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Robustness of adaptive discrete-time LQG control

for first-order systems
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Abstract. The discrete-time adaptive LQG control of first-order systems is considered from robustness point of view. Both stability and
performance robustness are analyzed for different control system structures. A case of amplitude-constrained control is presented, and
application of certainty equivalence for self-tuning implementation is also discussed.
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1. Introduction

Analysis and design of both adaptive and H2 robust control
for uncertain linear time invariant systems is an area of an
extensive research, however the robustness issues in adap-
tive control context are not much researched especially in the
LQG framework. Robustness aspects of adaptive control are
discussed in [1] where an example of a first-order MRAS is
analyzed in the presence of unmodelled dynamics. The aver-
aging methods were shown to be useful for analysis of equi-
libria and local properties around equilibria. These methods
can also be applied to analyze what happens when adaptive
control systems are designed based on simplified models. Two
algorithm of indirect self-tuning LQG control are also given
for ARMAX system. The first one is based on the spectral
factorization and the second one is based on Riccati equation.

In [2] robust direct and indirect adaptive control laws are
presented for the pole placement design where the robustness
is considered with respect to bounded disturbances or distur-
bances which account for the effect of unmodelled dynamics.

A robust constrained predictive control with a new adap-
tive parameter estimation algorithm is presented in [3].

In [4], the adaptive LQG control in discrete-time domain
with loop transfer recovery is investigated. Correspondingly,
the self-tuning LQG control in frequency domain is consid-
ered in [5] and [6] where the controller and estimator are
found by polynomial equations. This approach is different
from standard Kalman theory based on Riccati equations,
however the polynomial implementation of the LQG con-
troller is entirely equivalent, from a performance point of
view, with a state-space Kalman filtering solution.

In this latter approach which is considered also below it is
known that the application of certainty equivalence principle
yields some identifiability problems even if the unknown sys-
tem parameters belong to the finite set Θ. In this case, an adap-
tive LQG control, based on biasing the usual least-squares pa-
rameter estimation criterion with a term favoring parameters
associated with lower optimal costs was introduced in [7].

To restore the optimality of an adaptive LQG control, the
cost-biased least-squares parameter estimation method was al-
so introduced in [8] for the case of compact set Θ. The case
of infinite parameter set Θ is much more difficult and still
remains unsolved.

The cost of uncertainty quantified in terms of closed-loop
performance is investigated in [9] for LQG control of first-
order system where the graphical results are obtained by eval-
uation of integrals from Parseval’s theorem.

The problem addressed in this paper is the robustness
aspects of adaptive LQG control for uncertain linear first-
order systems. Stability and performance robustness are in-
vestigated for different configurations of the control system,
i.e.: Kalman predictor, Kalman filter and output feedback
controllers. The numerical results are presented, concern-
ing how stability and performance depend on actual and
estimated values of controlled system parameters in LQG
control having first-order system dynamics. This explicit in-
sight is provided by pictures which are believed to be origi-
nal.

The case of an amplitude-constrained input is also con-
sidered for both Kalman predictor and Kalman filter-based
controllers. It is worthy to note that there is no separation
theorem for LQG control with hard control and/or state con-
straints [10], and obviously, the same holds for adaptive LQG
control. The robustness properties of adaptive control systems
are illustrated and compared via simulations for all considered
controllers. It is shown that good robustness features can be
preserved in the considered LQG control of first-order sys-
tems. Obviously, this is not true in general case [11, 12],
because LQG designs based on Kalman filtering can exhibit
arbitrarily poor stability margins. This means that even when
the state feedback gains are appropriate for the actual system,
the inaccurate state estimates fed back can cause reduced per-
formance or stability properties. It is known that the loop
transfer recovery technique can be used then to improve the
robustness and performance.
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As already mentioned, problems with convergence to op-
timality may occur in self-tuning control based on the certain-
ty equivalence principle. There is a link between parametric
robustness considerations presented in the paper and the im-
plementation of self-tuning control. For example, the initial
parameter estimates have to be chosen to be in the stability
region while the limiting parameter estimates, if they lie in the
robustness region, they determine the accuracy of steady-state
performance.

2. Kalman predictor controller

Let the first-order system be described by

xt+1 + axt = but + vt, (1)

yt = xt + wt, (2)

where vt, wt are white gaussian noises with zero mean and
corresponding variances σ2

v , σ2
w. For simplicity it is assumed

that x0 = 0.
First, consider only the system (1), (2) without measure-

ment noise and the controller of the form

ut = fxxxt, (3)

aiming at minimization of the stationary cost function

Jxx = σ2
x + qσ2

u = (1 + qf2
xx)σ2

x, (4)

where the weight q ≥ 0 and the variances σ2
x, σ2

u are given
by

σ2
x =

σ2
v

1 − (bfxx − a)2
, σ2

u = f2
xxσ2

x. (5)

The form of σ2
x in (5) can be obtained by putting (3) into

Eq. (1), next raising square both sides of this equation, and
finally taking expectation.

Minimization of Jxx w.r.t. the feedback gain fxx gives

f opt
xx (a, b) =

=
q(a2 − 1) − b2 +

√
q2(1 − a2)2 + 2qb2(1 + a2) + b4

2abq
.

(6)

Obviously, the same result can also be obtained by solving
the Riccati equation

P 2
f b2 + Pf

(
q(1 − a2) − b2

)
− q = 0 (7)

and calculating

f opt
xx (a, b) = (b2Pf + q)−1abPf (8)

for Pf > 0. The minimal cost is then

Jmin
xx = Pfσ2

v . (9)

Now, consider the system described by (1) and (2) with the
Kalman predictor (KP)-based controller

ut = fbxxx̂t. (10)

According to the notation used in the text, the first subscript
(x̂) denotes the variable used for feedback, and the second
subscript (x) denotes the variable used in the cost function.

Note that fbxx = fxx due to the separation theorem. The KP
yielding x̂t is

x̂t+1 = −ax̂t + but + kỹt, (11)

where ỹt = yt− x̂t and x̃KP
t = xt − x̂t is the estimation error.

From (1), (2) and (11) it can be found that the estimation
error satisfies the following recursive equation

x̃KP
t+1 = −(a + k)x̃KP

t + vt − kwt (12)

and its variance is

σ2ex,KP =
σ2

v + k2σ2
w

1 − (a + k)2
. (13)

Minimization of (13) yields the optimal predictor gain kopt

kopt(a, b) =

=
(1 − a2)σ2

w + σ2
v −

√
((1 − a2)σ2

w + σ2
v)2 + 4a2σ2

vσ2
w

2aσ2
w

.

(14)

Obviously, the same result can be found by solving the Riccati
equation

P 2
k + Pk((1 − a2)σ2

w − σ2
v) − σ2

vσ2
w = 0 (15)

and calculating

kopt(a, b) = −aPk(Pk + σ2
w)−1 (16)

for Pk > 0; note that Pk = σ2ex,KP. The minimal cost is

JKPminbxx = Pfσ2
v + Pk(f

optbxx )2(b2Pf + q). (17)

2.1. Input-constrained case. When |ut| ≤ α then the feed-
back controller is implemented by means of a saturation func-
tion

ut = sat(fbxx,αx̂t; α), (18)

where the feedback gain fbxx,α can be derived using the al-
gorithm proposed in [13] for system (1), (2) assuming that
the non-gaussian probability density function for x̂t can be
approximated by the gaussian function. Then, taking into ac-
count σ2

x = σ2bx + σ2ex,KP, the cost function (4) can be derived
as [13, 14]

JKPbxx,α = [1 + qf2bxx,αg1(σ)]σ2bx + σ2ex,KP, (19)

where g1(σ) appearing in (19) as a result of approxima-
tion is defined by error functions g1(σ) = erf(ασ−12−

1

2 ) −

ασ−12
1

2 ierfc(ασ−12−
1

2 ) and σ2 = f2bxx,ασ2bx.

The variance σ2bx can be found as an iterative solution to
the stationary closed-loop equation for a given constraint α

σ2bx = a2σ2bx − 2abfbxx,αg2(σ)σ2bx + b2f2bxx,αg1(σ)σ2bx + k2σ2ey,

(20)

where the error function g2(σ) = erf(ασ−12−
1

2 ) and σ2ey =

σ2ex,KP +σ2
w. The solution to the Eq. (20) is in turn used in the

iterative algorithm which gives the feedback gain fbxx,α.
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3. Kalman filter controller

The Kalman filter (KF) yielding x̂t/t is

x̂t+1/t+1 = −ax̂t/t + but + k(yt+1 + ax̂t/t − but) (21)

or in terms of the KP output

x̂t+1/t+1 = x̂t+1 + kỹt+1. (22)

From (1), (2) and (21) it can be found that the estimation error
x̃KF

t = xt − x̂t/t satisfies the following recursive equation

x̃KF
t+1 = −a(1 − k)x̃KF

t + (1 − k)vt − kwt+1 (23)

and its variance is

σ2ex,KF =
(1 − k)2σ2

v + k
2
σ2

w

1 − a2(1 − k)2
. (24)

Minimization of (24) yields the optimal filter gain k
opt

k
opt

(a, b) =

=
(a2 − 1)σ2

w − σ2
v +

√
((1 − a2)σ2

w + σ2
v)2 + 4a2σ2

vσ2
w

2a2σ2
w

.

(25)

It is easy to see that kopt = −ak
opt

.
The KF-based controller is

ut = fbxxx̂t/t (26)

and the minimal cost is now

JKFminbxx = Pf (σ2
v + abf

optbxx Pk/k), (27)

where
Pk/k = Pk − P 2

k (Pk + σ2
w)−1. (28)

Note that here Pk/k = σ2ex,KF where σ2ex,KF is given by (24).
Calculating ∆Jmin = JKPminbxx − JKFminbxx yields

∆Jmin = P 2
k (f optbxx )2(b2Pf + q)(Pk + σ2

w)−1 > 0, (29)

which means that the KF-based controller performs better than
KP-based controller in whole range of the weight q.

3.1. Input-constrained case. Again, when |ut| ≤ α then the
feedback controller (26) is implemented analogously to (18)
as

ut = sat(fbxx,αx̂t/t; α). (30)

Similarly to (20), the approximate equation for the variance
σ2bx/bx resulting from (21) and (30) has now the form

σ2bx/bx = a2σ2bx/bx − 2abfbxx,αg2(σ)σ2bx/bx +

+ b2f2bxx,αg1(σ)σ2bx/bx + k
2
σ2ey (31)

and can be solved iteratively for a given constraint α. Analo-
gously to (19), the cost function has now the form

JKFbxx,α = [1 + qf2bxx,αg1(σ)]σ2bx/bx + Pk/k, (32)

where Pk/k is given as in (28). Again as for (18), the iter-
ative algorithm similar to that proposed in [10] can be used
to derive the feedback gain fbxx,α which minimizes the cost
function (32).

4. Output feedback controller

Consider the system (1), (2) and the output feedback control
problem with the controller

ut = fyxyt, (33)

which has to minimize the stationary cost function

Jyx = σ2
x + qσ2

u. (34)

It can be shown [15] that the cost function (34) can be ex-
pressed as

Jyx = (1 + f2
yxq)σ2

x + f2
yxqσ2

w, (35)

where

σ2
x =

b2f2
yxσ2

w + σ2
v

1 − (bfyx − a)2
. (36)

Minimization of Jyx w.r.t. fyx gives

−f4
yxab3qσ2

w + 4f3
yxa2b2qσ2

w+

+ f2
yx(−4a3bqσ2

w + abqσ2
v + ab3σ2

w + 4abqσ2
w)+

+ fyx(b2σ2
v + qσ2

v − a2qσ2
v + b2σ2

w − a2b2σ2
w+

+ qσ2
w − 2a2qσ2

w + a4qσ2
w) − abσ2

v = 0.

(37)

The numerical solution of (37) will yield the optimal feed-
back gain f

opt
yx . Notice that if σ2

w = 0 then the solution is again
f

opt
xx while putting σ2

v = 0 in (33), the trivial feedback gain
fyx = 0 is obtained.

Consider again the system (1), (2) under the controller

ut = fyyyt. (38)

The stationary cost function

Jyy = σ2
y + qσ2

u (39)

is now considered where variances σ2
y , σ2

u are given by

σ2
y =

2abfyyσ
2
w + σ2

1 − (bfyy − a)2
, σ2

u = f2
yyσ2

y, (40)

where σ2 = σ2
v + σ2

w(1 − a2). Solving

min
fyy

Jyy (41)

yields the following equation

f4
yyab3qσ2

w + 4f3
yyab2qσ2

w+

+ f2
yy(ab3σ2

w + 3abqσ2
w − 3a3bqσ2

w + abqσ2)+

+ fyy(qσ
2 − a2qσ2 + b2σ2)+

+ ab(1 − a2)σ2
w − abσ2 = 0,

(42)

whose numerical solution gives the optimal feedback gain
f

opt
yy .
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5. Performance robustness

Performance robustness is analyzed in terms of parameter es-
timates â = δaa, b̂ = δbb. For the control law (3) the minimal
value of the cost function (4), i.e. Jmin

xx , can be calculated
using (5). The performance robustness can be formulated as
a determination of an allowable region of parameter estimates
â, b̂ assuring that the attainable value of the cost function Ĵxx

satisfies the inequality

Ĵxx ≤ (1 + ∆)Jmin
xx (43)

for a given ∆ > 0, where Ĵxx = Jxx(f̂ opt
xx ) and f̂

opt
xx is ob-

tained from (6) using the estimates â, b̂.

To guarantee the positive value of Ĵxx the uncertainty in-
tervals for δa, δb should be taken as to the feedback gain f̂

opt
xx

ensures the closed-loop stability (see the next Section).

For a = −0.5, b = 0.5, q = 0.1 and σ2
v = σ2

w = 0.1
we have from (4),(5),(6) Jmin

xx = 0.1073 and f
opt
xx = −0.7284.

The same value of Jmin
xx can also be obtained from (9). The

inequality (43) is illustrated in Fig. 1 for ∆ = 0.05 where the
flat (and light) surface is set at the value equal to the right
hand side of inequality (43). The intersection of this surface
with other surface representing the cost function Ĵxx yields
the allowable region of parameter estimates, i.e. the region
of performance robustness taken w.r.t. parametric uncertain-
ties δa, δb. Obviously, the region of performance robustness
is constrained. Notice that in all other simulations concerning
the performance robustness the same idea of illustration holds
and the singular case δa = δb = 0 is ignored.
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1

1.5

2

2.5

3
0.1

0.15

0.2

0.25

δa
δb

J
^

xx

Fig. 1. Illustration of performance robustness w.r.t. Jxx

For the control law (10) the minimal value of the cost
function (4) can be obtained using Eqs. (2), (10), (11) (or
from (19) for α → ∞)

JKPminbxx =
(
1 + q(f optbxx )2

)
σ2bx + σ2ex,KP , (44)

where

σ2bx =
(kopt)2(σ2

w + σ2ex)

1 − (bf optbxx − a)2
,

σ2ex,KP =
σ2

v + (kopt)2σ2
w

1 − (a + kopt)2
.

(45)

Analogously to (43), a condition for performance robustness
can now be determined by inequality

ĴKPbxx ≤ (1 + ∆)JKPminbxx (46)

for a given ∆ > 0, where ĴKPbxx = JKPbxx (f̂ optbxx , k̂opt), and the

feedback and predictor gains f̂
optbxx , k̂opt are calculated on the

basis of (6) and (14) with use of estimates â, b̂.

To derive ĴKPbxx the analysis of closed-loop system contain-

ing controller with gain f̂
optbxx and KP (11) with gain k̂opt has

to be performed.

Performing some manipulations and using parameter es-
timates â, b̂ the following transfer function of the controller
can be obtained

Ĝc(z) =
u(z)

y(z)
=

Â

z + B̂
, (47)

where Â = k̂opt(â, b̂)f̂
opt
xx (â, b̂), B̂ = k̂opt(â, b̂)+â−b̂f̂

opt
xx (â, b̂)

and â = δaa, b̂ = δbb.

Combining the controller transfer function (47) with sys-
tem transfer function we have the following expressions for
x(z) and u(z) in the closed-loop system

x(z) =
(z + B̂)v(z) + bÂw(z)

z2 + z(a + B̂) + aB̂ − bÂ
, (48)

u(z) =
Âv(z) + Â(z + a)w(z)

z2 + z(a + B̂) + aB̂ − bÂ
. (49)

Using the above expressions the variances σ̂2
x, σ̂2

u can be ob-
tained which are necessary to calculate the following cost
function

ĴKPbxx = σ̂2
x + qσ̂2

u (50)

and consequently to verify the condition (46).

Inequality (46) is illustrated in Fig. 2 for ∆ = 0.02,
σ2

v = σ2
w = 1.0 and other parameters as for Fig. 1. According

to (46) we have then JKPminbxx = 1.2942. The same value can be
obtained from (52) for δa = δb = 1.0 or from (17). Moreover,
we have f

optbxx = f
opt
xx = −0.7284 and kopt = 0.2655.
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Fig. 2. Illustration of performance robustness w.r.t. JKPbxx

Performance robustness under input constraint, i.e. for
JKPbxx,α (19) has been investigated in simulation way where the

feedback gain f̂bxx,α for estimates â, b̂ was derived iteratively
using the algorithm given in [13]. To this end Eq. (20) was
used and the cost function was calculated analogously to (50).
Condition of robustness performance similar to (46) is illus-
trated in Figs. 3–5 for α = 0.4, 0.5, 0.6, respectively where
other parameters are as in Fig. 2. For δa = δb = 1.0 we have
JKPminbxx,α = 1.3005, f

optbxx,α = −0.7333 for α = 0.4, JKPminbxx,α =

1.2991, f
optbxx,α = −0.7308 for α = 0.5, JKPminbxx,α = 1.2985,

f
optbxx,α = −0.7295 for α = 0.6, and again kopt = 0.2655

in all cases. It should be noticed that JKPminbxx,α > JKPminbxx as
a result of constraint. From Figs. 3–5 one can observe that
the stronger the constraint (i.e. the smaller the value of α)
the larger the area of performance robustness. For exam-
ple, if δb = 0.5 the corresponding robustness intervals for
δa are: for α = 0.4, 0.485 ≤ δa ≤ 1.771, for α = 0.5,
0.485 ≤ δa ≤ 1.369, for α = 0.6, 0.485 ≤ δa ≤ 1.301, for
α = ∞, 0.485 ≤ δa ≤ 1.177.

Fig. 3. Illustration of performance robustness w.r.t. JKPbxx,α; α = 0.4

Fig. 4. Illustration of performance robustness w.r.t. JKPbxx,α; α = 0.5

Fig. 5. Illustration of performance robustness w.r.t. JKPbxx,α; α = 0.6

In the case of the KF-based controller (26) the minimal
value of the cost function, i.e. JKFminbxx (f optbxx , k

opt
) can be cal-

culated using

σ2bx/bx =
(k

opt
)2(σ2

v + σ2
w + σ2ex,KF)

1 − (bf
optbxx − a)2)

, (51)

σ2ex,KF =
(1 − k

opt
)2σ2

v + (k
opt

)2σ2
w

1 − a2(1 − k
opt

)2
. (52)

To this end the formula (32) can be used putting α = ∞. The
expression (51) is obtained using Eqs. (21), (26), (1), (2), and
noting that x̃KF

t = xt − x̂t/t.
Analogously to (46), a condition for performance robust-

ness can again be determined

ĴKFbxx ≤ (1 + ∆)JKFminbxx , (53)

where ĴKPbxx = JKPbxx (f̂ optbxx , k̂
opt

), and the feedback and predictor

gains f̂
optbxx , k̂

opt
are calculated on the basis of (6) and (25) with

use of estimates â, b̂.

Bull. Pol. Ac.: Tech. 58(1) 2010 93



A. Królikowski and D. Horla

The expressions for x(z) and u(z) are necessary to cal-
culate ĴKFbxx . Correspondingly to (48) and (49) one can obtain

x(z) =
(z + B̂)v(z) + zbÂw(z)

z2 + z(a + B̂ − bÂ) + aB̂
, (54)

u(z) =
zÂv(z) + zÂ(z + a)w(z)

z2 + z(a + B̂ − bÂ) + aB̂
, (55)

where Â = k̂
opt

(â, b̂)f̂
opt
xx (â, b̂), B̂ = (1 − k̂

opt
(â, b̂))(â −

b̂f̂
opt
xx (â, b̂)).

According to (44) and (51), (52) we have JKFminbxx =
1.1766, i.e. the smaller value compared with the KP-based
controller. Again, the same value can be obtained from (50)
and (54), (55) for δa = δb = 1 or from (27). Moreover, we
have k

opt
= 0.5311.

The illustration of the performance robustness for KF-
based controller is shown in Fig. 6 for the same parameters
as in Fig. 2. One can observe a smaller region of performance
robustness w.r.t. KP-based controller.

Fig. 6. Illustration of performance robustness w.r.t. JKFbxx

Performance robustness under input constraint, i.e. for
JKFbxx,α (32) has been investigated in simulation way where

the feedback gain f̂bxx,α for estimates â, b̂ was derived iter-
atively using again the algorithm given in [13]. To this end
Eq. (31) was used and the cost function was calculated anal-
ogously to (50). Condition of robustness performance simi-
lar to (46) is illustrated in Figs. 7–9 for α = 0.4, 0.5, 0.6,
respectively where other parameters are as in Fig. 2. For
δa = δb = 1.0 we have JKFminbxx,α = 1.2223, f

optbxx,α = −0.7464

for α = 0.4, JKFminbxx,α = 1.2092, f
optbxx,α = −0.7420 for α = 0.5,

JKFminbxx,α = 1.2000, f
optbxx,α = −0.7383 for α = 0.6, and again

k
opt

= 0.5311 in all cases. It should be noticed that the control
performance is better than the corresponding performance of
control system with KP. Again, JKFminbxx,α > JKFminbxx as a result
of constraint. Similarly to the KP case one can observe that
if the constraint gets stronger then the area of performance
robustness gets larger.

Fig. 7. Illustration of performance robustness w.r.t. JKFbxx,α; α = 0.4

Fig. 8. Illustration of performance robustness w.r.t. JKFbxx,α; α = 0.5

Fig. 9. Illustration of performance robustness w.r.t. JKFbxx,α; α = 0.6

Figures 10, 11 represent the performance robustness for
Jyx and for Jyy, respectively, both under the same conditions
as in Figs. 2, 6. For δa = δb = 1.0 and σ2

v = σ2
w = 1.0 we

have Jmin
yx = 1.1771, f

opt
yx = −0.3930 and Jmin

yy = 2.1931,
f

opt
yy = −0.3993. It can be observed that the controller (33)

performs less robust w.r.t. the cost (35) than the controller (38)
w.r.t. the cost (39), and the robustness region in Fig. 10 is
smaller than the corresponding region in Fig. 6.
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Fig. 10. Illustration of performance robustness w.r.t. Jyx

Fig. 11. Illustration of performance robustness w.r.t. Jyy

5.1. Adjustment of the weight q. Consider again the system
(1) and the control law (3) for the minimization of the sta-
tionary cost function (4). The standard LQG approach gives
the solution (8) where the explicit formula for Pf is

Pf =
q(a2 − 1) + b2 +

√
q2(1 − a2)2 + 2qb2(1 + a2) + b4

2b2
.

(56)

Obviously, (56) together with (8) give the same f
opt
xx as (6). To

guarantee that the controller yields the minimal cost function
the feedback gain for perturbed system, i.e. fxx,δ has to fulfill
the equation

fxx,δ = (δ2
b b2Pf,δ + qδ)

−1δaδbabPf,δ = f opt
xx , (57)

where Pf,δ is the solution of Riccati Eq. (7) for perturbed
system, i.e. according to (56)

Pf,δ =
qδ(δ

2
aa2 − 1) + δ2

b b2

2δ2
bb

2
+

+

√
q2
δ (1−δ2

aa
2)2+2qδδ

2
b b2(1+δ2

aa
2)+δ4

bb
4

2δ2
b b2

.

(58)

From (57) and (8) one can obtain

qδ = Pf,δδb

(
δab2 − δbb

2 +
δaq

Pf

)
, (59)

which under Pf,δ > 0 and qδ > 0 gives

δb < δa

(
1 +

q

Pfb2

)
, (60)

when δb > 0, and

δb > δa

(
1 +

q

Pfb2

)
, (61)

when δb < 0. It is easy to see that the uncertainties δa,
δb must have the same sign. Moreover, their values should
be such that fxx,δ(δa, δb) ensures the closed-loop stability.
By putting (58) into (59) a solution for qδ can be found.
A plot for qδ obtained under condition (60) is shown in
Fig. 12 for a = −0.5, b = 0.5, q = 0.1. Taking for example
δb = δa = 1.5 one obtains qδ = 0.0446, Pf,δ = 0.2126, and
obviously fxx,δ = −0.7284 yielding the optimal cost.

Fig. 12. Plot of the weight qδ

In the light of above results one can see that the adjust-
ment of the weight q could be used to compensate the effect
of the parameter estimates bias represented by δa, δb on the
suboptimal performance of the controller ut = fxx(ât, b̂t)xt,
thus to restore the optimality.

6. Stability robustness

From (48) one can find the characteristic equation of the
closed-loop system with parametric uncertainties

z2 + α1z + α0 = 0, (62)

where
α1 = a + B̂,

α0 = aB̂ − bÂ

and
Â = k̂opt(â, b̂)f̂ opt

xx (â, b̂),
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B̂ = â + k̂opt(â, b̂) − b̂f̂ opt
xx (â, b̂).

The closed-loop stability condition resulting from (62) for
q = 0.1 and the true parameters a = ao = −0.5, b = bo = 0.5
is illustrated in Fig. 13, where the flat and light surface is set
at the value 1 (stability region) while the dark surface cor-
responds to the largest absolute value of the root resulting
from (62) for the given uncertainties δa, δb (instability re-
gion). It can be observed that for increasing uncertainty δb

the admissible uncertainty δa is decreasing.

Fig. 13. Illustration of stability robustness; KP-based controller

In the case of KF-based controller, the corresponding
characteristic equation of the closed-loop system follows
from (54). Taking the notation of (62) we have α1 = a +B̂−
bÂ, α0 = aB̂ with Â, B̂ as in (54). The closed-loop stability
condition resulting from (62) is illustrated in Fig. 14 for the
same parameters as in Fig. 13. One can see that the stability
region gets essentially smaller w.r.t. the KP-based controller.
The corresponding stability region for controller (33) is shown
in Fig. 15. It is seen that when output feedback is used an en-
largement of robustness region is obtained w.r.t. the KF-based
controller.

Fig. 14. Illustration of stability robustness; KF-based controller

Fig. 15. Illustration of stability robustness; output feedback controller

7. Self-tuning implementation

In the self-tuning context the current control signal for the sys-
tem (1) will be ut = fxx(ât, b̂t)xt, where the estimates ât, b̂t

can be obtained from a recursive estimation scheme like, for
example stochastic gradient algorithm.

It is interesting to notice [16] that the only way that the
adaptive control law can asymptotically converge to the op-
timal control law ut = f

opt
xx (a, b)xt is for the parameter esti-

mates (ât, b̂t) to converge precisely to the true parameters
(ao, bo). However, as it was shown in [16] this does not
happen in the case of the considered cost function (4), i.e.
when q 6= 0. This observation is an intrinsic feature of adap-
tive LQG control. If q = 0 then fxx(ât, b̂t) converges to
fxx(ao, bo) despite the estimates ât, b̂t do not converge to the
true values ao, bo but only to a multiple of the true values, i.e.
limt→(ât, b̂t) = (δao, δbo) where δ is a random scalar. How-
ever, this is sufficient to ensure that fxx(ât, b̂t) converges to
fxx(ao, bo).

Extra simulations showed that the larger the weight q

in (4), the estimates converge farther away from the true sys-
tem parameters.

Similar observations are true when the controllers (10)
and (26) are combined with the extended KP (EKP) which
provides also the parameter estimates ât, b̂t (in the case of
the controller (26) the EKP is used only for parameter esti-
mates). The exemplary runs of the parameter estimates and
feedback gain estimates are shown in Figs. 16, 17 for the
controllers (10) and (26), respectively where q = 0.1 and
σ2

v = σ2
w = 1.0. The initial parameter estimates are set at

â0 = −0.1, b̂ = 0.1, i.e. they are in the stability regions shown
in Figs. 13, 14. One can see that in both cases the parameter
estimates do not converge to the true values of ao = −0.5,
bo = 0.5 and the feedback gain estimates do not converge
to the true value of f

optbxx = −0.7284. The limiting values of

parameter estimates â, b̂ are −0.5594, 0.5527 and −0.5721,
0.5878 for the KP-based and KF-based controllers, respec-
tively. Correspondingly, one gets δa = 1.1118, δb = 1.1054
and δa = 1.1442, δb = 1.1756. From Figs. 2, 6 one can see
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that in both cases the estimates are in the robustness region,
and the performance differs from optimal one not much than
by 2%.

Fig. 16. Estimates in KP-based self-tuning control

Fig. 17. Estimates in KF-based self-tuning control

8. Conclusions

Discrete-time adaptive LQG control of first-order systems is
considered with emphasis on robustness analysis. Different
feedback control configurations are taken into account. Sta-
bility and performance robustness of adaptive control for first-
order system with parametric uncertainty in the LQG frame-
work are analyzed and illustrated. Both unconstrained and

constrained-input cases are investigated. The performance ro-
bustness conditions determined w.r.t. the optimal cost func-
tion are given and the question of adjustment of the control
weight q used in order to restore the optimality is also pre-
sented. Problems with application of certainty equivalence in
the self-tuning implementation for the proposed control algo-
rithms are discussed.
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