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Abstract. This paper presents the Necessary-preference-enhanced Evolutionary Multiobjective Optimizer (NEMO), which combines an
evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure. In the course of NEMO, the decision
maker is asked to express preferences by simply comparing some pairs of solutions in the current population. The whole set of additive
value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective
optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker. This allows
to speed up convergence to the most preferred region of the Pareto-front.
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1. Introduction

Real life decision problems usually involve consideration
of multiple conflicting objectives. For example, resource-
constrained project scheduling involves multiple objectives of
the type: project duration, net present value, resource con-
sumption, and so on. As, in general, there does not exist
a single solution which optimizes simultaneously all objec-
tives, one has to search for Pareto-optimal solutions. A solu-
tion is Pareto-optimal (also called efficient or non-dominated)
if there is no other feasible solution which would be at least
as good on all objectives while being strictly better on at
least one objective. Finding the whole set of Pareto-optimal
solutions (also called Pareto-set or Pareto-front) is usually
computationally hard. This is why a lot of research has been
devoted to heuristic search of an approximation of the Pareto-
front. Among the heuristics proposed to this end, Evolution-
ary Multiobjective Optimization (EMO) procedures appeared
to be particularly efficient (see, e.g., [1, 2]).

The underlying reasoning behind the EMO search of an
approximation of the Pareto-front is that in the absence of
any preference information, all Pareto-optimal solutions have
to be considered equivalent.

On the other hand, if the user or decision maker (DM) (al-
ternatively called user) is involved in the multiobjective opti-
mization process, then the preference information provided by
the DM can be used to focus the search on the most preferred
part of the Pareto-front. This idea stands behind Interactive
Multiobjective Optimization (IMO) methods proposed a long
time before EMO has emerged (see, e.g., [3–5]).

Recently, it became clear that merging the IMO and EMO
methodologies should be beneficial for the multiobjective op-

timization process [6]. This paper goes in this direction, by
proposing the Necessary-preference-enhanced Evolutionary
Multiobjective Optimizer (NEMO), which combines an evolu-
tionary multiobjective optimization with an interactive proce-
dure based on so-called Robust Ordinal Regression (ROR) [7].

In ROR, which has been recently implemented in two mul-
tiple criteria ranking methods, UTAGMS [8] and GRIP [9], the
DM is presented with a small set of alternatives and can state
his/her preferences by specifying a holistic preference of one
alternative over another, or comparing intensities of prefer-
ences between pairs of alternatives. The user can also compare
intensities of preferences with respect to single criteria. ROR
then identifies the whole set of additive value functions (also
called utility functions) compatible with the preference infor-
mation given by the DM. This permits to compare any pair of
alternatives x and y in a simple and intuitive way, as follows:

• x is necessarily at least as good as y, if this is true for all
compatible value functions,

• x is possibly at least as good as y, if this is true for at least
one compatible value function.

NEMO combines NSGA-II [10], a widely used EMO tech-
nique, with an IMO methodology from multiple criteria deci-
sion aiding (MCDA), originally conceived to deal with a lim-
ited number of alternatives. The first idea of this interactive
method has been presented in [11]. NEMO takes the infor-
mation about necessary preferences into account during op-
timization, focusing the search on the most promising parts
of the Pareto-front. More specifically, ROR based on infor-
mation obtained through interaction with the user determines
the set of all compatible value functions, and an EMO proce-
dure searches for all non-dominated solutions with respect to
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all compatible value functions simultaneously. In the context
of EMO, the alternatives considered in ROR are solutions of
a current population.

We believe that the integration of ROR into EMO is par-
ticularly promising for two reasons:

1. The preference information required by ROR is very basic
and easy to provide by the DM. All that the DM is asked
for is to compare two non-dominated solutions from a cur-
rent population, and to reveal whether one is preferred over
the other. The preference information is provided with re-
spect to one or several pairs of solutions, every k iterations
(k depends on the problem and the willingness of the user
to interact with the system. In our studies, k ranges from
10 to 30).

2. The resulting set of compatible value functions implies an
appropriate scaling of the objectives, thus, even if the ob-
jectives are expressed on very heterogeneous scales, the
solutions are automatically scaled to reflect the user’s pref-
erences. This issue has been largely ignored by the EMO
community so far.

The paper is organized as follows. The next section pro-
vides a brief overview of existing EMO/IMO hybrids. Sec-
tion 3 describes the ROR methodology. Then, Sec. 4 presents
the basic steps of NEMO. Some empirical results are report-
ed in Sec. 5. The paper concludes with a summary and some
ideas for future research.

2. Interactive Evolutionary Multiobjective

Optimization

There are various ways in which the user’s preferences can
be incorporated into EMO. Furthermore, there are many IMO
techniques, and most of them are suitable for combination
with EMO.

A form of preference information often used is a reference
point, and various ways to guide the search towards a user-
specified reference point have been proposed. Perhaps the ear-
liest such approach has been presented in [12], which gives
a higher priority to objectives in which the goal is not ful-
filled. [13] suggests to use the distance from the reference
point as a secondary criterion following the Pareto ranking.
[14] uses an indicator-based evolutionary algorithm, and an
achievement scalarizing function to modify the indicator and
force the algorithm to focus on the most interesting part of
the Pareto-front.

In the guided MOEA proposed in [15], the user is allowed
to specify preferences in the form of maximally acceptable
trade-offs like “one unit improvement in objective i is worth
at most aji units in objective j”. The basic idea is to modi-
fy the dominance criterion accordingly, so that it reflects the
specified maximally acceptable trade-offs.

Deb and Chaudhuri [16] propose an interactive decision
support system called I-MODE that implements an interactive
procedure built over a number of existing EMO and classical
decision making methods. The main idea of the interactive
procedure is to allow the DM to interactively focus on inter-

esting region(s) of the Pareto-front. The DM has options to
use several tools for generation of potentially Pareto-optimal
solutions concentrated in the desired regions. For example,
he/she may use weighted sum approach, utility function based
approach, Chebycheff function approach or trade-off informa-
tion. The preference information is then used by an EMO to
generate new solutions in the most interesting regions.

There are several additional papers that integrate EMO and
IMO – we refer the interested reader to two recent reviews
[17, 18]. In the following, we shall restrict our attention to
three papers that perhaps come closest to what we propose in
this paper, namely [19–21].

Greenwood et al. [19] suggest a procedure which asks the
user to rank a few alternatives, and from this derives con-
straints for linear weighting of the objectives consistent with
the given ordering. Then, these are used within an EMO to
check whether there is a feasible linear weighting such that
solution x is preferable to solution y. If this is not the case, it
is clear that y is preferred to x. The approach differs from ours
in two important aspects: first, the interaction with the user
is only prior to EMO, while our approach interacts with the
user during optimization. Second, the utility function model
is only a linear weighting (weighted sum) of the objectives,
while we consider general additive value functions.

The interactive evolutionary algorithm proposed by Phelps
and Köksalan [20] allows the user to provide preference in-
formation about pairs of solutions during the run. Based on
this information, the authors compute the “most compatible”
weighted sum of objectives (i.e., a linear achievement scalar-
izing function) by means of linear programming, and use this
as single substitute objective for some generations of the evo-
lutionary algorithm. The concept presented in this paper is
truly interactive, as preference information is collected during
the run. However, as it reduces the preference information to
a single linear weighting of the objectives, the power of EMO,
which is capable of simultaneously searching for multiple so-
lutions with different trade-offs, is not exploited. Furthermore,
since only partial preference information is available, there is
no guarantee that the weight vector obtained by solving the
linear programming model defines the DM’s value function,
even if the DM’s value function has the form of a weighted
sum (naturally, the bias may become even more significant
when the DM’s preferences cannot be modeled with a linear
value function).

The method of Jaszkiewicz [21] is based on the Pareto
memetic algorithm (PMA). It has been designed for multi-
objective combinatorial optimization problems. The original
PMA samples the set of scalarizing functions drawing a ran-
dom weight vector for each single iteration and using this for
selection and local search. In the proposed interactive ver-
sion, preference information from pairwise comparisons of
solutions is used to reduce the set of possible weight vectors.
While this approach is more flexible in terms of the consid-
ered value function model, and changes the value function
from generation to generation, it still does not make explicit
use of the EMO’s capability to search for multiple solutions
in parallel.
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Furthermore, all of the methods discussed above require
a pre-defined scaling of the objectives, while we propose
a new way that allows to automatically and continuously ad-
just the scaling of the objectives to the user’s most likely
preferences given the preference information gathered so far.

3. Robust Ordinal Regression

3.1. Definitions and notation. To explain ROR, we consider
a Multiple Criteria Decision Aiding (MCDA) problem con-
cerning a finite set of alternatives A = {x, y, . . .} (|A| = m),
evaluated on n criteria (called objectives in optimization) from
family F = {g1, . . . , gn}, with gi : A → R, i = 1, . . . , n. Let
I = {1, . . . , n} denote the set of criteria indices, and as-
sume, without loss of generality, that the greater gi(x), the
better alternative x on criterion gi, for all i ∈ I , x ∈ A.
The family of criteria F is supposed to satisfy consistency
conditions, i.e., completeness (all relevant criteria are consid-
ered), monotonicity (the better the evaluation of an alternative
on the considered criteria, the more it is preferable to anoth-
er), and non-redundancy (no superfluous criteria are consid-
ered) [22].

With respect to set A, a DM may wish to get recommen-
dation on one of the following questions: (i) what is the subset
of best alternatives in A, (ii) how to assign alternatives from
A to pre-defined and preference ordered classes, or (iii) how
to rank the alternatives from A from the best to the worst.

It is well known that the only objective information com-
ing out from the above problem statement is a dominance
relation in set A. Let us recall that according to the dom-

inance relation in set A, alternative x ∈ A is preferred to
alternative y ∈ A, x ≻ y, if and only if gi(x) ≥ gi(y) for
all i ∈ I , with at least one strict inequality. Moreover, x is
indifferent to y, x ∼ y, if and only if gi(x) = gi(y) for all
i ∈ I . Hence, for any two alternatives x, y ∈ A, one of the
four situations may arise: x ≻ y, y ≻ x, x ∼ y and x?y,
where the last one means that x and y are incomparable. The
dominance relation is a partial preorder (i.e., a reflexive and
transitive binary relation) and it is in general very poor, be-
cause the most frequent situation is x?y. In order to “enrich”
this relation, the analyst must learn more about a value system
of the DM, so as to be able to construct a DM’s preference
model. This is why the preference information elicited by the
DM is a necessary component of decision aiding. The prefer-
ence model can finally be used to work out a recommendation
with respect to one of the above mentioned questions.

In what follows, the evaluation of each alternative x ∈ A

on each criterion gi ∈ F will be denoted either by gi(x) or
xi. Let Gi denote the value set (scale) of criterion gi, i ∈ I .
Consequently, the Cartesian product of all Gi’s,

G =
n
∏

i=1

Gi,

represents the evaluation space, and x ∈ G denotes a profile
of an alternative in such a space. We consider a weak prefer-
ence relation % on A which means, for each pair of vectors,
x, y ∈ G,

x % y ⇔ “x is at least as good as y”.

This weak preference relation can be decomposed into its
asymmetric and symmetric parts, as follows,

1) x ≻ y ≡ [x % y and not y % x] ⇔ “x is preferred to y”,
and

2) x ∼ y ≡ [x % y and y % x] ⇔ “x is indifferent to y”.

From a pragmatic point of view, it is reasonable to assume that
Gi ⊆ R, for i = 1, . . . , n. More specifically, we shall assume
that the evaluation scale on each criterion gi is bounded, such
that Gi = [αi, βi], where αi, βi, αi < βi are the worst and
the best (finite) evaluations, respectively. Thus, gi : A → Gi,
i ∈ I . Therefore, each alternative x ∈ A is associated with an
evaluation vector denoted by g(x) = (x1, x2, . . . , xn) ∈ G.

Among many preference models considered in the litera-
ture, the most popular is an additive value function defined
on A, such that for each g(x) ∈ G,

U(g(x)) =
n
∑

i=1

ui(gi(x)), (1)

where ui are non-decreasing marginal value functions,
ui : Gi → R, i ∈ I . For the sake of simplicity, we shall
write (1) as follows,

U(x) =
n
∑

i=1

ui(xi). (2)

3.2. Ordinal regression. Like other preference models, the
additive value function of a given DM is unknown a priori. A
direct elicitation of this function by a DM is counterproduc-
tive in real-world decision aiding situations because of a high
cognitive effort required. Eliciting indirect preferences in the
form of holistic pairwise comparisons of some reference or
training alternatives is much less demanding of cognitive ef-
fort. This kind of preference information is given as decision
examples. Such a reverse search of a preference model from
decision examples is done by so-called ordinal regression (al-
so called disaggregation-aggregation approach). The prefer-
ence model found by ordinal regression is compatible with
the given preference information, i.e., it restores the holistic
pairwise comparisons made by the DM. Finally, it is used on
the whole set A of alternatives in order to work out a recom-
mendation in terms of the best choice (i), or classification (ii),
or ranking (iii). As in NEMO we will use the preference mod-
el to recommend a ranking, in the following we concentrate
on problem (iii) only.

The ordinal regression paradigm emphasizes the discov-
ery of intentions as an interpretation of actions rather than
as a priori position, which was called by March the posterior
rationality [23]. It has been known for at least fifty years in
the field of multidimensional analysis. It is also concordant
with the induction principle used in machine learning. This
paradigm has been applied within the two main MCDA ap-
proaches: those using a value function as preference model
[24–27], and those using an outranking relation as preference
model [28, 29]. This paradigm has also been used since the
mid nineties in MCDA methods involving a new, third fami-
ly of preference models – a set of dominance decision rules
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induced from rough approximations of holistic preference re-
lations [30].

3.3. Ordinal regression with robustness considerations.

Usually, among the many sets of parameters of a preference
model representing the preference information, only one spe-
cific set is used to give a recommendation on a set of alterna-
tives. For example, among many value functions representing
pairwise comparisons of some alternatives made by the DM,
only one value function is finally used to recommend the best
choice, or sorting, or ranking of alternatives. Since the choice
of one among many sets of parameters compatible with the
preference information is rather arbitrary, robust ordinal re-

gression (ROR) has been recently proposed with the aim of
taking into account all the sets of parameters compatible with
the preference information given by the DM [7–9]. The robust
ordinal regression approach extends the simple ordinal regres-
sion by taking into account not a single instance of the pref-
erence model compatible with DM’s preference information,
but the whole set of compatible instances of the preference
model. As a result of considering the whole set of compati-
ble instances of the preference model, one gets two kinds of
results with respect to each pair of alternatives x, y ∈ A:

• necessary preference relation x %N y, if and only if x is
at least as good as y according to all instances of the pref-
erence model compatible with the preference information,

• possible preference relation x %P y, if and only if x is at
least as good as y according to at least one instance of the
preference model compatible with the preference informa-
tion.

The necessary preference relation can be considered as
robust with respect to the preference information. The robust-
ness of the necessary preference relation refers to the fact that
a given pair of alternatives compares in the same way what-
ever the instance of the preference model compatible with the
preference information. Indeed, when no preference informa-
tion is given, the necessary preference relation boils down
to the dominance relation, and the possible preference rela-
tion is a complete relation. Every new item of the preference
information, e.g., a pairwise comparison of some reference
alternatives for which the dominance relation does not hold,
is enriching the necessary preference relation and it is impov-
erishing the possible preference relation, so that they converge
with the growth of the preference information.

Moreover, such an approach has another feature which is
very appealing in the context of multiobjective optimization.
It stems from the fact that it gives space for interactivity with
the DM. Presentation of the necessary ranking, resulting from
a preference information provided by the DM, is a good sup-
port for generating reactions from the DM. Namely, he/she
could wish to enrich the ranking or to contradict a part of it.
Such a reaction can be integrated in the preference informa-
tion considered in the next calculation stage.

Computational issues of ROR with respect to the ranking
problem (iii) are explained in the next point.

3.4. Computation of a necessary preference ranking on

set A, using robust ordinal regression. In NEMO, we will
use ROR to set up a necessary preference ranking on a cur-
rent population of solutions (alternatives). This is why in
this point, we explain after [8] and [9], how this ranking is
computed.

Preference information. The preference information is given
on a subset of reference alternatives AR ⊆ A. The reference
alternatives are non-dominated alternatives contained in set
A for which the DM is able to express holistic preferences.
The DM is expected to make pairwise comparison of few
pairs of reference alternatives, i.e., x % y for some pairs
x, y ∈ AR (in our experiments, we used from 1 to 6 pairs for
a population of 32 alternatives).

Additive models. The assumed preference model is an addi-
tive value function (2), composed of marginal value functions
ui(xi), i ∈ I , having one of two forms:

(a) piecewise-linear,
(b) general, non-decreasing.

In case (a), the ranges [αi, βi] are divided into γi ≥ 1
equal sub-intervals [x0

i , x
1
i ], [x1

i , x
2
i ], ..., [xγi−1

i , x
γi

i ], where
x

j
i = αi + j

γi

(βi − αi), j = 0, . . . , γi, and i ∈ I . The mar-
ginal value of an alternative x ∈ A is obtained by linear
interpolation,

ui(xi) = ui(x
j
i ) +

xi − x
j
i

x
j+1
i − x

j
i

(ui(x
j+1
i ) − ui(x

j
i )),

xi ∈ [xj
i , x

j+1
i ].

(3)

The piecewise-linear additive model is completely defined by
the marginal values at the breakpoints, i.e., ui(x

0
i ) = ui(αi),

ui(x
1
i ), ui(x

2
i ), · · · , ui(x

γi

i ) = ui(βi), i ∈ I . The number
of linear pieces γi is fixed a priori for each marginal value
function ui, i ∈ I .

In case (b), the characteristic points of marginal value
functions ui, i ∈ I, are fixed in evaluation points of con-
sidered alternatives. Let τi be the permutation on the set of
indices of alternatives from AR that reorders them according
to the increasing evaluation on criterion i, i.e.,

αi ≤ xτi(1) ≤ xτi(2) ≤ . . . ≤ xτi(m−1) ≤ xτi(m) ≤ βi, i ∈ I.

The general, non-decreasing additive model is completely
defined by the marginal values at the characteristic points,
i.e., ui(αi), ui(xτi(1)), ui(xτi(2)), . . . , ui(xτi(m)), ui(βi).
Remark that in this case, no linear interpolation is required
to express the marginal value of any reference alternative.

Compatible value functions. Formally, to be compatible
with the preference information, the additive value function

U(x) =
n
∑

i=1

ui(xi) should satisfy the following set of linear

programming constraints corresponding to the DM’s prefer-
ence information:
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• in case (a) of piecewise-linear marginal value functions,
these are

U(x) > U(y) ⇔ x ≻ y

U(x) = U(y) ⇔ x ∼ y

}

for all x, y ∈ AR

ui(x
j+1
i )−ui(x

j
i )≥0, i=1, ..., n, j=0, ..., γi − 1,

ui(αi) = 0, i = 1, ..., n,
n
∑

i=1

ui(βi) = 1,



































(EAR

a )

• in case (b) of general, non-decreasing marginal value func-
tions, these are

U(x) > U(y) ⇔ x ≻ y

U(x) = U(y) ⇔ x ∼ y

}

for all x, y ∈ AR

ui(xτi(j))−ui(xτi(j−1))≥0, i=1, ..., n, j =2, ..., m,

ui(xτi(1)) ≥ 0, ui(xτi(m)) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n,
∑n

i=1 ui(βi) = 1.







































(EAR

b ).

Computation of the possible and necessary preference re-

lations in set A. In order to compute the possible preference
relation %P and the necessary preference relation %N in the
complete set of alternatives A, ROR proceeds as follows. For
all alternatives w, z ∈ A, let πi be a permutation of the in-
dices of alternatives from set AR ∪{w, z} that reorders them
according to increasing evaluation on criterion i, i.e.,

xπi(1) ≤ xπi(2) ≤ ... ≤ xπi(ω−1) ≤ xπi(ω),

where

• if AR ∩ {w, z} = ∅, then ω = m + 2,
• if AR ∩ {w, z} = {w} or AR ∩ {w, z} = {z}, then

ω = m + 1,
• if AR ∩ {w, z} = {w, z}, then ω = m.

Then, one can fix the characteristic points of ui, i ∈ I, in

x0
i = αi, x

j
i = xπi(j) for j = 1, ..., ω, xω+1

i = βi.

Let us consider the following set E(w, z) of ordinal regres-
sion constraints, with ui(x

j
i ), i = 1, ..., n, j = 1, ..., ω + 1,

as variables:

U(x) ≥ U(y) + ε ⇔ x ≻ y

U(x) = U(y) ⇔ x ∼ y

}

∀x, y ∈ AR

ui(x
j
i )−ui(x

j−1
i ) ≥ 0, i=1, ..., n, j =1, ..., ω + 1

ui(x
0
i ) = 0, i = 1, ..., n

n
∑

i=1

ui(x
ω+1
i ) = 1



































(E(w, z))

where ε is an arbitrarily small positive value. The set of con-
straints E(w, z) depends on the pair of alternatives w, z ∈ A

because their evaluations gi(w) and gi(z) give coordinates for
two of (ω+1) characteristic points of marginal value function
ui, for each i = 1, . . . , n.

Suppose that the polyhedron defined by the set of constraints
E(w, z) is not empty. In this case, we have that:

w %P z ⇔ D(w, z) ≥ 0

where

D(w, z) = max{U(w) − U(z)}

s.t. set E(w, z) of constraints
(4)

and
w %N z ⇔ d(w, z) ≥ 0

where

d(w, z) = min{U(w) − U(z)}

s.t. set E(w, z) of constraints.
(5)

In order to make the possible preference relation %P and
the necessary preference relation %N independent of a fixed
value of ε in E(w, z), we have to solve the following linear
programming problems instead of solving (4) and (5):

εP (w, z) = max ε

s.t. set E(w, z) of constraints,

plus the constraint U(w) ≥ U(z).

(6)

and

εN(w, z) = max ε

s.t. set E(w, z) of constraints,

plus the constraint U(z) ≥ U(w) + ε.

(7)

Then, one can conclude:

w %P z ⇔ εP (w, z) > 0

and
w %N z ⇔ εN (w, z) ≤ 0.

As demonstrated in [8], the possible preference relation
%P is strongly complete and negatively transitive, while the
necessary preference relation %N is inducing a partial pre-
order on set A.

3.5. The most representative value function. The robust or-
dinal regression builds a set of additive value functions com-
patible with preference information provided by the DM and
results in two rankings: the necessary ranking and the pos-
sible ranking. Such rankings answer to robustness concerns,
since they provide, in general, “more robust” conclusions than
a ranking made by an arbitrarily chosen compatible value
function. However, in some decision-making situations, it may
be desirable to give a score to different alternatives (solutions),
and despite the interest of the rankings provided, some users
would like to see, and they indeed need, to know the “most
representative” value function among all the compatible ones.
This allows assigning a score to each alternative. Recently,
a methodology to identify the “most representative” function
in ROR without loosing the advantage of taking into account
all compatible value functions has been proposed in [31]. The
idea is to select among all compatible value functions the most
discriminant value function for consecutive alternatives in the
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necessary ranking, i.e., that value function which maximizes
the difference of scores between alternatives related by pref-
erence in the necessary ranking. To break ties, one can wish
to minimize the difference of scores between alternatives not
related by preference in the necessary ranking. This can be
achieved using the following procedure:

1. Determine the necessary preference relations in the con-
sidered set of alternatives.

2. For all pairs of alternatives (x, y), such that x is necessari-
ly preferred to y, add the following constraints to the linear
programming constraints of ROR: U(x) ≥ U(y) + θ.

3. Maximize the objective function θ.
4. Add the constraint θ = θ∗, with θ∗ being the resulting max-

imal θ from point 3), to the linear programming constraints
of point 2).

5. For all pairs of alternatives (x, y), such that neither x is
necessarily preferred to y nor y is necessarily preferred to
x, add the following constraints to the linear programming
constraints of ROR and to the constraints considered in
above point 4): U(x) − U(y) ≤ δ and U(y) − U(x) ≤ δ.

6. Minimize δ.

This procedure maximizes the minimal difference between
values of alternatives for which the necessary preference
holds. If there is more than one such value function, the above
procedure selects the most representative compatible value
function giving the largest minimal difference between values
of alternatives for which the necessary preference holds, and
the smallest maximal difference between values of alternatives
for which the possible preference holds.

Notice that the concept of the “most representative” val-
ue function thus defined is still based on the necessary and
possible preference relations, which remain crucial for ROR.
In a sense, it gives the most faithful representation of these
necessary and possible preference relations. Notice also that
the above procedure can be simplified by joint maximization
of Mθ − δ, where M is a “big value”.

In the following, we will use the most representative value
function for continuously adapting the scaling of the objec-
tives in a nonlinear way.

4. Necessary-preference-enhanced Evolutionary

Multiobjective Optimization – NEMO

Our main idea is to integrate the concept of ROR into an EMO
approach, in particular NSGA-II [10]. NSGA-II is one of to-
day’s most prominent and most successful EMO algorithms.
It ranks individuals (solutions in a population) according to
two criteria.

The primary criterion is the so-called dominance-based
ranking. This method ranks individuals by iteratively deter-

mining the non-dominated solutions in the population (non-
dominated front), assigning those individuals the next best
rank and removing them from the population. The result is
a partial ordering, favoring individuals closer to the Pareto-
front.

As secondary criterion, individuals which have the same
dominance-rank (primary criterion) are sorted according to
crowding distance, which is defined as the sum of distances
between a solution’s neighbors on either side in each dimen-
sion of the objective space. Individuals with a large crowding
distance are preferred, as they are in a less crowded region
of the objective space, and favoring them aims at preserving
diversity in the population.

In our approach, we will

1. Replace the dominance-based ranking by the necessary

ranking. The necessary ranking is calculated analogous-
ly to the dominance-based ranking, but taking into account
the preference information by the user through the neces-
sary preference relation. More specifically, first put in the
best rank those solutions which have no competitor which
would be necessarily preferred, remove them from the pop-
ulation, etc.

2. Replace the crowding-distance by a distance calculated tak-
ing into account the multidimensional scaling given by the
“most representative value function” among the whole set
of compatible value functions (see Subsec. 3.5). While in
NSGA-II the crowding distance is calculated in the space
of objective functions, in NEMO it is calculated in the
space of marginal value functions which are components
of the ”most representative” value function. Given a solu-
tion x, its crowding distance is calculated according to the
following formula:

Crowding distance(x) =
n

∑

i=1

|ui(y
x
i ) − ui(z

x
i )| − |U(yx) − U(zx)| ,

where U is the “most representative value function”, ui are
its marginal value functions, yx

i and zx
i are left and right

neighbors of x in the dimension of marginal value ui, and
yx and zx are vectors composed of yx

i and zx
i , respective-

ly, i = 1, . . . , n. Remark that for a given n, we can have
up to 2n different neighbors of x in all dimensions, due
to non-univocal selection of solutions with equal marginal
values. In fact, we select the neighbors such as to diversify
them as much as possible.1

Preferences are elicited by asking the DM to compare some
pairs of solutions, and specify a preference relation between
them. This is done during the run of the NSGA-II.

1Our first attempt was to simply calculate the crowding distance in marginal utility space, i.e., as
nP

i=1

��ui(y
x

i
) − ui(z

x

i
)
��. However, we found that the

formulation specified above, which additionally takes into account the overall utility of the vectors of neighbors, works even better in practice, so this is what
we use in the experiments. More work is necessary to get a better understanding of various possible ways of calculating the crowding distance.
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Algorithm 1 Basic NEMO
Generate initial solutions randomly
Elicit the user’s preferences {Present to user some pairs of solutions and ask for a preference information}
Determine necessary ranking {Will replace dominance ranking in NSGA-II}
Determine secondary ranking {Order solutions within a front, based on crowding distance measured in terms of the “most
representative value function”}
repeat

Mating selection and offspring generation
if Time to ask DM then

Elicit the user’s preferences
end if

Determine necessary ranking
Determine secondary ranking
Environmental selection

until Stopping criterion met
Return all preferred solutions according to necessary ranking

The overall algorithm is outlined in Algorithm 1. Although
the general procedure is rather straightforward, there are sev-
eral issues that need to be considered:

1. How many pairs of solutions are shown to the DM, and
when? Here, we decide to ask for one preference relation
every k generations, i.e., every k generations, NSGA-II is
stopped, and the user is asked to provide preference infor-
mation about one given pair of individuals.

2. Which pairs of solutions shall be shown to the DM for
comparison? Here, we randomly pick a pair of solutions
for which no necessary preference relation holds. This pre-
vents the user from specifying inconsistent information.

5. Experimental results

We tested NEMO on two simple test functions from [32], each
having two objectives and 30 real-valued decision variables.
One test function, ZDT1, has a convex Pareto-front, while the
other (ZDT2) has a concave Pareto-front.

An empirical evaluation of interactive EMO methods is
challenging, because the test environment has to include
a model of the user behavior. We therefore use an artificial
user which applies a pre-specified value function for deci-
sion making. Obviously, this value function is not known to
NEMO, but only used by the artificial user (DM) for com-
paring two solutions when preferences are elicited. Two value
functions are used in our tests:

• Linear – assumes the artificial user has a value function
that is a linear weighting of the objectives. More specifical-
ly, we used U(x) = −(0.6f1(x) + 0.4f2(x)), i.e., his/her
goal is to minimize 0.6f1(x) + 0.4f2(x).

• Chebycheff – assumes the artificial user has a Chebycheff-
like value function. More specifically, his/her goal is to
minimize max{0.6f1(x), 0.4f2(x)}.

For the internal preference model learned by NEMO, we
also tested two options:

• Linear – simply learns a linear weighting of the objec-
tives. As mentioned in Sec. 2, NEMO with this preference
model is almost equivalent to the approach by Greenwood
et al. [19], although used in an interactive fashion rather
than eliciting all user preferences before the optimization
starts.

• General additive – allows for arbitrary non-decreasing
marginal value functions as outlined above.

NEMO is set up such that in every k-th generation, it ran-
domly selects two individuals which are incomparable in the
the necessary ranking (no necessary preference relation holds
for them), and receives as feedback the solution preferred by
the artificial user according to the assumed value function.
The information from the DM is then used to update the in-
ternal preference model. We used a population size of 32,
simulated binary crossover with crossover probability of 0.9
and ηc = 1, and Gaussian mutation with probability 0.03 and
standard deviation σ = 0.01.

Fig. 1. Value of best solution in population depending on the num-
ber of generations for problem ZDT1. Numbers in parentheses denote

number of generations between preference elicitation steps
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a) ZDT1, linear preference model, elicitation every generation b) ZDT1, linear preference model, elicitation every 10 generations

c) ZDT1, linear preference model, elicitation every 20 generations d) ZDT1, general additive preference model, elicitation every generation

e) ZDT1, general additive preference model, elicitation every 10 generations f) ZDT1, general additive preference model, elicitation every 20 generations

Fig. 2. Some exemplary populations for test problem ZDT1, with different internal preference models and different frequency of preference
elicitation.
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a) ZDT2, linear preference model, elicitation every generation b) ZDT2, linear preference model, elicitation every 10 generations

c) ZDT2, linear preference model, elicitation every 20 generations d) ZDT2, general additive preference model, elicitation every generation

e) ZDT2, general additive preference model, elicitation every 10 generations f) ZDT2, general additive preference model, elicitation every 20 generations

Fig. 3. Some exemplary populations for test problem ZDT1, with different internal preference models and different frequency of preference
elicitation.
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Figure 2 shows the results of NEMO on test function
ZDT1 and an artificial DM with a linear utility function. Let
us first consider panels (a)-(c), where the NEMO preference
model is also linear. Clearly, while NSGA-II attempts to ap-
proximate the whole front, NEMO learns to focus the search
on the area most interesting for the artificial DM. This allows
NEMO to find more interesting solutions quicker, as can be
seen by the fact that the solutions found by NSGA-II after
200 generations are found by NEMO already after 100 gener-
ations. For panel (a), a preference elicitation step is performed
every generation, for panel (b) every 10 generations and panel
(c) only every 20 generations, corresponding to 100, 20, and
10 pairwise comparisons during the run of 200 generations.
We can observe that the more frequent the preference elicita-
tion step, the stronger NEMO can focus the search. The reason
is that with more preference information, the set of compati-
ble value functions is narrowed down, and NEMO has a more
precise notion of what the user wants. Note, however, that this
is not just a user parameter to influence the focusing. NEMO
will, by design, narrow down the search to a maximally possi-
ble extent given the preference information provided, without
excluding any solution that might still be preferred.

The same plots but for NEMO with a general additive
preference model are shown in Fig. 2 (d)-(f). Again, we see
a focus on the most interesting region, and stronger focus
for more provided information. When preferences are elicit-
ed only every 20 generations, there is barely any focusing
effect remaining. When comparing the overall performance
of NEMO with general additive model to NEMO with lin-
ear model, it seems the general additive preference model
performs worse. This is not surprising, as given an artificial
user with linear value function, a linear preference model is
sufficient to capture the user’s preferences, while it has few-
er degrees of freedom and thus requires less information for
learning a practically useful model.

Similar insights can be gained from the convergence plot
(Fig. 1) which shows the user’s value for the most preferred
solution in the population over time. These figures also clear-
ly show that NEMO not only correctly focuses on the most
relevant solution, but also finds these solutions more quickly
than the standard NSGA-II. For example, to reach the same
solution quality that NSGA-II reaches after 95 generations,
NEMO requires only around 40 generations. What kind of
preference model is used seems to have, at least for this test
problem, a larger impact than the number of preference elic-
itations. The disadvantage of using the general additive pref-
erence model in NEMO can not be compensated by eliciting
10 times as much information (compare NEMO general (1)
with NEMO linear (10))2.

Now let us look at the ZDT2 problem with a concave
Pareto-front and with an artificial DM having a Chebycheff
value function (Fig. 3). Here, a linear preference model (pan-
els (a)-(c)) is not sufficient to capture the user’s preferences,
as there is no linear combination of objectives that would
yield the most preferred solution in the concave region of the

Pareto-front. So it is not surprising that the model eventu-
ally converges to a solution which is at the lower right cor-
ner of the Pareto-front, away from the truly most preferred
solution. When NEMO uses the general additive preference
model, however, (panels (d)-(f)) it does converge correctly to
the area of the most preferred solution. Again, more prefer-
ence elicitation steps allow a stronger focus of the search, and
NEMO is generally faster as the solutions after 100 genera-
tions roughly correspond to the NSGA-II solutions after 200
generations.

The convergence plots support our observations (see
Fig. 4). NEMO with linear preference model converges quick-
ly in the beginning, as the model has few parameters to learn.
But eventually, it can not capture the complexity of the ar-
tificial DM’s Chebycheff value function and solution quality
actually worsens again and converges to a clearly sub-optimal
level. With the general additive preference model, the Cheby-
cheff value function can be learned and the algorithm con-
verges to the right area of the Pareto-front. Convergence is
slightly slower in the beginning than NEMO with linear pref-
erence model, as more parameters need to be learned, but it
is still significantly faster than not using any preferences as in
standard NSGA-II.

Fig. 4. Value of best solution in population depending on the num-
ber of generations for problem ZDT2. Numbers in parentheses denote

number of generations between preference elicitation steps

Overall, the experiments demonstrate that the simple lin-
ear preference model from [19] is not always sufficient to cap-
ture the user preferences. NEMO, on the other hand, allows
to choose from a range of preference models and thus can
accommodate a much larger variety of user value functions.

6. Conclusions

We presented an interactive EMO method called NEMO. It
combines the advantages of the well known EMO method
NSGA-II with an MCDA method enabling the user interac-
tion based on robust ordinal regression. The main advantages
of the proposed methodology are the following:

2Results for NSGA-II have been averaged over 10 runs, results for NEMO have been averaged over 4 runs.
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1. It models the user’s preferences in terms of very general
additive value functions,

2. It requires a preference information expressed in a simple
and intuitive way (comparisons of solutions),

3. It considers all value functions compatible with the us-
er’s preferences, with the goal to generate a representative
approximation of all Pareto-optimal solutions compatible
with any of these value functions,

4. With respect to crowding distance, it permits to calculate
distances in utility space, rather than objective space, there-
by alleviating the need of scaling the objectives.

Our empirical results show that the proposed NEMO
method works as expected and is able to converge faster to
the user-preferred solutions than NSGA-II without taking the
user’s preferences into account.

Clearly, a more thorough empirical analysis on a variety of
test functions and value functions is necessary. Also, we are
currently elaborating and extending the approach in various
directions. In particular, we are implementing improved inter-
action mechanisms, with adaptive methods to determine when
a DM should be asked for preference information, and what
individuals to present for comparison. We will also extend the
current interaction to allow additional preference information
to be incorporated. Apart from the simple pairwise compar-
isons, we plan to integrate into ROR intensities of preferences,
and maximum/minimum trade-off information, e.g., one unit
improvement in objective f1 is worth at most w units wors-
ening in objective f2.

Finally, we investigate a slightly different approach: in-
stead of calculating the necessary preference relation in the
population of solutions, we could look for solutions that are
the best for at least one compatible value function. The ex-
pected advantages of this new approach are speeding up cal-
culations and the convergence to the most interesting part of
the Pareto-front.
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