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Tuning P-PI and PI-PI controllers for electrical servos
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Abstract. Tuning rules for position and velocity controllers in P-PI and PI-PI electrical servomechanisms are developed using the root locus
design method. P-PI controller is equivalent to PID controller with a set-point filter. PI-PI servo provides zero steady-state error for linear
disturbances, which may be important for some tracking tasks. Three design data are needed to calculate the tunings, i.e. drive gain, settling
time and control cycle. The development begins with continuous controllers for better understanding. Closed-loop transfer functions involve
real multiple poles, so the responses are smooth, without overshoot. Upper limits on control cycles as fractions of settling times are given.
Some experimental results are presented.
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1. Introduction

Control structures applied in electrical servomechanisms of
machine tools and industrial robots involve controllers for po-
sition, velocity and torque [1–5]. Tuning parameters of torque
controllers are set by manufacturers and cannot be changed
later, whereas the tunings of two other controllers must be
selected by the user. This is typically done by trial-and-error
during commissioning [1, 2], i.e. when the servo is being set
in motion. Lack of simple rules seems one of the reasons that
experimental tuning prevails.

The purpose of this paper is to present development of
tuning rules for standard P-PI servo-controller (P for position,
PI for velocity) and for more advanced PI-PI. The P-PI servo
provides high accuracy of positioning and tracking, but only
if disturbances, primarily load, are constant. On the contrary,
the PI-PI servo can cope with linearly varying disturbances
as well, which appear for instance, if a robot stretches loaded
arm while tracking an object on conveyer.

Tuning rules, to be practical, must involve small number
of design parameters. Here we need three of them, so servo
gain, settling time and control cycle. The gain characterizes
the effect of torque (current) on position in the transfer func-
tion k/s2. Such “double integrator” is commonly used to de-
scribe DC, AC and BLM (brush-less) drives [1–4, 6], with or
without gears. If k is not available from technical data, it can
be easily identified by applying a pulse. The assumed model
does not include motor amplifier dynamics what is justified in
case of properly designed systems with high quality amplifiers
[1–4]. Settling time ts is determined from general specifi-
cations of machine tool or robot and must be adjusted to
the system stiffness and to the motor amplifier capability.
Sometimes it requires iterative and trial-and-error procedure
to obtain the shortest appropriate ts level for a particular de-
vice.

If we neglect the effect of sampling and treat the con-
trollers as continuous, than the P-PI servo is a feedback system
of 3rd order and PI-PI of 4th. Imposing some restrictions on
closed-loop poles (real, multiple) and controller zeroes (dou-
ble), by applying Evans root locus design method (e.g. [7]),
one can analytically find all controller parameters in terms of
k and ts. This was initially demonstrated in 1992 [8] for P-PI
controller. Here we repeat that development and extend it to
PI-PI to make the reader familiar with details. In the discrete
case the order increases by one, so to 4th order for P-PI and
5th for PI-PI. Now a little of symbolic processing is needed
(see Ph.D. [9]), although the approach remains basically the
same. Besides k and ts, the control step ∆ appears in the tun-
ing rules. To keep the poles real, ∆ must be sufficiently small

(less than ∆ <
1

45
ts for P-PI, even smaller for PI-PI). Concise

form of the final tuning rules can also be found in [10].
Experimental results presented at the end involve linear

stage with DC drive and 3 DOF robot with BLM motors. Re-
sulting settling times correspond to design specifications. The
PI-PI servo perfectly compensates linear disturbance (emulat-
ed in DC drive by strained springs). Industrial PID and P-PI
controllers are now manufactured as dedicated chips. Imple-
mentation of PI-PI structure is not so simple, so in typical
PLC systems requires cascade connection of main CPU (po-
sition PI) and servo drive (velocity PI).

2. Continuous P-PI controller

Block diagram of a servomechanism with P-PI controller is
shown in Fig. 1a. The controller consists of P component for
position feedback and PI for velocity. They are described by

Pp(s) = kp,

P Iv(s) = kpv +
kiv

s
.

(1)
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Double integrator k/s2 represents servo drive, i.e. motor with
a torque controller.

a)

b)

Fig. 1. Block diagrams of continuous P-PI servo with: a) position
and velocity loops; b) position loop only; yr – desired position, y –

actual position, v – velocity

Design problem. Given settling time ts find controller para-
meters kp, kpv , kiv to get smooth, critically damped respons-
es. Since the feedback system is of 3rd order, two of its three
poles must be the same.

Equivalent diagram involving single loop is shown in
Fig. 1b. Here we have a controller R(s) (regulator) and a set-
point filter F (s), such that

R(s) = (kpkpv + kiv) +
kpkiv

s
+ kpvs,

F (s) =
kp

s + kp

.

(2)

Notice that R(s) is of PID type. As in the well-known
Ziegler-Nichols tuning rules, we assume that the controller
has double zero, so

R(s) = kr

(s + α)2

s
(3a)

with
α = kp, kr = kpv, αkr = kiv. (3b)

Characteristic equation of the system takes the form
1 + KG(s) = 0, where

G(s) =
(s + α)2

s3
, K = krk. (4)

Root locus plot is shown in Fig. 2.

Fig. 2. Root locus plot for the continuous P-PI servo with double
zero

Breakpoint. The breakpoint sb = s1 = s2 determines
critically damped responses. Here the breakpoint condition
d

ds
G(s) = 0 can be written as s + 3α = 0, so sb = −3α.

Hence we have the gain

K(α) = − 1

G(sb)

∣

∣

∣

∣

−3α

=
27

4
α. (5)

Settling time ts is determined by the root s3, closest to
the origin. Using K = 27

4 α in the characteristic equation
1 + KG(s) = 0, dividing it by (s + 3α)2 (double root), we

get s3 = −3

4
α. “Three time constants” estimate of ts yields

ts =
3

|s3|
=

3
3

4
α

=
4

α
. (6)

Tuning rules. Given ts we have α = 4/ts and K = 27/ts.
Using the substitutions (3b) and K of (4) gives the following
rules

kp =
4

ts
, kpv =

27

kts
, kiv =

108

kt2s
. (7)

Recall that k denotes the drive gain.

3. Discrete P-PI controller

Figure 3a shows block diagram of the discrete servo with

Pp(z) = kp,

P Iv(z) = kpv + kiv

z∆

z − 1
,

(8)

∆ denotes control cycle (discretization step). The third block
represents the double integrator k/s2 driven by zero-order
hold. Equivalent diagram in Fig. 3b involves discrete PID
controller R(z) and set-point filter F (z), such that

R(z) =
[kpkiv∆2 + (kpkpv + kiv)∆ + kpv]z2

∆z(z − 1)
−

− [(kpkpv + kiv)∆ + 2kpv]z + kpv

∆z(z − 1)

F (z) =
kp∆z

(kp∆ + 1)z − 1
.

a)

b)

Fig. 3. Block diagrams of discrete P-PI servo: a) position and ve-
locity loops; b) position loop only; yr – desired position, y – actual

position, v – velocity

52 Bull. Pol. Ac.: Tech. 58(1) 2010



Tuning P-PI and PI-PI controllers for electrical servos

As before, by taking kpv = kiv/kp we get the controller
with double zero α (now in z-domain), so

R(z) = kr

(z − α)2

z(z − 1)
,

kr =
kiv(∆kp + 1)2

∆kp

,

α =
1

∆kp + 1
,

(9)

(α < 1). The characteristic equation 1+KG(z) = 0 involving

G(z) =
(z − α)2(z + 1)

z(z − 1)3
,

K = krk
∆2

2

(10)

can be written as

z(z − 1)3 + K(z − α)2(z + 1) = 0. (11)

This equation for appropriate α (see below) has three
breakpoints zb1, zb2, zb3 as in Figs. 4a, b. Of those three,
zb1 has practical meaning only.

a)

b)

Fig. 4. Root locus plot of discrete P-PI servo: a) large range of K;
b) neighborhood of the zero α

Interval for α. The breakpoint condition
d

dz
G(z) = 0 can

be reduced to the equation

z3 + (4 − 3α)z2 + (1 − 4α)z + α = 0. (12)

In sections on algebra in math handbooks (e.g. [11], see
Appendix) one can find a condition on coefficients of 3rd

order equation, for which the equation has three real roots.
Applying that condition to (12) yields the following inequal-
ity

63α4 − 104α3 + 118α2 − 72α + 3 > 0, (13)

for the zero α. In addition however (see Figs. 4a, b), two of
the roots must be positive (zb1, zb2) and one negative (zb3).
By applying Routh stability criterion one can write conditions
for the coefficients, so as to have two roots of (12) in the right
half-plane and one in the left. This yields α > 0.23. Finally,
the interval for α, for which the inequality (13) holds in (0.23,
1), is

α ∈ (0.91, 1). (14)

Gain K. The breakpoint zb1(α) is obtained by solving (12)
and used to get

K(α) = − 1

G(z)

∣

∣

∣

∣

zb1(α)

∼= 2.8(1 − α). (15)

K(α) is pretty well approximated by the straight line 2.8(1−
α) (Fig. 5).

Fig. 5. Nomogram K(α) and the approximation K = 2.8(1 − α)

Zero α. As in continuous case, settling time ts is deter-

mined by the dominant pole z3, so ts ∼= 4∆

|z3 − 1| (expla-

nation below). Since z3 and α are close (Fig. 4b) we may

write ts ∼= 4∆

|α − 1| and get

α ∼= 1 − 4∆

ts
. (16)

Here we have used multiplier 4, not 3 as in contin-
uous case, due to the additional z3

∼= α approximation
(

before we had s3 = −3

4
α

)

.

Tunings. Given settling time ts and control cycle ∆ we calcu-

late α as 1− 4∆

ts
, K as 2.8(1−α) and the original parameters

from

kp =
1 − α

∆α
,

kpv =
2Kα2

k∆
,

kiv =
2Kα(1 − α)

k∆2

(17)

(see (9) and K in (10)). If α does not belong to (0.91, 1), the
data ts and ∆ must be modified accordingly. Using the limit
0.91 in (16) yields

∆ <
1

45
ts. (18)
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One may wonder for what ∆ the continuous tunings (7)

may be used instead of (17). It turns out that for ∆ =
1

200
ts

differences of the parameters do not exceed 26% (8% without
nomogram approximation) and step responses are practically
the same. If the drive gain k is going to change, the design
must be carried out for the lowest value kmin to keep the roots
real.

4. Continuous PI-PI controller

As mentioned in the introduction the PI-PI controller is more
efficient in suppressing varying disturbances. Its two compo-
nents (Fig. 6) are described by

PIp(s) = kp +
ki

s
,

PIv(s) = kpv +
kiv

s
.

(19)

Fig. 6. Continuous PI-PI servo with position and velocity loops; yr

– desired position, y – actual position, v – velocity

The feedback system is of 4th order now so, as we shall
see, critically damped responses are obtained for two pairs of
equal real roots. Single loop structure (as in Fig. 1b) involves

R(s) =
(s2 + kps + ki)(kpvs + kiv)

s2
,

F (s) =
kps + ki

s2 + kps + ki

.

a)

b)

Fig. 7. Root locus plot of continuous PI-PI servo: a) α differs sig-
nificantly from β and γ; b) one single and one double zero

Let the controller R(s) have three real zeros α, β, γ, so

R(s) = kpv

(s + α)(s + β)(s + γ)

s2
, (20a)

where α ≤ β ≤ γ, and

kp = α + β, ki = αβ, kiv = γkpv. (20b)

The root locus plot for the system whose α differs signif-
icantly from β and γ is shown in Fig. 7a. Here the dynamics
depend primarily on α, so we may take β = γ and have the
controller with one single and one double zero (Fig. 7b).

Breakpoints. The characteristic equation 1 + KG(s) = 0
involves

G(s) =
(s + α)(s + β)2

s4
,

K = kkpv.

(21)

The breakpoint condition
d

ds
G(s) = 0 yields the equation

s2 + (3β + 2α)s + 4αβ = 0 that defines two breakpoints

sb1,2 = −1

2
(2α + 3β ±

√

4α(α − β) + 9β2). (22)

Critically damped responses are obtained when the two break-
points are reached simultaneously. So we must have G(sb1) =
G(sb2). Solving this yields very simple formula

β = 2α, (23)

relating controller zeroes. Using (23) in (22) gives the break-
points

sb1 = −2(2 −
√

2)α ≈ −1.17α,

sb2 = −2(2 +
√

2)α ≈ −6.83α,
(24)

and the gain

K(α) = − s4

(s + α)(s + 2α)4

∣

∣

∣

∣

sb1,2

= 16α. (25)

Due to the double pole sb1, this time we may take six time

constants to evaluate settling time from above, i.e. ts =
6

|sb1|
.

Since |sb1| ∼= 1.17α, so

α =
5

ts
, (26)

what is quite similar to α =
4

ts
in (6) (taking ts ∼= 5

|sb1|
would make the two alphas almost the same).

Tunnings. Collecting (20b), K of (21), (23), (25) and (26)
we get

kp =
15

ts
, ki =

50

t2s
,

kpv =
80

kts
, kiv =

800

kt2s
.

(27)

For such tunings however, the servo of standard PI-PI
structure (Fig. 6) exhibits overshoot of about 12% (Fig. 8a).
The overshoot is eliminated by splitting the first PI component
into I and P, as shown in Fig. 8b.
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a)

b)

Fig. 8. a) Step responses for two structures of the controller; b) rec-
ommended I-P-PI structure; yr – desired position, y – actual position,

v – velocity

5. Discrete PI-PI controller

For the servo of Fig. 9 we have

PIp(z) = kp + ki

z∆

z − 1
,

P Iv(z) = kpv + kiv

z∆

z − 1
.

(28)

Fig. 9. Discrete PI-PI servo with position and velocity loops; yr –
desired position, y – actual position, v – velocity

The single loop structure (Fig. 3b) consists of

R(z) =
[(kpv + kiv∆)z − kpv]

z∆(z − 1)2
·

· [(∆
2ki + ∆kp + 1)z2 + (∆kp + 2)z + 1]

z∆(z − 1)2
,

F (z) =
z∆[(kp + ki∆)z − kp]

(∆2ki + ∆kp + 1)z2 − (∆kp + 2)z + 1
.

Let R(z) be of the form

R(z) = kr

(z − α)(z − β)(z − γ)

z∆(z − 1)2
,

kr = (kpv + kiv∆)(∆2ki + ∆kp + 1).

(29a)

with α, β, γ in (0, 1), and such that

α + β =
∆kp + 2

∆2ki + ∆kp + 1
,

αβ =
1

∆2ki + ∆kp + 1
,

γ =
kpv

kpv + kiv∆
.

(29b)

For β = γ the characteristic equation 1+KG(z) involves

G(z) =
(z − α)(z − β)2(z + 1)

z(z − 1)4
,

K =
kkr∆

2

(30)

Root locus plot for appropriate α and β is shown in
Figs. 10a,b.

a)

b)

Fig. 10. Root locus plot for discrete PI-PI servo: a) large range of
K; b) neighborhood of the zero α and β = γ

α and β. To simplify the development assume that the z-
domain zeros α and β emulate s-domain zeroes αs, βs of
Sec. 4. For sufficiently small ∆ we may write

α = e−αs∆ ∼= 1 − αs∆,

β = e−βs∆ ∼= 1 − βs∆.
(31)

Using the condition βs = 2αs from continuous case (see (23))
we get the equivalent condition β = 2α − 1 in discrete case.
Now

G(z) =
(z + 1)(z − α)[z − (2α − 1)]2

z(z − 1)4
. (32)

Breakpoints. This time essential part of the breakpoint con-

dition
d

dz
G(z) = 0 is of 4th order, i.e.
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z4 + 8(1 − α)z3 + (8α2 − 19α + 7)z2 +

2α(5α − 3)z + α(1 − 2α) = 0.
(33)

The overall approach is similar to this in Sec. 3, although
somewhat more involved. Using coefficients of (33) one can
build its resolvent which is a 3rd order equation (not shown;
Maple symbolic processing has been used). The breakpoint
Eq. (33) has four real roots provided that the roots of the re-
solvent are real and positive (e.g. [11]). The resolvent has real
roots if the condition mentioned in Sec. 3 is fulfilled. Here
that condition is represented by the inequality

20992α9 − 75776α8 + 84805α7 + 2071α6 − 56039α5 −

11069α4 + 83519α3 − 69451α2 + 24035α− 3087 > 0.
(34)

(Maple; compare (13)). Employing the Routh criterion to find

when the resolvent has three roots in the right half-plane gives
α ∈ (0, 1). Equation (33) must have three positive roots zb1,
zb2, zb3 and one negative zb4 (Figs. 10a, b). Using Routh
criterion again we get α > 0.5. The interval for which the
inequality (34) holds in (0.5, 1) is

α ∈ (0.96, 1) (35)

(0.9614 more precisely). The breakpoints zb1, zb2 are
reached almost simultaneously (“almost” due to approxima-
tion in (31)).

Gain K . Given certain α in (0.96, 1) one can solve (33)
numerically for zb1(α) and using G(z) of (32) get

K(α) = − 1

G(z)

∣

∣

∣

∣

zb1(α)

∼= 7.8(1 − α). (36)

K(α) shown in Fig. 11 is very well approximated by the
straight line 7.8(1 − α) (in (15) we had 2.8(1 − α)).

Fig. 11. Nomogram K(α) and the approximation K = 7.8(1 − α)

Zero α. Settling time is evaluated as ts =
6∆

|zb1 − 1| follow-

ing the continuous case. α is reasonably close to zb1, hence
replacing zb1 by α in ts yields

α ∼= 1 − 5∆

ts
. (37)

Tunings. Given ts and ∆ we calculate α from (37), K as
7.8(1 − α), and the controller parameters from

kp =
4α2 − 5α + 1

α(1 − 2α)∆
,

ki = 2
α2 − 2α + 1

α(2α − 1)∆2
,

kpv = 2
K(2α − 1)2α

k∆
,

kiv = 4
Kα(2α − 1)(1 − α)

k∆2
.

(38)

If α does not belong to (0.96, 1), the data ts, ∆ must be
changed.

From the limit condition 0.96 < 1 − 5∆

ts
one gets

∆ <
1

130
ts. This is almost three times less than ∆ for P-

PI controller

(

∆ <
1

45
ts in (18)

)

, so the benefits provided

by PI-PI controller require considerably more computing pow-
er. To avoid overshoot, the first PI component must be split

into I and P parts as in continuous case. For ∆ <
1

250
ts the

continuous settings (27) and discrete ones (38) differ not more
than 14%, but step responses remain almost the same.

6. Experimental results

Linear drive. Two springs have been attached to the moving
effector of Thomson Superslide System (Fig. 12a) to change
the load force during tracking. Servo controller has been im-
plemented in Matlab-Simulink rapid prototype system involv-
ing Inteco RT-DAC I/O card and RT-CON real-time software
platform [12]. Figure 12b shows step responses for P-PI and
PI-PI controllers tuned as in Secs. 3, 5, with ts = 0.5 s,
∆ = 2 ms. Since ∆ = ts/250, responses for continuous
tunings (Secs. 2, 4) are practically the same. Tracking errors
caused by springs when the effector moves with the speed
of 50 mm/s are shown in Fig. 12c (error caused by set-point
filter F (z) in P-PI has been removed). As seen, the P-PI con-
troller leaves steady-state error, whereas PI-PI brings it to zero
within time not much larger than ts.
Spherical robot. Experimental robot of Fig. 13a involves two
rotational joints and prismatic arm driven by BLM motors
(courtesy of AGH Cracow). The same rapid prototype sys-
tem has been used to control the robot [10]. Movement of the
prismatic arm, for instance following the triangle of Fig. 13b,
changes load torque effecting rotational joints. Angular con-
trol errors at the rotational joint 2 for two controllers are
shown in Fig. 13c. So the PI-PI servos make the robot suit-
able for tracking tasks.
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a)

b) c)

Fig. 12. a) Linear drive with spring load; b) step responses for two servo-systems; c) tracking errors for linear input and increasing load

a)

b) c)

Fig. 13. a) Spherical robot; b) position of prismatic arm; c) control errors at the rotational joint 2

Industrial solutions. Several manufacturers offer PID and P-
PI motion controllers as single chips capable of processing up
to four loops (e.g. PMD, Galil). The situation is different for
PI-PI control where probably only NSK, among established
manufacturers, offers linear servo-drive with tracking capa-
bility (in EXA controller). In most of PLC systems used in
manufacturing, the PI-PI controller must be set up as a cas-

cade involving drive module for PI velocity control and main
CPU module for PI position control. Sample modules from
Beckhoff are shown in Fig. 14a [13]. The AX drive is con-
figured by dedicated Drive engineering tool and CX CPU by
general purpose TwinCAT Manager. Figure 14b presents re-
lated portions of configuration windows.
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a) AX CX

b)

Fig. 14. a) AX2000/2500 drive and CX controller; b) portions of
Drive and TwinCAT Manager configuration windows implementing

PI-PI cascade servo

7. Concluding remarks

Simple rules for tuning position and velocity controllers in
P-PI and PI-PI electrical servos have been presented. Drive
gain, settling time and control cycle are design data. The PI-
PI controller provides zero control error for linearly changing
disturbances. This may be important for a robot which stretch-
es its arm while tracking an object on conveyor.

Closed-loop transfer functions resulting from the tunings
involve real multiple poles that provide smooth transients,
without overshoots. Upper limits on control cycles are giv-
en in terms of the settling times. The control cycle for PI-PI
must be about three times shorter than for P-PI. Exceeding
the limit would make the poles complex, so oscillations may
appear.

The P-PI controllers are now manufactured as single chips.
The chips with PI-PI have not been available yet. For the time
being the PI-PI control can be implemented in typical PLC
systems as a cascade involving CPU and drive modules. In
such set-up, however, communication delays between CPU
and drive may impose lower limit on control cycle, so also
on settling time.

Appendix

The cubic equation

az3 + bz2 + cz + d = 0,

a 6= 0,

has three real roots when the discriminant

D = q2 + p3,

where

3p =
3ac − b2

3a2
,

2q =
2b3

27a3
− bc

3a2
+

d

a
,

satisfies the criterion D < 0.

REFERENCES

[1] G. Ellis, Control System Design Guide, Academic Press, New
York, 2000.

[2] http://kmtg.kollmorgen.com/products/drives/servostar600/
news/tuning interactive guide.pps.

[3] G. Ellis, “Comparison of position-control algorithms for in-
dustrial applications”, 24th Int. PCIM Conf. Europe 1, 71–78
(2003).

[4] S. Kobayashi and C. Kempf, “Recent developments in con-
trol of direct-drive motors”, NSK Motion & Control 3, 40–46
(1997).

[5] T. Orłowska-Kowalska, M. Kamiński, and K. Szabat, “Me-
chanical state variable estimation of drive system with elastic
coupling using optimised feed-forward neural networks”, Bull.

Pol. Ac.: Tech. 56 (3), 239–246 (2008).
[6] E. Rogers, “Robustness of iterative learning control – algo-

rithms with experimental benchmarking”, Bull. Pol. Ac.: Tech.

56 (3), 205–215 (2008).
[7] G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback

Control of Dynamic Systems, Addison-Wesley, Massachussets,
1994.

[8] W. Irzeński and L. Trybus, “Fixed-gain PID class servo for in-
dustrial robots”, Archives of Control Sciences 3–4 (1), 285–303
(1992).

[9] T. Żabiński, Control of Mechatronics Systems in Real-Time –

Classical and Intelligent Approach, PhD thesis, AGH Univer-
sity of Science and Technology, Kraków, 2006, (in Polish).

[10] T. Żabiński and L. Trybus, “Tuning P-PI and PI-PI controllers
for servo”, X KKR Robotics Conf. 2, 419–428 (2008), (in Pol-
ish).

[11] G.A. Korn and T.M. Korn, Mathematical Handbook for Sci-

entists and Engineers, Dover Publishing House, Dover, 2000.
[12] www.inteco.cc.pl
[13] www.beckhoff.pl

58 Bull. Pol. Ac.: Tech. 58(1) 2010


