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Abstract. Two different analytical methods of determining extremal dynamic errors in linear dynamic systems are presented. The main idea
of these methods is based on finding certain additional equations. These additional equations are obtained due to the assumption that an

extremal point τ obtained from the necessary condition
dx

dt

����
t=τ

= 0, is also an extremum point with respect to initial conditions, that is,

dτ

dci

= 0, i = 1, . . . , n.
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1. Introduction

In many dynamic processes the maximal dynamic error is
the most important criterion. In the chemical processes and
in the driving systems such criterion plays an important role.
The maximal error xe(τ) characterises the attainable accuracy
and the time τ , the velocity of the rise of the transients [1–3].

2. Statement of the problem

Let us consider the differential equation describing the tran-
sient error in the linear control system of the n-th order with
lumped and constant parameters:

dnx(t)

dtn
+ a1

dn−1x(t)

dtn−1
+ . . . + an−1

dx(t)

dt

+ anx(t) = 0

(1)

with the initial conditions

x(i−1)(0) = ci 6= 0 for i = 1, 2, . . . , n .

The characteristic equation for Eq. (1) is:

sn + a1s
n−1 + . . . + an−1s + an = 0 . (2)

We assume that the roots of the Eq. (2) are simple and real
that is, sj 6= si for j 6= i.

The solution of Eq. (1) takes the following form

x(t) =

n
∑

k=1

Akeskt . (3)

The necessary condition for the transient error x(t) to attain
an extremal value at t = τ is given by the relation

x(1)(t) =
dx(t)

dt
=

n
∑

k=1

skAkeskt = 0. (4)

The coefficients Ak for k = 1, 2, . . . , n in the explicit form
are

Ak =

cn−

nP
v=1,
v 6=k

svcn−1+
nP

v=1,
v 6=k

svskcn−2+...+(−1)n−1
nQ

v=1,
v 6=k

svc1

nQ
v=1,v 6=k

(sv−sk)
.

(5)

It is worth noticing that for particular ci we have in (5) sym-
metrical functions of sv without one sk. The extremal values
of x(t) depend linearly on ci, but extremum points τ depend
nonlinearly on ci. In order to obtain analytic formulae for the
extremal values of x(t) we will use the additional equations

dx(1)(τ, c1, . . . , cn)

dci

= 0 for i = 1, 2, . . . , n. (6)

Exactly speaking

dx(1)

dci

=
∂x(1)

∂ci

+
∂x(1)

∂τ

∂τ

∂ci

= 0. (7)

We assume that
∂x(1)

∂τ
6= 0.

We will limit our investigation to the case when τ attains
its extremum with respect to initial condition ci. In this case
we will use the necessary condition that

∂τ

∂ci

= 0.

In this way Eq. (7) will be reduced to Eq. (6).
For the equation of order n it is necessary to use (n− 2)

equations from the set of Eq. (6). These (n − 2) equations
together with the basic equation

dx(t)

dt
= 0

give (n − 1) equations for determination of the unknowns
e(si−sn)τ , i = 1, 2, . . . , n − 1 .

We stress that the time τ must be positive 0 ≤ τ ≤ ∞, and
for maintaining asymptotic stability conditions it is required
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that Re sj < 0. According to this, the exponential functions
0 ≤ e(sn−si)τ ≤ 1, where sn < sn−1 < . . . < s2 < s1 < 0,
τ ≥ 0.

3. Solution to the problem. (Basic results)

First method. In order to determine the n exponential terms
esiτ , i = 1, . . . , n we have one equation (4) and we take
(n − 2) equations (6), for example for i = n, n − 1, . . . , 2.

The solutions of this set of linear homogeneous equations,
where Ak in (4) are defined by the relations (5) are as follows:

es1τ =
sn(s1c1 − c2)

s1(snc1 − c2)
esnτ

es2τ =
sn(s2c1 − c2)

s2(snc1 − c2)
esnτ

. . . = . . . . . . . . . . . .

esn−1τ =
sn(sn−1c1 − c2)

sn−1(snc1 − c2)
esnτ















































. (8)

The substitution of the relations (8) into Eq. (3) for x(τ) and
into higher derivatives x(2)(τ), x(3)(τ), . . . , x(n−1)(τ)

x(2)(τ) =
n

∑

k=1

s2
kAkeskτ

x(3)(τ) =

n
∑

k=1

s3
kAkeskτ

. . . = . . . . . . . . . . . .

x(n−1)(τ) =

n
∑

k=1

sn−1
k Akeskτ



















































gives

x(2)(τ) =

=
an(c1c3−c2

2
)x(τ)

anc2

1
+an−1c1c2+an−2c2

2
+an−3c2c3+an−4c2c4+...+c2cn

x(3)(τ) =

= an(c1c4−c2c3)x(τ)
anc2

1
+an−1c1c2+an−2c2

2
+an−3c2c3+an−4c2c4+...+c2cn

x(4)(τ) =

= an(c1c5−c2c4)x(τ)
anc2

1
+an−1c1c2+an−2c2

2
+an−3c2c3+an−4c2c4+...+c2cn

. . . . . . . . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x(n−1)(τ) =

= an(c1cn−c2cn−1)x(τ)
anc2

1
+an−1c1c2+an−2c2

2
+an−3c2c3+an−4c2c4+...+c2cn























































































(9)

where in the denominator we have all possible products of
the initial conditions c1, . . . , cn and with the coefficients
an, . . . , a1 whose weight together is equal to n + 2.

In the paper [2] the general relation was proved
between x(τ), x(2)(τ), . . ., x(n−1)(τ) and c1, c2, . . . , cn,
a1, a2, . . . , an.

n
∏

k=1

n
∑

j=1,

j 6=2

(−1)jϕ
(k)
n−j x(j−1)(τ)

= e−a1τ

n
∏

k=1

n
∑

j=1

(−1)jϕ
(k)
n−jcj ,

(10)

where ϕ
(j)
r is the fundamental symmetric function of the

r-th order of (n − 1) variables s1, . . . , sj−1, sj+1, . . . , sn,
r = 0, 1, . . . , n − 1

ϕ
(j)
0 = 1, a0 = 1

ϕ
(j)
r =

r
∑

i=0

(−1)rar−is
i
j , j = 1, 2, . . . , n − 1











. (11)

Both sides of Eq. (10) are composed of the symmetric poly-
nomials of variables s1, . . . , sn. Due to this it is possible
to present these terms as the polynomials of the coefficients
a1, . . . , an. Using Viete’s relations it is possible to replace
the roots sk by the coefficients ak and to avoid calculation
of the roots by the solution of algebraic Eqs. (2). Using the
substitution of the relations (9) into Eq. (10) we obtain the
general formulae for calculation of x(τ):

xn(τ)ea1τ =

=
(anc2

1
+an−1c1c2+an−2c2

2
+an−3c2c3+...+c2cn)n

a
n−1
n (ancn

1
+an−1c

n−1

1
c2+an−2c

n−2

1
c2

2
+...+a1c1c

n−1

2
+cn

2
)
.

(12)
The weight of each term in numerator is equal to (n + 2)
and the number of terms is maximally (n + 1), when all the
initial conditions c1, . . . , cn are different from zero. In the
brackets of denominator we have only two initial conditions
c1, c2 and n coefficients a1, . . . , an. The weight of each term
in the brackets is equal to 2n. The maximal number of terms
is equal to 2n + 1, when both initial conditions c1, c2 are
different from zero. For maintaining the asymptotic stability
conditions it is required that all the coefficients a1, . . . , an

must be positive. The discussion of the particular cases illus-
trates this method [4].

4. Particular cases

• n = 2.

We have a differential equation

d2x

dt2
+ a1

dx

dt
+ a2x = 0, (13)

with initial conditions

x(0) = c1

x(1)(0) = c2







.

Solution of Eq. (13) is

x(t) =
c1

s2 − s1

(

s2e
s1t − s1e

s2t
)

−
c2

s2 − s1

(

es1t + es2t
)

,

where s1, s2 are real different roots of the characteristic equa-
tion

s2 + a1s + a2 = 0.
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The derivative

x(1)(t)=c1
s1s2

s2 − s1

(

es1t−es2t
)

−
c2

s2 − s1

(

s1e
s1t+s2e

s2t
)

.

From the necessary condition x(1)(τ) = 0 we obtain

τ =
1

s1 − s2
ln

s2(c1s1 − c2)

s1(c1s2 − c2)

or using Viete’s formulae

τ =
1

√

a2
1 − 4a2

ln
2a2c1 + (a1 +

√

a2
1 − 4a2)c2

2a2c1 + (a1 −
√

a2
1 − 4a2)c2

,

a2
1 ≥ 4a2.

It is to find using equation x(1)(τ) = 0 that

x(τ) =
c1s1 − c2

s1
es2τ , (14)

x(2)(τ) = −(c1s1 − c2)s2e
s2τ . (15)

Elimination of es2τ from Eqs. (14) and (15) gives

x(2)(τ) = −s1s2x(τ) = −a2x(τ).

We have also from (10)

x2(τ)ea1τ = c2
1 +

a1

a2
c1c2 +

1

a2
c2
2.

• n = 3.

The differential equation has the form

d3x(t)

dt3
+ a1

d2x(t)

dt2
+ a2

dx(t)

dt
+ a3x(t) = 0, (16)

with the initial conditions

x(0) = c1

x(1)(0) = c2

x(2)(0) = c3



















. (17)

Solution of Eq. (16) with (17) is

x(t) =

= c1

(

s2s3es1t

(s1−s2)(s1−s3) + s3s1es2t

(s2−s3)(s2−s1) + s1s2es3t

(s3−s1)(s3−s2)

)

− c2

(

(s2+s3)es1t

(s1−s2)(s1−s3)
+ (s3+s1)e

s2t

(s2−s3)(s2−s1)
+ (s1+s2)e

s3t

(s3−s1)(s3−s2)

)

+ c3

(

es1t

(s1−s2)(s1−s3) + es2t

(s2−s3)(s2−s1) + es3t

(s3−s1)(s3−s2)

)

.

From the equation x(1)(t) = 0 we have

x(1)(t) = c1s1s2s3
(

es1t

(s1−s2)(s1−s3) + es2t

(s2−s3)(s2−s1) + es3t

(s3−s1)(s3−s2)

)

− c2

(

s1(s2+s3)e
s1t

(s1−s2)(s1−s3)
+ s2(s3+s1)e

s2t

(s2−s3)(s2−s1)
+ s3(s1+s2)e

s3t

(s3−s1)(s3−s2)

)

+c3

(

s1es1t

(s1−s2)(s1−s3)
+ s2es2t

(s2−s3)(s2−s1) +
s3es3t

(s3−s1)(s3−s2)

)

=0.

(18)

We need an additional equation for the determination of τ .

We take
dx(1)

dc3
= 0

and obtain that

s1(s2−s3)e
s1τ +s2(s3−s1)e

s2τ +s3(s1−s2)e
s3τ = 0 (19)

and in (18) remains the equation

s1s2s3c1

[

(s2 − s3)e
s1τ + (s3 − s1)e

s2τ + (s1 − s2)e
s3τ

]

−c2

[

s1(s
2
2 − s2

3)e
s1τ + s2(s

2
3 − s2

1)e
s2τ

+s3(s
2
1 − s2

2)e
s3τ

]

= 0.

(20)

From Eqs. (19) and (20) we have, see (8)

es1τ1 =
s3(s1c1 − c2)

s1(s3c1 − c2)
es3τ1 , (21)

es2τ2 =
s3(s2c1 − c2)

s2(s3c1 − c2)
es3τ2 . (22)

Equations (21) and (22) determine two values (if they exist)
of τ1 and τ2. We look for a common τ1 = τ2 for these two
equations and obtain from (21) and (22) that

τ = τ1 = τ2 =
1

s1 − s2
ln

s2(s1c1 − c2)

s1(s2c1 − c2)
.

The substitution of (21) and (22) for common τ to x(τ) and
x(2)(τ), after elimination of es3τ lead to a relation between
x(2)(τ) and x(τ), see (9)

x(2)(τ) =
a3(c1c3 − c2

2)

a3c
2
1 + a2c1c2 + a1c

2
2 + c2c3

x(τ). (23)

We assume that c1c3 − c2
2 6= 0 in order to avoid an inflection

point.
We have also from the relation (10) see [2] that

ea1τ
{

a2
3x

3(τ) + a1a3x
(2)(τ)x2(τ) + a2

[

x(2)(τ)
]2

x(τ)

+
[

x(2)(τ)
]3}

= a2
3c

3
1 + 2a2a3c2c

2
1 + (a1a3 + a2

2) c2
2c1

+(a1a2 − a3) c3
2 + (a1a2 + 3a3)c1c2c3 + a1a3c

2
1c3

+a2c1c
2
3 + (a2

1 + a2)c
2
2c3

+2a1c2c
2
3 + c3

3.
(24)

The substitution of (23) to (24) gives finally

x3(τ)ea1τ =
(a3c

2
1 + a2c1c2 + a1c

2
2 + c2c3)

3

a2
3(a3c

3
1 + a2c

2
1c2 + a1c1c

2
2 + c3

2)
, (25)

which is the final result for this case, compare with (12).

• n = 4.

Following the same way as for n = 3 we have to use two
additional equations. These equations are obtained from two
additional conditions

Bull. Pol. Ac.: Tech. 58(1) 2010 101



H. Górecki and M. Zaczyk

dx(1)

dc4
= 0

dx(2)

dc3
= 0



















. (26)

Equations (26) with the basic equation x(1)(t) = 0 give the
solution of the problem in this case:

es1τ1 =
s4(s1c1 − c2)

s1(s4c1 − c2)
es4τ1

es2τ2 =
s4(s2c1 − c2)

s2(s4c1 − c2)
es4τ2

es3τ3 =
s4(s3c1 − c2)

s3(s4c1 − c2)
es4τ3











































.

Substituting these equations to x(τ), x(2)(τ) and x(3)(τ) gives
the following result

x(2)(τ)

x(τ)
=

a4(c1c3 − c2
2)

a4c
2
1 + a3c1c2 + a2c

2
2 + a1c2c3 + c2c4

,

x(3)(τ)

x(τ)
=

a4(c1c4 − c2c3)

a4c
2
1 + a3c1c2 + a2c

2
2 + a1c2c3 + c2c4

,

which substituted to the equation similar to (24)

ea1te

[

a3
4x

4
e + 2a2a

2
4x

3
ex

(2)
e + a1a

2
4x

3
ex

(3)
e

+
(

a2
2 + a1a3 + 2a4

)

a4x
2
e

(

x
(2)
4

)2

+
(

a1a2 + 3a3

)

a4x
2
ex

(2)
e x

(3)
e + a2a4x

2
e

(

x
(3)
e

)2

+
(

a1a2a3 + a2
1a4 − a2

3 + 2a2a4

)

xe

(

x
(2)
e

)3

+
(

a3
1a3 + a2a3 + 5a1a4

)

xe

(

x
(2)
e

)2
x

(3)
e

+2
(

a1a3 + 2a4

)

xex
(2)
e

(

x
(3)
e

)2

+a3xe

(

x
(3)
e

)3
+

(

a2
1a2 − a1a3 + a4

)(

x(2)
)4

+
(

a3
1 + 2a1a2 − a3

)(

x
(2)
2

)3
x

(3)
e

+
(

3a2
1 + a2

)(

x
(2)
e

)2(
x

(3)
e

)2
+ 3a1x

(2)
e

(

x
(3)
e

)3
+

(

x
(3)
e

)4
]

= a3
4c

4
1 + 3a3a

2
4c

3
1c2 + 2a2a

2
4c

3
1c3

+a1a
2
4c

3
1c4 +

(

3a2
3 + a2a4

)

a4c
2
1c

2
2

+
(

4a2a3 + 3a1a4

)

a4c
2
1c2c3 + 2

(

a1a3 + 2a4

)

a4c
2
1c2c4

+
(

a2
2 + a1a3 + 2a4

)

a4c
2
1c

2
3 +

(

a1a2 + 3a3

)

a4c
2
1c3c4

+a2a4c
2
1c

2
4 +

(

a3
3 + 2a2a3a4 − a1a

2
4

)

c1c
3
2

+2
(

a2a
2
3 + a2

2a4 + 2a1a3a4 − 2a2
4

)

c1c
2
2c3

+
(

a1a
2
3 + a1a2a4 + 5a3a4

)

c1c
2
2c4

+
(

a2
2a3 + a1a

2
3 + 5a1a2a4 − a3a4

)

c1c2c
2
3

+
(

a1a2a3 + 3a2
1a4 + 3a2

3 + 4a2a4

)

c1c2c3c4

+
(

a2a3 + 3a1a4

)

c1c2c
2
4

+
(

a1a2a3 + a2
1a4 − a2

3 + 2a2a4

)

c1c
3
3

+
(

a2
1a3 + a2a3 + 5a1a4

)

c1c
2
3c4

+2
(

a1a3 + 2a4

)

c1c3c
2
4 + a3c1c

3
4

+
(

a2a
2
3 − a1a3a4 + a2

4

)

c4
2

+
(

2a2
2a3 + a1a

2
3 − a1a2a4 − a3a4

)

c3
2c3

+
(

a1a2a3 − a2
1a4 + a2

3 + 2a2a4

)

c3
2c4

+a2

(

a2
2 + 3a1a3 − 3a4

)

c2
2c

2
3+

+
(

a1a
2
2 + a2

1a3 + 5a2a3 − a1a4

)

c2
2c3c4

+
(

a2
2 + a1a3 + 2a4

)

c2
2c

2
4

+
(

2a1a
2
2 + a2

1a3 − a2a3 − a1a4

)

c2c
3
3

+2
(

a2
1a2 + a2

2 + 2a1a3 − 2a4

)

c2c
2
3c4

+
(

4a1a2 + 3a3

)

c2c3c
2
4 + 2a2c2c

3
4

+
(

a2
1a2 − a1a3 + a4

)

c4
3

+
(

a3
1 + 2a1a2 − a3

)

c3
3c4

+
(

3a2
1 + a2

)

c2
3c

2
4 + 3a1c3c

3
4 + c4

4

(27)

gives finally, compare with (12)

x4(τ)ea1τ =
(a4c

2
1 + a3c1c2 + a2c

2
2 + a1c2c3 + c2c4)

4

a3
4(a4c

4
1 + a3c

3
1c2 + a2c

2
1c

2
2 + a1c1c

3
2 + c4

2)
.

• n = 5.

es1τ1 =
s5(s1c1 − c2)

s1(s5c1 − c2)
es5τ1

es2τ2 =
s5(s2c1 − c2)

s2(s5c1 − c2)
es5τ2

es3τ3 =
s5(s3c1 − c2)

s3(s5c1 − c2)
es5τ3

es4τ4 =
s5(s4c1 − c2)

s4(s5c1 − c2)
es5τ4



























































x(2)(τ)

x(τ)
=

a5(c1c3 − c2
2)

a5c
2
1 + a4c1c2 + a3c

2
2 + a1c2c4 + c2c5

x(3)(τ)

x(τ)
=

a5(c1c4 − c2c3)

a5c
2
1 + a4c1c2 + a3c

2
2 + a1c2c4 + c2c5

x(4)(τ)

x(τ)
=

a5(c1c5 − c2c4)

a5c
2
1 + a4c1c2 + a3c

2
2 + a1c2c4 + c2c5







































and finally

x(5)(τ)eaiτ

=

(

a5c1 + a4c1c2 + a3c
2
2 + a2c2c3 + a1c2c4 + c2c5

)5

a4
5

(

a5c
5
1 + a4c

4
1c2 + a3c

3
1c

2
2 + a2c

2
1c

3
2 + a1c1c

4
2 + c5

2)
(28)

which agrees with the general formulae (12).

5. Numerical results

• n = 3.

We assume the values of the roots
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s1 = −1, s2 = −2, s3 = −3

from Eqs. (21) and (22) we have

e−τ =
(−3)(−c1 − c2)

(−1)(−3c1 − c2)
e−3τ ,

e−2τ =
(−3)(−2c1 − c2)

(−2)(−3c1 − c2)
e−3τ .

The common τ must fulfill the equation
(

3

2
·
c2 + 2c1

c2 + 3c1

)2

=
3

1
·

c2 + c1

c2 + 3c1

from which we have an equation

c2
2 + 4c1c2 = 0.

There are two possibilities

1o. c2 = 0 which gives τ1 = 0 or
2o. c2 = −4c1 which gives τ2 = ln 3.

From Eq. (25) we obtain that

x(τ2) = x3(τ1) · (3)6 = −
1

216
· (58c1 − 4c3)

3.

If we assume c1 = 1 and x(τ) = 1 we have that c3 = 28 and

from (23) we obtain x(2)(τ1) =
18

11
.

Remark 1. For n ≥ 4 the proposed method may not lead to
success. It is caused by the fact that for example n = 4 two
additional equations having the same root τ are required. It
may be not fulfilled for the given roots s1, s2, s3, s4.

For that reason another, more general method is proposed.
In the proposed method we take for consideration only one
additional equation from the set of Eqs. (6). If this Eq. (6)
has (n − 1) zeroes then with the Eq. (4) we can determine

(n − 2) ratios
c1

cn

,
c2

cn

, . . . ,
cn−2

cn

.

In the case when Eq. (6) has less than (n − 1) zeroes we
obtain a better possibility for the choice of the ratios of the
initial conditions. In the case when none from Eqs. (6) has
zeroes it is not possible to determine the initial conditions.

In conclusion, if any of Eqs. (6) is fulfilled for τ > 0 then
there are sufficient conditions for solutions of Eqs. (4) and (6)
together.

6. The second general method for solution

of transcendental equations

For the sake of simplicity we illustrate the proposed method
on example equations with three exponential functions and
with four exponential functions.

We start with Eq. (18). We must consider three possibili-
ties:

1o. If we take an additional equation
dx(1)

dc3
= 0 we obtain the

following equation in the explicit form

s1(s2−s3) es1τ +s2(s3−s1) es2τ +s3(s1−s2) es3τ = 0.

(29)

2o. Similarly for
dx(1)

dc2
= 0 we have

s1(s
2
2−s2

3) es1τ +s2(s
2
3−s2

1) es2τ +s3(s
2
1−s2

2) es3τ = 0.

(30)

3o. In the last possibility
dx(1)

dc1
= 0 we obtain

s1s2s3

[

(s2 − s3) es1τ + (s3 − s1)e
s2τ

+ (s1 − s2) es3τ
]

= 0.
(31)

Equations (29), (30) and (31) have the form independent
of the initial conditions. Zeroes of these equations play the
most important role in this method.

It is well known that solutions of these equations are very
sensitive with respect to the exponents.

The proposed method avoids this sensitivity.

We will find the differential equations from which these
equations as results must be obtained, then we solve them by
application M programs.

We assume that Eq. (29) represents the function y(τ) and
look for this function.

For these purposes we twice differentiate the function y(τ)
with respect to τ and obtain the differential equation:

d3y(τ)

dτ3
+ b1

d2y(τ)

dτ2
+ b2

dy(τ)

dτ
+ b3y(τ) = 0, (32)

where

y(τ) = s1(s2 − s3)e
s1τ + s2(s3 − s1)e

s2τ + s3(s1 − s2)e
s3τ ,

dy(τ)

dτ
= s2

1(s2−s3)e
s1τ +s2

2(s3−s1)e
s2τ +s2

3(s1−s2)e
s3τ ,

d2y(τ)

dτ2
= s3

1(s2−s3)e
s1τ +s3

2(s3−s1)e
s2τ +s3

3(s1−s2)e
s3τ .

Fig. 1. Solution of Eq. (32) for: b1 = 6, b2 = 11, b3 = 6 and c∗1 = 0,
c∗2 = 2, c∗3 = −12
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We find the initial conditions assuming τ = 0

y(0)=c∗1 =s1(s2 − s3)+s2(s3 − s1)+s3(s1 − s2)=0,

y(1)(0)=c∗2 =s2
1(s2 − s3)+s2

2(s3 − s1)+s2
3(s1 − s2) 6= 0,

y(2)(0)=c∗3 =s3
1(s2 − s3)+s3

2(s3 − s1)+s3
3(s1 − s2) 6=0.

(33)
Similarly for Eq. (30) we obtain

c∗1 = s1(s
2
2 − s2

3) + s2(s
2
3 − s2

1) + s3(s
2
1 − s2

2) 6= 0,

c∗2 = s2
1(s

2
2 − s2

3) + s2
2(s

2
3 − s2

1) + s2
3(s

2
1 − s2

2) = 0,

c∗3 = s3
1(s

2
2 − s2

3) + s3
2(s

2
3 − s2

1) + s3
3(s

2
1 − s2

2) 6= 0.

and finally for Eq. (31)

c∗1 = s2 − s3 + s3 − s1 + s1 − s2 = 0,

c∗2 = s1(s2 − s3) + s2(s3 − s1) + s3(s1 − s2) = 0,

c∗3 = s2
1(s2 − s3) + s2

2(s3 − s1) + s2
3(s1 − s2) 6= 0.

Solutions of Eq. (32) for s1 = −1, s2 = −2, s3 = −3 are
presented in the corresponding Figs. 1–3.

Fig. 2. Solution of Eq. (32) for: b1 = 6, b2 = 11, b3 = 6 and
c∗1 = −2, c∗2 = 0, c∗3 = 2

Fig. 3. Solution of Eq. (32) for: b1 = 6, b2 = 11, b3 = 6 and c∗1 = 0,
c∗2 = 0, c∗3 = 2

From these we obtain the zeroes of Eqs. (29), (30) and
(31). This method can be applied to the equation of n-th-order
where s1, s2, . . ., sn can be real or complex-conjugate. After
finding zeroes we return to Eq. (18) and we obtain solutions
of this equation for arbitrary initial conditions c1, c2, c3.

7. Numerical results

• n = 3.
We assume that

s1 = −1, s2 = −2, s3 = −3.

From (33) we obtain for equation in point 1o so that

y(0) = c∗1 = 0, y(1)(0) = c∗2 = 2, y(2)(0) = c∗3 = −12.

In Fig. 1 the dependence y(τ) is shown and we see that
y(τ∗) = 0 for τ∗

1 = 0 and τ∗

2 = ln 3 = 1.0986, there are
also coordinates for extremums.

For equation in point 2o we have

y(0) = c∗1 = −2, y(1)(0) = c∗2 = 0, y(2)(0) = c∗3 = 22.

In Fig. 2 we find that for y(τ∗) = 0 the value of τ∗ = 0.905
and the coordinates of the one extremum are denoted.

For equation in point 3o we find that for y(τ∗) = 0 we
have τ∗ = 0 and the coordinates of one extremum are denot-
ed. The initial conditions are

y(0) = c∗1 = 0, y(1)(0) = c∗2 = 0, y(2)(0) = c∗3 = 2.

• n = 4.

Similary as for n = 3 we can write the equations for the
coefficients c1, c2, c3 and c4:

s1e
s1τ

[

s3
2

(

s3 − s4

)

s3s4 + s3
3

(

s4 − s2

)

s2s4

+s3
4

(

s2 − s3

)

s2s3

]

+s2e
s2τ

[

s3
1

(

s4 − s3

)

s3s4

+s3
3

(

s1 − s4

)

s1s4 + s3
4

(

s3 − s1

)

s1s3

]

+s3e
s3τ

[

s3
1

(

s2 − s4

)

s2s4

+s3
2

(

s4 − s1

)

s1s4 + s3
4

(

s1 − s2

)

s1s2

]

+s4e
s4τ

[

s3
1

(

s3 − s2

)

s2s3 + s3
2

(

s1 − s3

)

s1s3

+s3
3

(

s2 − s1

)

s1s2

]

= 0,

(34)

s1e
s1τ

[

s3
2

(

s2
4 − s2

3

)

+ s3
3

(

s2
2 − s2

4

)

+ s3
4

(

s3
3 − s2

2

)

]

+s2e
s2τ

[

s3
1

(

s2
3 − s2

4

)

+ s3
3

(

s2
4 − s2

1

)

+ s3
4

(

s2
1 − s2

3

)

]

+s3e
s3τ

[

s3
1

(

s2
4 − s2

2

)

+ s3
2

(

s2
1 − s2

4

)

+ s3
4

(

s2
2 − s2

1

)

]

+s4e
s4τ

[

s3
1

(

s2
2 − s2

3

)

+s3
2

(

s2
3 − s2

1

)

+s3
3

(

s2
1 − s2

2

)

s1s2

]

=0,
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s1e
s1τ

[

s3
2

(

s3 − s4

)

+ s3
3

(

s4 − s2

)

+ s3
4

(

s2 − s3

)

]

+s2e
s2τ

[

s3
1

(

s4 − s3

)

+ s3
3

(

s1 − s4

)

+ s3
4

(

s3 − s1

)

]

+s3e
s3τ

[

s3
1

(

s2 − s4

)

+ s3
2

(

s4 − s1

)

+ s3
4

(

s1 − s2

)

]

+s4e
s4τ

[

s3
1

(

s3 − s2

)

+ s3
2

(

s1 − s3

)

+ s3
3

(

s2 − s1

)

]

= 0,

s1e
s1τ

[

s2
2

(

s4 − s3

)

+ s2
3

(

s2 − s4

)

+ s2
4

(

s3 − s2

)

]

+s2e
s2τ

[

s2
1

(

s3 − s4

)

+ s2
3

(

s4 − s1

)

+ s2
4

(

s1 − s3

)

]

+s3e
s3τ

[

s2
1

(

s4 − s2

)

+ s2
2

(

s1 − s4

)

+ s2
4

(

s2 − s1

)

]

+s4e
s4τ

[

s2
1

(

s2 − s3

)

+ s2
2

(

s3 − s1

)

+ s2
3

(

s1 − s2

)

]

= 0.

Similarly to Eq. (32) we have here

d4y(τ)

dτ4
+10

d3y(τ)

dτ3
+35

d2y(τ)

dτ2
+50

dy(τ)

dτ
+24y(τ) = 0,

(35)

where we assume s1 = −1, s2 = −2, s3 = −3, s4 = −4.
From Eq. (34) we have the for coefficient of c1 the equation

e3τ − 3e2τ + 3eτ − 1 = 0.

The solutions of it are

τ1 = τ2 = τ3 = 0.

Similarly for c2 we obtain only one solution for equation

13e3τ − 57e2τ + 63eτ − 22 = 0.

τ1 = 1.07366.

For c3 the equation is

3e3τ − 16e2τ + 21eτ − 8 = 0

and the solutions are (see Fig. 4)

Fig. 4. Solution of Eq. (35) for c∗1 = 0, c∗2 = 2, c∗3 = 0, c∗4 = −70

τ1 = 0, τ2 = ln 3.591 = 1.2783.

and finally for c4 the equation

e3τ − 6e2τ + 9eτ − 4 = 0

and the solutions (see Fig. 5)

τ1 = τ2 = 0, τ3 = ln 4 = 1.386.

Fig. 5. Solution of Eq. (35) for c∗1 = 0, c∗2 = 0, c∗3 = −6, c∗4 = 60

8. Conclusions

The solution of the transcendental equation in an analytical
form are presented. The methods are based on the assumption
that we look for extremal points τ with respect to the initial
conditions ci.

The existence of such points is connected with the roots
of the characteristic equation. These roots may be shifted in
the desired location using the well known methods of the
poles and zeros locations see [5]. This method opens a new
possibility of design of control systems, where the concrete
extremal points τ and x(τ) are required.
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