, J = S takes place. The
energy contribution due to the electron spin S under a non-
central mechanical loading P, Fig. 1, can be written in this
form:

U couple = −ωcoupleS. (10)

There ωcouple is the precession vector of spin due to load-
ing P. Equation (10) can be re-written in the operator form
as follows:

ŜΦ = Ω
coupleΦ, (11)

there Φ is the wave function, Ω
couple represents the eigenval-

ues of the operator Ŝ

Fig. 2. Precession of the spin components (Sx, Sy , Sz) and magnetic
spin moments (pmx , pmy , pmz ) in nonsymmetrical field (Px, Py , Pz)
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Equation (11) can now be written in terms of the compo-
nents Px, Py , Pz Fig. 2, which correspond to the Schrödinger
equation written in the Cartesian coordinate system:

ŜiΦi = Ω
couple
i Φi, i = x, y, z. (12)

By application the Pauli operators:

Ŝx =
~

2

(

0 1

1 0

)

, (13)

Ŝy =
~

2

(

0 −
√
−1√

−1 0

)

, (14)

Ŝz =
~

2

(

1 0

0 − 1

)

, (15)

and the spin wave functions:

Φx =























Φ+
x =

(

0

1

)

for mechSx
=

1

2

Φ−

x =

(

−1

0

)

for mechSx
= −1

2

(16)

Φy =























Φ+
y =

(

0√
−1

)

for mechSy
=

1

2

Φ−

y =

( √
−1

0

)

for mechSy
= −1

2

(17)

Φz =























Φ+
z =

(

1

0

)

for mechSz
=

1

2

Φ−

z =

(

0

1

)

for mechSz
= −1

2

(18)

where mechSi
, i = x, y, z denotes the spin quantum number

for the axes x, y and z, Eq. (12) has the following form:

ŜiΦi = ~ mechSi
Φi, i = x, y, z. (19)

They are identically satisfied. Using (10) and an analogy
between equations (12) and (19) the eigenfunctions for both
sets of equations can be cast in the form:

U couple
i = ω

couple
i ~ mechSi

, i = x, y, z. (20)

When the mechanical loads are applied to a Cosserat
medium it is expected that the energy levels will split accord-
ing to the value of the quantum numbers mechSi

= ±1/2,
i = x, y, z, resulting in the following energy levels:

mechSi
=

1

2
, U+couple

i = Uo +
~

2
ωcouple

i , i = x, y, z,

(21)

mechSi
= −1

2
, U−couple

i = Uo −
~

2
ωcouple

i , i = x, y, z,

(22)

here Uo denotes the energy level of the undisturbed state. The
difference between two adjacent energy levels is:

∆U couple
i = ~ωcouple

i , i = x, y, z. (23)

For splitting energy (21) and (22) we obtain the couple
line frequency:

ω+couple
i = ωo +

ωcouple

Si

2
, i = x, y, z, (24)

ω−couple
i = ωo −

ωcouple

Si

2
, i = x, y, z, (25)

here ωo is the frequency of the precession of an undisturbed
electron.

Precession of an electron generates the additional magnet-
ic field Bcouple, Fig. 3.

Fig. 3. Magnetic field generation in noncentral interatomic action

Spin energy under the influence of the mechanical load
can now be written as follows:

U couple = −pmS
Bcouple = −pmSi

Bcouple
i , i = x, y, z. (26)

Since:

pmi
= − (gs)

couple

ij ϑ mechSi
, i = x, y, z, (27)

where (gs)
couple
ij is the tensor spin coefficient of spectroscopic

energy levels splitting accounting for noncentral interaction,
ϑ is the Bohr‘s magneton. The energy levels can now be rep-
resented as:

mechSi
=

1

2
,

U+couple
i = Uo +

1

2
(gs)

couple

ij ϑ Bcouple
i ,

i = x, y, z,

(28)

mechSi
= −1

2
,

U−couple
i = Uo −

1

2
(gs)

couple

ij ϑ Bcouple
i ,

i = x, y, z,

(29)

and then an expression for the difference between two adjacent
levels is written:

∆U couple
i = (gs)

couple

ij ϑ Bcouple
i , i, j = x, y, z. (30)
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Comparing (23) and (30) we obtain the condition:

~ωcouple
i = (gs)

couple

ij ϑ Bcouple
i , i = x, y, z. (31)

Due to the interaction spin-orbit, the precession of spin
and the resulting magnetic field Bcouple can generate orbital
motion of the electron. Then condition (31) we write in the
form:

~ωcouple
i = gcouple

ij ϑBcouple
i , i, j = x, y, z, (32)

here ωcouple
i , gcouple

ij , Bcouple
i represents both spin and orbital

effect of the analyzed phenomena. In the case of hydrostatic
loading we have:

ωcouple
i = ωcouple, i = x, y, z, (33)

Bcouple
i = Bcouple, i = x, y, z, (34)

gcouple
i = gcouple, i = x, y, z. (35)

There gcouple denotes the hydrostatic effect factor of the
stressed lattice. For hydrostatic state the condition (32) can
be cast into the form:

~ωcouple = gcoupleϑBcouple. (36)

6. Magnetic polarization

of the Cosserat medium

Taking into consideration the magnetic property of the atom,
the moment action is written in the form:

M couple = pm × Bcouple. (37)

For the system of the i = 1, 2, 3, ..., N interaction atoms
of the Cosserat medium, the additional motion equation of
the molecular dynamics can be described in the form:

d (pm)i

dt
= γ (pm)i × Bcouple

i , i = 1, 2, 3, ..., N, (38)

where γ is the magnetomechanical ratio; (pm)i is the mag-
netic moment of the i-atom; Bcouple

i is the magnetic induction
associated with the non-central interatomic action of the i-
atom.

The aim of the presented work is to determine the mag-
netic induction Bcouple

i by the experimental procedure in the
EPR spectrometer.

By the analogy with the mechanical polarization, the
process of the magnetic polarization of the macroscopic mag-

netization vector G =
1

V

N
∑

1

(pm)i can be described by the

formula:
dG

dt
=

Gcouple − G (t)

T
, (39)

where Gcouple is the magnetization vector in the stationary
state and T is now the notation time constant of the magnetic
polarization.

The phenomenon of the magnetic polarization leads to the
magnetization of the volume V of the Cosserat medium in the
field of the mechanical action.

7. Cosserat medium in cavity

of the EPR spectrometer

The condition of the resonance for the Cosserat medium in
the EPR spectrometer can be written in the following form:

~
(

ω + ωcouple
)

=
(

g + gcouple
)

ϑ
(

Bo + Bcouple
)

, (40)

there ω is an angular velocity of the transverse field in the
spectrometer, g is the spectroscopic factor for an unloaded
crystal, gcouple is the spectroscopic factor describing the inter-
action resulting from the stressed crystallographic lattice, ϑ
is the Bohr‘s magneton, Bo is the induction of the constant
magnetic field of the spectrometer, while ~ = h/2π, in which
h is the Planck constant.

Energy absorption within an atom of the medium placed
in the cavity of the spectrometer can be described by, cf. [8]

N =
ωB1T2

[

Go

(

ω1 + ωcouple
)

− Gcouple (ωo − ω1)
]

1 + [(ωo + ωcouple) − ω]
2
T 2

2

. (41)

Here B1 is the amplitude of the alternating magnetic field
of the spectrometer, Go denotes magnetization caused by the
constant field within the spectrometer, T2 is the lateral re-
laxation time, ω1 = γB1 and ωo = γBo, where γ is the
magneto-mechanical coefficient.

Equations (40), (41) differ in the case when there are no
couple stresses, ωcouple = 0, gcouple = 0, Bcouple = 0 and
Gcouple = 0, [9].

It is expected that the presence of the couple stresses will
be revealed by changes in the resonance frequency, resonance
magnetic induction, the factor of spectroscopic fission, and
resonance energy absorption (which is proportional to the in-
tensity of the EPR signal).

8. Measurements

All measurements were done on the spectrometer ELEXYS
500 manufactured by Bruker of Karlsruhe within the frequen-
cy band X at 9.5 GHz. The spectra were recorded at modula-
tion amplitude of 5 mT and power of the microwave 10 mW.
The specimen tested were the crystals of hydrated copper sul-
fate CuSO4·5H2O while the tests were performed at room
temperature. External hydrostatic loading was executed by
means of chemical and thermal contraction occurring within
an epoxy resin in which the crystals of CuSO4·5H2O were em-
bedded. The epoxy resin E51 was hardened with triethylenete-
tramine (TETA) diluted in toluene. The hardener was applied
in the proportion of 10 weight units per 100 weight units of
the resin. EPR spectra of unloaded (“free”) crystals were then
compared with those obtained for crystals embedded in the
resin and subjected to contraction. A background spectrum of
the resin itself was also measured and its intensity was found
to be several orders of magnitude lower then the intensity of
the spectrum obtained for the CuSO4·5H2O spectrum. Thus,
it was concluded that the “noise effect” was negligible.
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9. Results

The results of the spectral measurements are shown in form
of graphs illustrating the dependence of the EPR signal I on
the constant magnetic field Bo as shown in Fig. 4. For com-
parison the spectra for unloaded and loaded specimens are
shown side by side.

Fig. 4. EPR spectrum of the loaded and unloaded crystal
CuSO4·5H2O

Available parameters:

Sampling Time [s] 0.16384

Field Mod. Amplitude 0.0005

Field Mod. Frequency [Hz] 100000

Microwave Frequency [Hz] 9.75098×10
9 – unloaded crystal

9.46777×10
9 – loaded crystal

Microwave Power [W] 0.0100825

Receiver – Gain 20

Receiver – Time Constant [s] 0.04096

g – factor 2.233 – unloaded crystal

2.187 – loaded crystal

Resonance induction [G] 3117 – unloaded crystal

3090 – loaded crystal

Intensity of EPR signal [units] 51714 – unloaded crystal

102571 – loaded crystal

10. Discussion

A detailed comparison of the EPR spectra obtained for loaded
and unloaded crystals CuSO4·5H2O reveals substantial differ-
ences in the resonance frequencies, resonance magnetic in-
duction, the g-coefficient and the intensity of the signal. The
observed differences are in agreement with the theoretical pre-
dictions obtained from formulae (40) and (41).

These differences are interpreted as manifestation of the
non-central interactions between atoms. At the level of an
unit cell volume the effect should be understood as a proof of

existence of couple stresses predicted by the Cosserat The-
ory for the continuum. These stresses result as the aver-
ages of the atomic interactions. The end result of the ad-
ditional motion of the electrons in form of precession is
the couple stresses. The angular velocity of the precession
is ωcouple = 0.28321 × 109 Hz. The sense of the vector of
precession is opposite to “z” axis, see Fig. 1. The magnet-
ic field generated by the couple stresses is of the magnitude
Bcouple = 27 G. The Larmur precession for Bcouple = 27 G is

calculated: ωL =
e

2m
Bcouple = 0.23744× 109 Hz, where e is

an elementary charge and m is an electron mass. Difference
between ωcouple and ωL is explained by an influence of the
crystal lattice of the CuSO4·5H2O.

The value of the g-coefficient changes from 2.233 to 2.187
for an unloaded and loaded crystal. An intensity of the EPR
signal due to the couple stresses is Icouple = 50 857 units.

Results described here provide a new light into molecular
motion and deformation at nano-scale level. The present mod-
el provides details of the atomic interactions not available in
the currently applied models of atoms of a system of material
points, cf. [10]. This is a valuable insight into the reality of
nanomechanics applied at an atomistic level.

Investigation of the relations between a system of atoms
interacting via nano-couples acting at the atomic level and
the couple stresses observed in the continuum is the essence
of the Nanomechanics pertaining to the Cosserat media. As
the next step we consider incorporation of the nanoeffects
in a form of interatomic couples into the theory of accumu-
lation and propagation of defects in materials, cf. [11]; and
one obtains the macro-description of fracture occurring in the
Cosserat media at the continuum level. An analysis of sys-
tems of atoms subjected to an external stress is helpful in
many areas of Nano-engineering and it may be applicable in
design of molecular devices, in which the behavior of atoms
is controlled by the external loads.
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