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Abstract. A model of city traffic based on Nagel-Schreckenberg cellular automaton (CA) model is presented. Traffic control is realized

at intersections with two conflicting streams each (at any time at most one stream can have “green light” assigned to it). For simple and

regular lattice-like networks which are considered, it is easy to find optimal switching periods giving maximum possible flow rates. These

optimal strategies are compared with a self-controlling approach proposed by [1], which has not been implemented in a CA model until now.

Previous work proved that generally this method gives superior results when compared to classical methods. In this paper we show that for

deterministic scenario such control leads to self-organization, and that the solution always quickly converges to the optimal solution which

is known in this case. Moreover, we consider also non-deterministic case, in the sense that possibility of turning with given probability is

allowed. It is shown that the self-controlling strategy always gives better results than any solution based on fixed cycles with green waves.
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1. Introduction

Many real complex systems such as vehicular traffic or pro-

duction networks are characterized by complicated dynamics

of the underlying transportation processes. Undoubtedly, op-

timization in terms of time and cost is of vital importance in

such systems. However, due to highly complicated dynamics

it is not an easy task. Lack of the efficient optimization can

be seen, for example, in everyday life when spending hours

waiting in traffic jams. It is difficult to reasonably calculate

economical costs connected with vehicle delays, nevertheless,

one can be sure that they must be huge. For example, in

Copenhagen the economic loss due to vehicle delays is about

�750 millions per year [2], while in the entire Germany the

damage is estimated to be of order $100 billion each year [3].

Emissions of gases are significant and can be compared with

industrial pollution. All these problems are especially burden-

some in large cities and agglomerations.

Flow of vehicles in an urban street network is almost en-

tirely controlled by traffic lights. Consequently by choosing

signal control schemes one has a large impact on average

fuel consumption and travel times. One of the most popular

ways of optimizing traffic is to choose pre-calculated schemes,

which are aimed at synchronizing green times along a one-

way or two-way main arterials. In principle such methods

force the traffic flow to comply with previously designed pat-

terns in order to minimize travel times. However, since traffic

demand varies, there is a need for some responsiveness to the

current traffic state. The simplest way is to use pre-calculated

green times for different times of a day and for different week-

days – traffic varies significantly between Friday afternoon and

Sunday night. Nevertheless, any deviation of traffic intensity

from its averaged values for which the scheme was calculated

must inevitable lead to some inefficiency. Such deviations are

always present in any real traffic system.

In order to improve efficiency of control methods it is nec-

essary to implement an on-line optimization techniques based

on real time traffic intensity observations. This can be done in

a centralized system, in which there exists a central unit pos-

sessing all information concerning current state of the traffic

and it calculates optimal control schemes. However, there are

many problems with this approach. Firstly, all the measuring

devices must be connected to the central unit, secondly it is

not easy to find the optimal solution: in general the problem

can be stated as NP-hard [4] and significant amount of com-

putational time is required. Moreover, the solution is found

for averaged flow rates from the past which certainly will not

be repeated in the future exactly. Therefore there is a recent

trend towards decentralized and self-organizing optimization

techniques [5–7] which instantly respond to the current traffic

state (known, e.g., from vehicle detectors mounted at some

distance before an intersection).

In this paper we shortly discuss methods used in traffic

modeling and some important features of vehicular flow. Then

we present our cellular automaton city traffic model which is

essentially similar to that by [8] and apply it to flows in the

simplest possible networks. Finally self-organizing controlling

strategy proposed by [1] is implemented on the top of the CA

model.

1.1. Traffic models. Movement of vehicles is an example of

a self-driven many-particle system driven far from equilibri-

um. There are many different approaches for modeling such

systems, for excellent reviews see [3, 9]. Roughly we can di-

vide them into two categories: microscopic and macroscopic.

In the former attention is paid to each individual vehicle repre-
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sented by a particle. Interactions among the particles depend

on the way the vehicles influence each other. Macroscopic

models describe collective vehicle dynamics in terms of the

spatial vehicle density per lane ρ and the average velocity V
as a function of the location x and time t. They are often

suitable for analytical investigation, ensure simple treatment

of inflows, enable simulations of several lanes by effective

one-lane models with certain probabilities of overtaking.

The microscopic models include:

• Follow-the-leader models in which it is assumed that the

acceleration is determined be vehicles in front of the driver

(e.g., intelligent driver model);

• Coupled-map lattice models in which dynamical equations

for individual vehicles are formulated as discrete dynami-

cal maps that relate states at time t and t+1 (velocity and

acceleration are continuous variables);

• Cellular automata (CA) models in which each vehicle is

represented by an occupied cell in a CA model (e.g., the

Nagel-Schreckenberg models and its variants).

The macroscopic models include, among others:

• Fluid dynamical models (kinematic waves, incompressible

Navier-Stokes-like momentum equations);

• Gas-kinetic models (based on an equation for the phase-

space density ρ(x, v, t)).

First models for traffic flows appeared already in 1950s,

today there are tens of variations of them [3, 9]. Each model of

vehicular traffic should resemble flow phenomena observed in

different circumstances: transitions from one dynamical phase

to another (generally there are three dynamical phases of the

flow: free-flow, synchronized flow, stop-and-go flow), critical-

ity and self-organized criticality, metastability and hysteresis,

phase-segregation, etc.

2. City traffic model

The city traffic model used in this paper is essentially simi-

lar to the one presented in [8] (BBSS). There are N2 nodes

(intersections) Ii,j , i = 1, . . . , N , j = 1, . . . , N , which form

a square lattice. Each node has two incoming links: one from

west-side and one from south-side, and two leaving links:

one towards east-side and one towards north-side. Each node

makes a decision which traffic stream should be served (i.e.,

decide which stream gets “green light”): the one from west

towards east or the one from south towards north. Additional-

ly a setup time τ can be specified. This is the amount of time

which must pass when switching between streams. During the

setup time all the streams have “red light” (or “orange light”)

and in reality this stage fulfills safety requirements and allows

vehicles to leave the intersection. A sample 4 × 4 network is

depicted in Fig. 1.

Fig. 1. A sample 4×4 net with link length C = 50. Vehicles leaving

at east and north side are placed back on beginning of links at the

west and south side. At the nodes: triangles represent flow direc-

tion (“green light” for each stream), rectangles identify nodes during

setup time. Vehicles on links are represented by small rectangles

Through this paper we assume periodic boundary condi-

tions. This means that vehicles leaving nodes placed at east

and north boundaries, Ii=N,j and Ii,j=N , will be placed again

at corresponding links at west and south boundaries which are

connected to Ii=1,j and Ii,j=1 respectively. Therefore the to-

tal number of vehicles in such network remains constant and

depends solely on initial conditions.

2.1. A single link. Each link in a network represents a single-

lane street which is a one-dimensional cellular automaton with

C cells. An occupied cell n symbolizes a single vehicle, there-

fore number of cells per lane should be chosen in such a way

that the physical size of a cell is about the size of the vehicle.

A discrete, integer variable vn corresponding to the vehicle

velocity is associated with each occupied cell. At each dis-

crete time step t → t + 1 the state of automaton is updated

according to certain rules. Let the maximum allowed velocity

be vmax and the distance to the next vehicle dn, then in the

classical model by [10], the four consecutive steps for parallel

updating 1 are:

1. Acceleration: vn → min(vn + 1, vmax),
2. Breaking: vn → min(vn, dn − 1),
3. Randomization with probability P : vn → max(vn −1, 0),
4. Vehicle movement: xn → xn + vn.

All steps of this is basic model are necessary to reproduce

the basic features of real traffic flow, like, e.g., the fundamen-

tal diagram. Step 1 represents driver tendency to drive as fast

1Parallel updating essentially means that all these steps are applied for all the vehicles at the same time. Note that these rules guarantee that the system is
accident-free. In contrast to parallel updating, there is also possibility to do it in random sequential manner which gives different results and, e.g., does not

lead to spontaneous traffic jam formation [2].
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as possible, step 2 is necessary to avoid collisions and step 3

introduces random perturbations necessary to trigger sponta-

neous jam formation (which is a real phenomenon in traffic

dynamics due to random changes of vehicle velocity in re-

gions with high density). Finally, in step 4 the vehicles are

moved according to the new velocity calculated in steps 1–3.

There exists many modification of the Nagel-Schreckenberg

model (NaSch), like incorporating cruise control where the

fluctuations are turned off for vn = vmax [11] or implement-

ing slow-to-start rule [12] and many others.

Through this paper we use vmax = 5, which should be

equivalent to about 50 km/h in a real city traffic flow. Then,

assuming that a single cell corresponds to a real size of 7.5 m

(a vehicle length with safety distance in front and behind it),

each step is about 2 seconds in real time. All the results pre-

sented below are calculated for automata with C = 100 or

C = 50 cells, all vehicle velocities are 0 and vehicles are

placed at random positions in a link in the initial state.

Fig. 2. Phase diagram showing movement of vehicles in a cellular au-

tomaton with NaSch rules. Each line represents a single vehicle, the

maximum velocity is vmax = 5, there are 100 cells, black color cor-

responds to the maximum velocity. Top: ρ = 0.16, P = 0.0, the den-

sity is close to ρmax = 0.17, there are no fluctuations and resulting

flow J = 0.8 is near its maximum (Jmax = 0.83 for ρmax = 0.17).

Bottom: due to the presence of fluctuations, P = 0.25, traffic jams

are spontaneously formed and the mean flow is significantly reduced,

J = 0.503

Figure 2 shows simulation of classical NaSch cellular au-

tomaton, i.e., a single link of our network. Again, the bound-

ary conditions are periodic, i.e., the end of the street is con-

nected with its beginning. The density ρ = m/C is simply

the number of vehicles m in the initial state divided by to-

tal number of cells in the link, C. For the density ρ = 0.16

(which means that 16 cells are occupied in an automaton con-

sisting of 100 cells) and P = 0 the flow is in its free-flow

state, that is, all the vehicles quickly reach their maximum

velocity vmax without any stops. However, when fluctuations

are introduced, P = 0.25, one can see spontaneous traffic jam

formation.

Of course, for given vmax there exists a maximum den-

sity for which all the vehicles can move freely with vmax,

ρmax = v−1
max. If this density is exceeded, there exists at least

one vehicle which has less than vmax occupied cells in front

of it, and therefore is forced to slow down.

Relation between mean flow (number of vehicles leaving

a street per unit time) and density, J(ρ), is known as the

fundamental diagram. The diagram for the NaSch model is

presented in Fig. 3. Maximum value of flow J determines

the critical density ρmax above which the flow is no longer

in free-flow state. Notice that including fluctuations decreases

flow rate significantly.

Fig. 3. Fundamental diagram for NaSch CA model. Mean flow rate

J(ρ) against vehicle density is shown. Notice the influence of differ-

ent fluctuation probabilities P (J(ρ) for P = 0 has a simple exact

analytical solution)

In deterministic limits P = 0 and P = 1 it is possible to

find dependence J(ρ) exactly. For P = 0, in free flow regime,

we have simply J = ρvmax, if ρ > ρmax the average headway

distance is 1/ρ− 1, giving average flux 1 − ρ, so for P = 0,

J(ρ) = min(ρvmax, 1−ρ). On the other hand, for P = 1, the

flow rate is always zero, J(ρ) = 0 since vehicles are not able

to accelerate. Although in this case for ρ < (vmax − 1)−1 it

is possible to obtain a metastable state in which all vehicles

travel with velocity vmax − 1, such flow breaks down if any

perturbations are present [9].

All results presented below are for the deterministic lim-

it P = 0. This is somewhat artificial assumption, however it

makes possible to fully define self-controlling nodes described

in Subsec. 3.2.

2.2. Intersections. As already mentioned above, each link

connects to a node which represents intersection of two

streams. Each intersection gives “green light” to either west-

east or south-north streams. There is an intermediate period

between switching from “red” to “green” and “green” to “red”,
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the setup time which takes τ steps. During the setup time no

vehicle is allowed to pass the intersection.

In order to implement these rules into the model, we

change rule 2 of the automata according to the BBSS model

into:

2. Breaking:

• Traffic light at the intersection to which the link is

connected is “red” or the intersection is in setup time:

vn → min(vn, dn − 1, sn − 1)

• Traffic light is “green”: if two cells behind the inter-

section are occupied: vn → min(vn, dn − 1, sn − 1),
otherwise vn → min(vn, dn − 1),

where sn is the distance between vehicle n and its next inter-

section. The main difference between the model applied here

and the BBSS model is introduction of the setup time. The

nonzero case τ 6= 0 does not change general features of the

flow, however, it makes possible to relate flow rates direct-

ly with these for networks with self-controlling nodes (such

nodes require τ 6= 0). Throughout this paper we always use

τ = 2 (steps).

3. Controlling strategies

3.1. Periodic switching. The simplest possible strategy for

control in nodes is to use cycle-based switching. For each

node the cycle is

• “red light” for T steps

• setup time for τ steps

• “green light” for T steps

• setup time for τ steps

giving 2T + 2τ steps in total. Additionally we allow phase

shifts T φ for different nodes in network. This means that the

first step of the cycle is realized at time step t + T φ.

3.2. Self-controlled nodes. In contrast to the imposing cycle-

based control process described above, we will consider a re-

sponsive self-controlling strategy proposed by [1] (LH). Here

we only briefly sketch the general approach, for more detailed

information see the paper by Lämmer and Helbing (the sym-

bols used here are the same as in the cited work).

Let σ denote the stream which should be open for service

(i.e., should get “green light”),

σ =

{

head Ω if Ω 6= ∅

arg maxi πi otherwise,

where Ω is an ordered set containing stream indices which

should be served in order to maintain stability, πi is a priority

index for the corresponding stream i. The controller realizes

combination of two control strategies. One is called stabiliza-

tion strategy which assures that each stream will be served at

least once in Tmax period and, on average, once in Tavg. If

a stream i should be served in order to fulfill these require-

ments, its index is placed into the Ω set.

If set Ω is empty, Ω = ∅, a stream with the highest pri-

ority index πi is chosen for serving. The priority indices π
are chosen in such a way that the total expected waiting time

for vehicles is minimized. This control regime works well for

small densities and consequently Ω = ∅ when ρ is small.

The priority index for stream i, provided that currently

served stream is σ, is defined as

π =
n̂i

τpen
i,σ + τ + ĝi

,

where n̂i is number of vehicles expected to be served in time

τ + ĝi for the stream i, τ is the remaining setup time, ĝi is

time required to clear existing queue at the intersection and

all vehicles arriving just after clearing, provided that they ar-

rive with the maximum flow rate (i.e., as a platoon traveling

with vmax), τpen
i,σ is the additional penalty term for switching

from stream σ to i.
Let us consider two streams: σ (with “green light”) and i

(with “red light”) for flows with densities ρ < ρmax (the same

for each stream). The prioritization strategy will determine

wheter to continue serving σ or start serving i in such a way

that the expected waiting time for all vehicles is minimized.

For example, if σ is being open, it may be more efficient to

leave it open in order to serve approaching platoon instead of

switching to i (where vehicles queue grows). Moreover, each

switching is penalized due to presence of setup times.

However, if densities are large enough switching from σ
to i could never occur (for example if queue being cleared

at σ is infinite). This is when the second strategy takes over,

Ω 6= ∅, so each stream is served at least once in Tmax steps.

This LH controlling strategy has been implemented in our

cellular automata city traffic model. Here we consider only de-

terministic limit P = 0, so that it is possible to calculate exact

number of approaching vehicles to an intersection Ii,j . There-

fore appropriate priority indices can be found for each node.

Note that such controller at each node uses only information

from two links which are connected to it.

4. Results for regular networks

4.1. Single node case, N=1. The simplest possible network

is, of course, when N = 1 (Fig. 4). First, let us consider pe-

riodic cycle-based switching strategy. Then, for given initial

density ρ, P and τ , the flow rate through this single node

depends solely on T . Such dependence is depicted in Fig. 5.

Detailed discussion concerning dynamical phases of the flow

for different ρ and T is presented in [8].

Naturally, strategy based on regular cycles imposes certain

dynamical situation rather being responsive to the current traf-

fic state. When T is properly adjusted vehicle platoons which

are formed usually get “green light” giving maximum pos-

sible (optimal) flow rate J . If density is small enough, i.e.,

platoon length ρvmaxC per link is shorter than C/2− τvmax,

that is

ρ <
1

2
vmax − τ/C ≡ ρcrit,

then there exists a cycle for which vehicles can move without

stopping and the resulting mean flow is maximal, J = Jmax =
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ρvmax (similar relation holds for networks for N > 1 as well).

However, since vehicle acceleration is finite, the condition

ρ < ρcrit does not guarantee that a state with maximal mean

flow will be achieved for all initial conditions (in the fact, such

state must be explicitly designed when ρ is close to ρcrit).

Fig. 4. Platoons of vehicles formed by the cycle-based intersection.

T is chosen in such a way that all vehicles always get a “green

light”. This is possible, since the initial density for all links was

small enough ρ = 0.05, P = 0, C = 100

Fig. 5. Dependence of the mean flow J on green-time period T for a

crossing of two streets with periodic boundary conditions for differ-

ent densities. Top: ρ < ρmax = 0.17, bottom: ρ > ρmax, vmax = 5.

The horizontal lines denote J for a network with self-controlled

nodes. In the free-flow regime the LH strategy performs very well

and the mean flow converges closely to the optimal value. For densi-

ties ρ > ρmax the stabilizing strategy with Tavg = 50, Tmax = 100
takes over and the controller is forced to switch periodically with

T = Tavg/2 − τ

On the other hand, for some values of T platoons are al-

ways stopped when arriving to the intersection. Consequently

one can observe significant variations in J(ρ) especially for

smaller densities, ρ < ρmax, where is the largest potential

for optimization. Note that by adjusting the green times it is

possible to vary the mean flow by almost 100%.

If the cycle-based strategy is replaced by the LH self-

controlling one, the situation is different. The only adjustable

parameters are Tmax and Tavg which are relevant only in the

stabilization regime, i.e., for large densities. For ρ < ρmax the

strategy based on priority indices defined above quickly and

automatically converges to the optimal solution found for the

cycle-based method. The resulting flow rate (horizontal lines

in Fig. 5) for the LH controller is near the maximum possible

value.

The two working regimes: optimizing with priority in-

dexes and stabilizing, can be clearly identified in Fig. 6. The

vertical line denotes ρmax above which the stabilizing strategy

is dominant.

Fig. 6. J(ρ) for LH self-controlling node and ratio stabiliz-

ing/prioritizing strategy, S/P . If S/P is close to 1 then stabilizing

strategy dominates. This is clear for densities ρ > ρmax (ρmax is

labeled with the vertical line)

4.2. 16 Nodes case, N=4. Naturally, even if the control at

each intersection is optimal, the dynamic coupling of inter-

sections in the network can make the overall flow inefficient

or even unstable (meaning that queue length grow infinitely).

In reality even very small and simple networks with simple

switching rules can produce complex and chaotic dynamics,

and generally it is impossible to predict the evolution of the

system over longer time horizons. However, for the case of

regular lattice-like network with one-way links and periodic

boundaries, finding strategies giving good results is straight-

forward.

Consider now a network with N = 4 and cycle-based

switching strategies in each node. In order to find maximum

average flow (i.e. sum of average flow through all the nodes

divided by the number of nodes) a green-wave optimization

is applied. Such scheme is easy to find, because distance

C = 100 between all the nodes is the same.
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Let all the nodes have the cycle period set to T . At the

time t, light at the intersection I1,1 turns “green”, and at the

same time a vehicle approaches this intersection from the west

side with maximum velocity. It takes Tdelay = C/vmax steps

for the vehicle to get to the next intersection at the node

I2,1. Consequently the cycle in this intersection I2,1 should

be delayed by Tdelay: T φ

(2,1) = Tdelay. Assuming that for I1,1,

T φ

(1,1) = 0, the phase shift for all the other nodes is then

T φ

(i,j) = (i + j − 2)Tdelay mod (2T + 2τ).

Again, for cycle-based switching the flow rate depends

only on the initial density ρ (the same for all the links) and

cycle period T . Such dependence is shown in Fig. 7.

Fig. 7. J(T ) for cycle-based controllers in the N = 4 network for

different densities. Horizontal lines mark mean flow values achieved

when the LH self-controlling were used instead of the cycle-based

Analogously like for N = 1 case, simulations with self-

controlled LH nodes were performed for different initial den-

sities. The results are represented in Fig. 7 as horizontal lines.

It is clear that also in this case, proper switching periods and

phase shifts are found and the resulting mean flows are close to

the maximum possible values. Note, that this is achieved with-

out any parameterization (except, of course, the stabilization

regime where Tavg = 50 and Tmax = 100 were specified).

4.3. N=4 with turning allowed. Apart form the initial state,

all the results presented above were fully deterministic (P = 0
with random vehicle positions in the first step t = 0). Let us

introduce now an important feature of any real traffic flow,

namely possibility of turning with given probability Pturn.

This means that vehicles traveling along west-east (south-

north) direction can enter an intersection provided that there

is “green light” assigned to the appropriate stream. Howev-

er, these vehicles do not have to follow theirs straight routes,

but are allowed to turn to south-north (west-east) link with

probability Pturn.

This is a significant change, since any strategy based on

precalculated parameters relevant to certain flow characteris-

tics (like the density which is obviously related to inflow rates)

undoubtedly will perform worse if Pturn 6= 0. The question

is to what extend. In reality this is a general problem for any

controlling strategy based on some flow observations from the

past, because traffic conditions never occur in future exact-

ly with the assumed, averaged parameters. There are always

unpredictable events like traffic collisions, road works, etc.,

leading to significant discrepancy between expected and real

traffic properties.

Figure 8 shows mean flow rates in the N = 4 network

with turning probability Pturn = 0.2 for cycle-based con-

troller with period T and phase shifts resulting in the green

wave scheme. When comparing this figure with Fig. 7, one

can notice significant degradation in terms of the mean flow

values J .

Fig. 8. As in Fig. 7 but here vehicle turning with probability

Pturn = 0.2 in each direction was allowed. Again, the horizontal

lines denote average performance of the self-controlled LH strategy

which gives very good results

Fig. 9. Normalized histogram showing frequency for “green” time pe-

riods in 10000 steps for simulation N = 4 network with Pturn = 0.2
and self-controlling LH nodes

As before, we have also performed simulations with self-

controlled nodes (horizontal lines in Fig. 8). As one can see,

the resulting mean flow is very large and, for ρ = 0.05, even

larger than the maximum values for the cycle-based strategy.
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This means that irregular switching cycles are present which,

however, give superior overall performance.

In order to investigate what cycles are selected by the LH

strategy in this scenario, we plot a histogram with frequen-

cies for “green light” periods during simulation, see Fig. 9.

We note that, for small density ρ = 0.05, very short “green

time” periods are dominating. That means that switching oc-

curs frequently in order to serve approaching vehicles. The

situation is different for larger densities where many different

“green time” periods are present.

5. Conclusions

In this paper we demonstrated two possible strategies for con-

trolling flow in a simple and regular city-like traffic network

with use of cellular automata model. One strategy is based

on periodic cycle-based switching mechanism in which each

of two streams is granted “green” light for T steps. It is easy

to find optimal value T for which the resulting mean flow

in the network is maximal, by performing simulations for all

relevant values of T .

It is evident that the most promising regime for optimiza-

tion is for low density flows, ρ < ρmax. This is understandable

since for congested traffic where for each stream a large queue

is present, there are no switching schemes which would out-

perform others significantly.

As the second control method we implemented a self-

controlling strategy proposed by [1]. It has been shown that

this methods quickly converges to the best solution (i.e., giv-

ing maximum possible mean flow), constructed with cycle-

based scheme with optimal periods T and phase-shifts T φ

leading to the green wave formation. In other words, green

waves emerged spontaneously without any parameterization.

Such synchronization was possible because the strategy makes

use of knowledge concerning approaching vehicles and, there-

fore, information can be propagated between nodes simply by

vehicles.

The discussed autonomous controller has some features

related to self-organized systems: lack of any central control

unit, openness, scalability, failure tolerance. For example, if a

single controller fails (i.e., all conflicting streams get “flash-

ing orange light” and vehicles follow traffic signs), cycles at

neighbouring intersections will be modified in order to adapt

to the new situation. In contrast to the traditional cycle-based

control there is no distinction between controlling and con-

trolled elements: traffic lights control vehicles which in turn

influence the lights. This approach leads to efficient utilization

of the network for varying conditions.

Influence of such varying conditions was presented in Sub-

sec. 4.3. It is clear that after introducing a possibility of turn-

ing with random parameter Pturn, the self-controlling strate-

gy gives much better results. Naturally, even in this case the

mean flow values are smaller when compared to the fully de-

terministic limit Pturn = 0. However, still the performance is

superior to that with regular, imposed cycles.

The next question which needs to be answered is how the

discussed LH strategy will perform in networks with more

complicated topologies with comparison to optimal (or nearly

optimal) solution. Moreover, when using the CA traffic model,

the non-deterministic P 6= 0 version needs to be applied.

There are recent realistic simulations of the LH strate-

gy for a specific network of 13 intersections in the center of

Dresden by [13]. The authors of [13] show that it possible to

reduce waiting times by 56% for public transport vehicles, 9%

for regular cars and by 36% for pedestrians and bicycle riders.

The large differences in improvement are due to assignment

different of weights for buses and trams when calculating pri-

ority indices, see Subsec. 3.2. In this way there is a possibility

to prioritize certain vehicles in order to promote public trans-

port in the city.
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