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Representation of solutions for fractional differential-algebraic

systems with delays
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Abstract. Linear stationary fractional differential-algebraic systems with delay are studied. The differential operators are taken in the Caputo

sense with its initial condones. An exponential growth is proved for these systems. The obtained result allows one to apply the Laplace

transform for investigation of stationary systems and, as a consequence, to obtain analytical representation of solutions in the form of series

in power of solutions to the determining equations. The results are illustrated by an example.
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1. Introduction

Many papers and books have been recently devoted do the var-

ious types of fractional systems [1–3]. This paper deals with

linear stationary fractional differential-algebraic systems with

delays (FDAD systems), with some equations being fractional

differential (we introduce the Caputo Fractional Derivative),

the other-difference, with some variables being continuous

the other-piecewise continuous. We apply fractional differen-

tial calculus to our investigations especially dealing with the

Laplace transform. For this we prove exponential growth of

solutions. We introduce the determining equations the same as

for differential-algebraic systems (for example see [4] or [5]).

We use the fractional Laplace inverse formulas to obtain our

results.

2. Preliminaries

In this paper we consider algebraic-differential delay systems

with the frictional derivative, for the classical first derivative

such systems are a special case of descriptor (singular) sys-

tems with aftereffect

d

dt




0∫

−h

dsG(t, s)x(t + s) +

0∫

−h

dsQ(t, s)u(t+ s) + F1(t)





=

0∫

−h

dsA(t, s)x(t + s) +

0∫

−h

dsB(t, s)u(t+ s) + F2(t),

where an n-vector function x(·) describes the behavior in

time of the object (process) to be modeled, u(·) is an r-vector

function specifying the input influence (control), the n-vector

functions F1(·) and F2(·) specify perturbations, the entries of

the matrix functions G(t, s), Q(t, s), A(t, s) and B(t, s) of

the corresponding size have a bounded variation with respect

to the second argument on [−h, 0] and h > 0 is the value of

the aftereffect.

In the stationary case of this equation with an operator

G : C([−h, 0],Rn) → R
n atomic at zero, the study of the

existence, uniqueness, exponential estimate, and stability of

solutions as well as their representation by the variation-of-

constants formula can be found in [6, 7]. All these problems

remain open in the general case for nonatomic operators.

Now we consider a special case of the above-represented

schemes, namely, linear algebraic-differential systems with de-

lay in the state.

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t), t > 0,

x2(t) = A21x1(t) +A22x2(t− h) +B2u(t), t ≥ 0,
(1)

For the above system see [8].

In this paper, we concentrate on the stationary FDAD sys-

tem in the following form:

(CDα
t x1)(t) = A11x1(t) +A12x2(t) +B1u(t), t > 0,

x2(t) = A21x1(t) +A22x2(t− h) +B2u(t), t ≥ 0,
(2)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 , u(t) ∈ R
r, A11 ∈ R

n1×n1 ,

A12 ∈ R
n1×n2 , A21 ∈ R

n2×n1 , A22 ∈ R
n2×n2 , B1 ∈ R

r×n1 ,

B2 ∈ R
r×n2 are constant (real) matrices, 0 < h is a constant

delay. We regard an absolute continuous n1-vector function

x1(·) and a piecewise continuous n2-vector function x2(·) as

a solution of System (2) if they satisfy the equation (2)1 for

almost all t > 0 and (2)2 for all t ≥ 0.

System (2) should be completed with initial conditions:

x1(+0) = x0, [(CDα−1
t x1)(t)]t=0 = x0,

x2(τ) = ψ(τ), τ ∈ [−h, 0),
(3)

where

x0 ∈ R
n1 ; ψ ∈ PC([−h, 0),Rn2)

and

PC([−h, 0),Rn2)
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denotes the set of piecewise continuous n2-vector-functions

in [−h, 0]. Observe that x2(t) at t = 0 is determined from

Eq. (2)2.

Let us introduce the following notation:
CDα

t is the left-sided Caputo fractional derivatives of or-

der α defined by

(CDα
t f)(t) =

1

Γ(1 − α)

t∫

0

(
d
dτ
f(τ)

)

(t− τ)α
dτ,

where 0 < α ≤ 1, α ∈ R and Γ(t) =
∫
∞

0
e−ττ t−1dτ is

the Euler gamma function. Similarly we define the fractional

integral Iα
t

Iα
t f(t) =

1

Γ(α)

t∫

0

f(τ)

(t− τ)1−α
dτ,

(see [1] for more details).

Tt = limǫ→+0

[
t− ǫ

h

]
, where the symbol [z] means en-

tire part of the number z; In is the identity n by n matrix.

3. Evaluation of solutions

Lemma 3.1. [6] If c ≥ 0, f(t) ≥ 0, g(t) ≥ 0 are continuous

and

f(t) ≤ c+

t∫

0

f(τ)g(τ)dτ, t > 0,

then

f(t) ≤ c exp




t∫

0

g(τ)dτ



 , t > 0.

Now, we can formulate the following.

Theorem 3.2. For each solution to system (2) corresponding

to initial condition (3), where maxt∈[−h,0] ‖ψ(t)‖ = M1, and

control u(·) whose growth rate does not exceed an exponen-

tial one, i.e. ‖u(t)‖ ≤ M2e
σt, t ≥ 0 (M2, σ are positive

constants), positive numbers L and γ can be found such that

‖x1(t)‖ ≤ Leγt, ‖x2(t)‖ ≤ Leγt, t ≥ 0, where L and γ may

depend only on M1, M2, σ and the parameters of the system.

Proof. Let us put

x1(τ) = 0, x2(τ − h) = 0, for τ < 0. (4)

Multiplying (2)1 by e−βt, where β is an arbitrary positive

number, we obtain

e−βt(CDα
t x1)(t) = A11e

−βtx1(t)+

+A12e
−βtx2(t) +B1e

−βtu(t).
(5)

Taking β such that e−βt < 1, we have

(CDα
t x1)(t) ≤ A11e

−βtx1(t)+

+A12e
−βtx2(t) +B1e

−βtu(t).
(6)

Solving the equation (2)2 “step-wise”, we obtain the repre-

sentation

x2(t) =

Tt∑

k=0

(A22)
kA21x1(t− kh)+

+ (A22)
Tt+1ψ(t− Tth− h) +

Tt∑

k=0

(A22)
kB2u(t).

Substituting this equality into (5) and integrating by Iα
t with

respect to τ from 0 to t, we obtain the relation

x1(t) ≤ x0 +
1

Γ(α)

t∫

0

1

(t− τ)1−α
(A11)e

−βτx1(τ)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
A12

Tτ∑

k=0

(A22)
kA21e

−βτx1(τ − kh)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
A12(A22)

Tτ +1e−βτψ(τ − Tτh− h)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
A12

Tτ∑

k=0

(A22)
kB2e

−βτu(τ − kh)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
B1e

−βτu(τ)dτ.

(7)

By (4) and (7), we have

x1(t) ≤ x0 +
1

Γ(α)

t∫

0

1

(t− τ)1−α
(A11)e

−βτx1(τ)dτ+

+
1

Γ(α)

Tt∑

k=0

t∫

0

1

(t− τ)1−α
A12(A22)

kA21e
−βτx1(τ − kh)dτ+

+
1

Γ(α)

Tt−1∑

k=0

(k+1)h∫

kh

1

(t− τ)1−α
A12(A22)

k+1·

·e−βτψ(τ − kh− h)dτ+

+
1

Γ(α)

t∫

Tth

1

(t− τ)1−α
A12(A22)

Tτ +1·

·e−βτψ(τ − Tτh− h)dτ+

+
1

Γ(α)

Tt∑

k=0

t∫

0

1

(t− τ)1−α
A12(A22)

kB2e
−βτu(τ − kh)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
B1e

−βτu(τ)dτ.

(8)
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Then we obtain

x1(t) ≤ x0 +
1

Γ(α)

t∫

0

1

(t− τ)1−α
(A11)e

−βτx1(τ)dτ+

+
1

Γ(α)

t−kh∑

k=0

t∫

0

1

(t− τ)1−α
A12(A22e

−βh)kA21e
−βτx1(τ)dτ+

+
1

Γ(α)

Tt−1∑

k=0

0∫

−h

1

(t− τ)1−α
A12(A22e

−βh)k+1e−βτψ(τ)dτ+

+
1

Γ(α)

t−Tth−h∫

−h

1

(t− τ)1−α
A12(A22e

−βh)Tτ+1e−βτψ(τ)dτ+

+
1

Γ(α)

Tt∑

k=0

t−kh∫

0

1

(t− τ)1−α
A12(A22e

−βh)kB2e
−βτu(τ)dτ+

+
1

Γ(α)

t∫

0

1

(t− τ)1−α
B1e

−βτu(τ)dτ.

(9)

Evaluating (9) in the norm, we have

‖x1(t)‖ ≤ ‖x0‖+

1

Γ(α)

(
‖|A12‖

+∞∑

k=0

‖A22e
−βh‖k‖A21‖ + ‖A11 − βIn1

‖

)
·

·

t∫

0

‖
e−βτ

(t− τ)1−α
‖‖x1(τ)‖dτ+

+
1

Γ(α)

0∫

−h

‖A12‖
+∞∑

k=0

‖A22e
−βh‖k·

·‖A22‖‖ψ(τ)‖e−βh‖
e−βτ

(t− τ)1−α
‖dτ+

+
1

Γ(α)

(
‖A12‖

+∞∑

k=0

‖A22e
−βh‖k‖B2‖ + ‖B1‖

)
·

·

t∫

0

‖u(τ)‖‖
e−βτ

(t− τ)1−α
‖dτ, t > 0.

(10)

Taking β > 0 such that

‖A22e
−βh‖ < 1, β − σ > 0,

t∫

0

‖
e(σ−β)τ

(t− τ)1−α
‖dτ < 1,

we have

‖x1(t)‖ ≤ ‖x0‖+

+
1

Γ(α)

0∫

−h

‖A12‖

1 − ‖A22e−βh‖
‖A22‖M1e

−βhe−βτdτ+

+
1

Γ(α)

(
‖A12‖‖A21‖

1 − ‖A22e−βh‖
‖ + ‖A11‖

) t∫

0

‖x1(τ)‖dτ+

+
1

Γ(α)

(
‖A12‖‖B2‖

1 − ‖A22e−βh‖
+ ‖B1‖

)
M2, t > 0.

(11)

Hence, we obtain

‖x1(t)‖ ≤ ωβ +Nβ

t∫

0

‖x1(τ)‖dτ, (12)

where

Nβ =
1

Γ(α)

(
‖A12‖‖A21‖

1 − ‖A22e−βh‖
‖ + ‖A11‖

)
,

ωβ = ‖x0‖ +
1

Γ(α)

‖A12‖

1 − ‖A22e−βh‖
‖A22‖M1

(1 − e−βh)

β
+

1

Γ(α)

(
‖A12‖‖B2‖

1 − ‖A22e−βh‖
+ ‖B1‖

)
M2 ≤ Kβ,

Kβ = ‖x0‖ +
1

Γ(α)

‖A12‖

1 − ‖A22e−βh‖
‖A22‖M1

1

β
+

1

Γ(α)

(
‖A12‖‖B2‖

1 − ‖A22e−βh‖
+ ‖B1‖

)
M2.

By Lemma 1, we have

‖x1(t)‖ ≤ Kβe
Nβt.

By the substitution γ = Nβ , L1 = Kβ , we obtain

‖x1(t)‖ ≤ L1e
γt. (13)

We proof evaluation of x2(t), t ≥ 0 by the induction on

intervals: t ∈ [((k−1)h, kh), k = 1, 2, . . .. We define L such

that

L ≥ max

{
L1, ‖A21‖L1 + ‖A22‖M1+

+‖B2‖M2,
‖A21‖L1 + ‖B2‖M2

1 − ‖A22e−γh‖

} (14)

then we have

L ≥ ‖A21‖L1 + L‖A22‖e
−γh + ‖B2‖M2.

First, for k = 1, t ∈ [0, h), we obtain

‖x2(t)‖ ≤ ‖A21‖‖x1(t)‖+

+‖A22‖ max
t∈[−h,0]

‖ψ(t)‖ + ‖B2‖‖u(t)‖ ≤

+ ≤ ‖A21‖L1e
γt + ‖A22‖M1 + ‖B2‖M2e

σt ≤

+ ≤ (‖A21‖L1 + ‖A22‖M1 + ‖B2‖M2) e
γt ≤ Leγt
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then

‖x2(t)‖ ≤ Leγt, (15)

is true for k = 1, t ∈ [0, h). Assuming that (15) holds for

i = 1; . . . ; k − 1, t ∈ [0, (k − 1)h) let us prove it holds true

for k = p, t ∈ [(k − 1)h, kh) i.e.,

‖x2(t)‖ ≤ ‖A21‖‖x1(t)‖+

+‖A22‖‖x2(t− h)‖ + ‖B2‖‖u(t)‖ ≤

+ ≤ ‖A21‖L1e
γt + ‖A22‖Le

γ(t−h) + ‖B2‖M2e
σt ≤

+ ≤
(
‖A21‖L1 + ‖A22‖Le

−γh + ‖B2‖M2

)
eγt ≤ Leγt.

This completes the proof.

4. Representation of solutions into series

of determining equations solutions

Let us introduce the determining equations of system (2) (see

[8] for more details).

X1,k(t) = A11X1,k−1(t)+

+A12X2,k−1(t) +B1Uk−1(t),

X2,k(t) = A21X1,k(t) +A22X2,k(t− h)+

+B2Uk−1(t), k = 0, 1, . . . ;

(16)

with initial conditions

X1,k(t) = 0, X2,k(t) = 0 for t < 0 or k ≤ 0;

U0(0) = In, Uk(t) = 0 for t2 + k2 6= 0.

Here, we establish some algebraic properties of X1,k, X2,k.

Proposition 4.1. The following identities hold:

(
A11 +A12(In2

− ωA22)
−1A12

)k
·

·
(
B1 +A12(In2

− ωA22)
−1B2

)
=

=

+∞∑

j=0

X1,k+1(jh)ω
j , k = 0, 1, . . . ;

(17)

(In2
− ωA22)

−1A12

(
A11 +A12(In2

− ωA22)
−1A12

)k
·

·
(
B1 +A12(In2

− ωA22)
−1B2

)
=

+∞∑

j=0

X2,k+1(jh)ω
j , k = 1, 2, . . . ;

(18)

(In2
− ωA22)

−1B2 =

+∞∑

j=0

X2,0(jh)ω
j , (19)

where |ω| < ω1 and ω1 is a sufficiently small real number.

Let us introduce the determining equations of homoge-

nous system (2).

X̃1,k(t) = A11X̃1,k−1(t) +A12X̃2,k−1(t),

X̃2,k(t) = A21X̃1,k(t) +A22X̃2,k(t− h),

t ≥ 0, k = 1, 2, . . . ;

(20)

with initial conditions

X̃1,k(t) = 0, X̃2,k(t) = 0 for t < 0 or k ≤ 0;

X̃1,1(0) = 0, X̃1,1(τ) = 0 if τ 6= 0.

Similar to Proposition 1 we can formulate the following.

Proposition 4.2. The following identities hold:

(
A11 +A12(In2

− ωA22)
−1A12

)k
=

=

+∞∑

j=0

X̃1,k+1(jh)ω
j , k = 1, 2, . . . ;

(21)

(In2
−ωA22)

−1A12

(
A11+A12(In2

−ωA22)
−1A12

)k
=

=

+∞∑

j=0

X̃2,k+1(jh)ω
j , k = 1, 2, . . . ;

(22)

where |ω| < ω1 and ω1 is a sufficiently small real number.

Theorem 4.3. The solution to system (2) with initial condi-

tions (3) for t ≥ 0 exists, is unique and can be represented by

the following formulas:

x1(t) =

+∞∑

k=0

∑

i
t−ih>0

X1,k+1(ih)·

·

t−ih∫

0

(t− τ − ih)αk+α−1

Γ(α(k + 1))
u(τ)dτ + s1(t, x0, ψ),

(23)

x2(t) =

+∞∑

k=0

∑

i
t−ih>0

X2,k+1(ih)·

·

t−ih∫

0

(t− τ − ih)αk+α−1

Γ(α(k + 1))
u(τ)dτ+

+
∑

i
t−ih>0

X2,0(ih)u(t− ih) + s2(t, x0, ψ),

(24)

where s1(t, x0, ψ), s2(t, x0, ψ) – functions depending only on

the initial data:

s1(t, x0, ψ) =

+∞∑

k=0

∑

i,j

t−(i+j)h>0

X̃1,k+1(ih)A12(A22)
i+1·

·

t−(i+j)h∫

0

(t− τ − (i+ j)h)αk+α−1

Γ(α(k + 1))
ψ(τ − h)dτ+

+

+∞∑

k=0

∑

j
t−jh>0

(t− jh)αk

Γ(αk + 1)
X̃1,k+1(jh)x0,

610 Bull. Pol. Ac.: Tech. 58(4) 2010
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s2(t, x0, ψ) =

+∞∑

k=0

∑

i,j

t−(i+j)h>0

X̃2,k+1(ih)A12(A22)
i+1·

·

t−(i+j)h∫

0

(t− τ − (i+ j)h)αk+α−1

Γ(α(k + 1))
ψ(τ − h)dτ+

+∞∑

k=0

∑

j
t−jh>0

(t− jh)αk

Γ(αk + 1)
X̃2,k+1(ih)x0+

+

+∞∑

i=0

(A22)
i+1ψ(t− (i+ 1)h)),

where ψ(τ) ≡ 0 for τ /∈ [−h, 0).

Proof. First we use the classical formula for the Laplace trans-

formation of the fractional derivative of Eq. (2)1

∞∫

0

e−pt(CDα
t x1)(t)dt =

= pαx̆1(p) − pα−1[(CDα−1
t x1)(t)]t=0 =

= pαx̆1(p) − pα−1x0.

We apply the Laplace transform to system (2)

pαx̆1(p) − pα−1x0 =

= A11x̆1(p) +A12x̆2(p) + B1ŭ(p),
(25)

x̆2(p) = A21x̆1(p) +A22e
−phx̆2(t)+

+A22e
−ph

0∫

−h

e−pτψ(τ)dτ +B2ŭ(p),
(26)

where x̆1(p), x̆2(p), ŭ(p) are Laplace transforms of functions

x1(t), x2(t), u(t) respectively. Solving (26), we obtain

x̆2(p) =
(
In2

−A22e
−ph
)−1

A12x̆1(p)+

+
(
In2

−A22e
−ph
)−1

A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

+
(
In2

−A22e
−ph
)−1

B2ŭ(p),

(27)

x̆1(p) =
(
pαIn1

−A11 −A12

(
In2

−A22e
−ph
)−1

A21

)−1

×

×

(
A12

(
In2

−A22e
−ph
)−1

A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

+pα−1x0 +
(
B1 +A12

(
In2

−A22e
−ph
)−1

B2

)
ŭ(p)

)
=

=
+∞∑

k=0

1

(pα)k+1

(
A11 +A12

(
In2

−A22e
−ph
)−1

A21

)k

×

×

(
A12

(
In2

−A22e
−ph
)−1

A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

pα−1x0 +
(
B1 +A12(In2

− ωA22)
−1B2

)
ŭ(p)

)
.

(28)

Applying Propositions 4.1 and 4.2 to (27) and (28) we obtain

x̆1(p) =

+∞∑

k=0

1

(pα)k+1

+∞∑

j=0

e−jphX̃1,k+1(jh)A12

(
In2

−A22e
−ph
)−1

·

·A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

+∞∑

k=0

1

pαk+1

+∞∑

j=0

e−jphX̃1,k+1(jh)x0+

+

+∞∑

k=0

1

(pα)k+1

+∞∑

j=0

e−jphX1,k+1(jh)ŭ(p),

(29)

x̆2(p) =

+∞∑

k=0

1

(pα)k+1

+∞∑

j=0

e−jphX̃2,k+1(jh)·

·A12

(
In2

−A22e
−ph
)−1

A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

+

+∞∑

k=0

1

pαk+1

+∞∑

j=0

e−jphX̃2,k+1(jh)x0+

+

+∞∑

k=0

1

(pα)k+1

+∞∑

j=0

e−jphX̃2,k+1(jh)ŭ(p)+

+
(
In2

−A22e
−ph
)−1

A22e
−ph

0∫

−h

e−pτψ(τ)dτ+

+

+∞∑

j=0

e−jphX̃2,0(jh)ŭ(p).

(30)

By the inverse Laplace transform the proof of theorem 4.1 is

complete.
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5. Example

Let us consider the following system:

(CDα
t x1)(t) =

[
1
]
x1(t)+

+
[
0 −1

]
x2(t) +

[
1
]
u(t), t > 0,

x2(t) =

[
0

1

]
x1(t)+

+

[
0 1

0 0

]
x2(t− h) +

[
1

0

]
u(t), t ≥ 0,

with initial conditions and control:

x0 ∈ R, ψ(τ) ∈ R
2, τ ∈ [−h, 0), u(t) ≡ 0.

First compute the solutions of the determining system:

X̃1,1(0) = 1, X̃1,2(0) = A11 +A12A21 = 0,

X̃1,k(0) = 0, k ≥ 2, X̃1,k(t) = 0, k ≥ 1

and t ≥ 0, by Theorem 1 we may compute x1(t).

X̃2,1(0) =

[
0

1

]
,

X̃2,2(0) = A21X̃1,2(0) +A22X̃2,2(−h) =

[
0

0

]
,

X̃2,k(0) =

[
0

0

]
, k ≥ 2.

For t = h we get

X̃2,1(h) = A21X̃1,1(h) +A22X̃2,1(0) =

[
1

0

]
,

X̃2,2(h) = A21X̃1,2(h) +A22X̃2,2(0) =

[
0

0

]
,

X̃2,k(h) =

[
0

0

]
, k ≥ 2,

X̃2,1(2h) = A21X̃1,1(2h) +A22X̃2,1(h) =

[
0

0

]
,

X̃2,k(jh) =

[
0

0

]
, k ≥ 1

and j ≥ 2 by Theorem 1 we may compute x2(t).
Solving our system “step by step” we get:

for t ∈ [0, h]

(CDα
t x1)(t) =

[
1
]
x1(t) +

[
0 −1

]
x2(t) = 0,

x1(t) ≡ x0,

x2(t) =

[
0

1

]
x1(t) +

[
0 1

0 0

][
ψ1(t− h)

ψ2(t− h)

]
=

[
ψ2(t− h)

x1(t)

]
,

x2(t) =

[
ψ2(t− h)

x0

]
.

for t ∈ [h, 2h]

(CDα
t x1)(t) =

[
1
]
x1(t) +

[
0 −1

]
x2(t) = 0,

x1(t) ≡ x0,

x2(t) =

[
0

1

]
x1(t) +

[
0 1

0 0

][
ψ2(t− h)

x0

]
=

[
x0

x0

]
,

x2(t) =

[
x0

x0

]
.

for t ≥ 2h

(CDα
t x1)(t) =

[
1
]
x1(t) +

[
0 −1

]
x2(t) = 0,

x1(t) ≡ x0,

x2(t) =

[
0

1

]
x1(t) +

[
0 1

0 0

] [
x0

x0

]
=

[
x0

x0

]
,

x2(t) =

[
x0

x0

]
.

Finally, we see that these two methods give the same solution.

6. Conclusions

Thus, in this work the exponential estimate for the growth rate

of solutions to the stationary FDAD systems is proved. This

allows one to apply the Laplace transform to such systems.

This provides considerable simplification of the representa-

tion of solutions to the FDAD systems. The solutions found

in it have important applications in qualitative control theory

in FDAD systems. This will be discussed in next papers.
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