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Abstract. In optimization power theory we can distinguish the three approaches:

• the theory of instant power values
• the theory of average power values (integral power)
• the theory of instant–average power value.

The theory of instant power uses the instant power and signals values i.e. p(t) = u(t)i(t) whereas the theory of average power uses the
energy or average power terms i.e. P = (u(t), i(t)) (the dot the product of signals). The main problem in the average power theory comes
from the Schwartz inequality:

|(u, u)| ≤‖ u ‖ ‖ i ‖,

where ‖ u ‖=
p

(u, u), ‖ i ‖=
p

(i, i).
This inequality causes numerous optimization problems, among which the norm of the current minimization is the most important one:

‖ i ‖→ min,

(u, i) − P = 0.

Whereas the theory of instant-average power values joins both aforementioned methods and uses so-called ‘instant active power’:

P (t) =

tZ
t−T

u(t′)i(t′)dt
′

.

The mathematic methods used in these theories derive from the theorems of signals and instant power modulation. This article deals only
with the average power theory which uses the L

1 impulses as an alternative to the Fourier series method. This technique is efficient when
the energy is transmitted with highly distorted periodic signals.
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1. Optimization problems

in one loop supply system

The optimization problems in power theory refer to the one
loop circuit consisting of emf e, linear operator Z of the inner
impedance and load impedance operator Zo. Figure 1 shows
that circuit where the power is transmitted by an ideal power
line. In the picture the power fluxes i.e. main flux P , source
flux (e, i) and loss flux (Ri, i) are marked too [1].

This circuit is analyzed in [2, 3]. The value of average
main power flux is the functional of the current i:

P (i) = (u, i) = (e, i) − (Ri, i), (1)

where R = 1
2 (Z + Z∗) is the positively definite loss operator

of source.
If the signals e, u, i are the elements of the L

1 space then
dot product is given by

(u, i) =

∞∫

−∞

u(t)i(t)dt (2) Fig. 1. Supply system and power fluxes with possible flow directions
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and when signals belong to P
T the periodic energy is

(u, i) =

T∫

0

u(t)i(t)dt (3)

or the average energy (average power) is

(u, i) =
1

T

T∫

0

u(t)i(t)dt. (4)

The results of above operators are of type L
1 → L

1 or
analogically of type P

T → P
T and we assume they belongs

to convolution class operators.
The principal optimization task referred to as power

matching is the maximization problem of the main power
flux:

P (i) = (e, i) − (Ri, i) → max, (5)

which is solved by operator equation [4, 5]:

Ri =
1

2
e. (6)

The existence of solution derive from the fact that R is
positively definite. The idop is termed matching current and is
calculated by the inverse operator R−1

idop =
1

2
R−1e (7)

and maximum power value [2]:

Pmax =
1

2
(e, tdop =

1

4
(r−1e, e). (8)

From the Fig. 1 and formula (6) results the ‘impedance’
matching condition

Zo = Z∗. (9)

Treating (6) as an operator equation in the L
1 space:

R(s)I(s) =
1

2
E(s),

we get Fourier transform of the L
1-impulse

Idop(s) =
1

2

E(s)

R(s)
, (10)

where E(s) – Fourier transform of the L
1-impulse e(t),

R(s) =
1

2
(Z(s) + Z(−s)) – source inner loss function for

complex value s.
The maximum power value of the source current impulse

is given by the dot product

Pmax =
1

2

1

2πj
E(s)Idop(−s)ds =

=
1

4

1

2πj
R−1(s)E(s)E(−s)ds

(11)

or

Pmax =
1

4

(−1)

2πj
R(s)E(s)E(−s)ds. (12)

The time original of the L
1-impulse idop(t) we can get us-

ing the diagram in fig. (3, 4) [6] and the convolution of type

h ∗ x or the L
1-isomorphism F

−1 directly from the Idop(s)
transform.

In T -periodic signal domain the result in form of T -
periodic extension can be derived in three ways:

1. by means of T -periodic extension of idop(t) signal: ĩdop =
∞∑

p=−∞
idop(t + pT ),

2. by means of cyclic convolution,
3. by means of P

T -homomorphism F
−1
T directly from the

L
1- impulse transform Idop(s) [6].

From the formula (10) taking into consideration the prop-
erty of R(s) function it results that the poles of Idop(s) are
placed on both sides of imaginary axis and at the same time
there are no essential singularities on imaginary axis.

Example 1. The use of the L
1-impulse method will be shown

hear. As an example we take the source with finite duration
L

1-impulse and the inner impedance operator as RC in par-
allel branch (Fig. 2).

Fig. 2. Equivalent circuit of power source

For the above circuit:

Z(s) =
r

1 + srC
,

R(s) =
r

1 − (srC)2
,

R(s)−1 =
1

r
(1 − (srC)2),

Idop =
1

2

1

r

(
1 − (srC)2

)
E(s),

thus

idop =
1

2

1

r

(
e(t) − (rC)2

d2e

dt2

)

and

Pmax =
1

2
(e, idop) =

1

4

1

r

(
(e, e) − (rC)2

(
e,

d2e

dt2

))
=

1

4r

(
(e, e) + (rC)2

(
de

dt
,
de

dt

))
.

(13)
From formula (13) results that the condition of solution

existence of

Pmax =
1

2
(e, idop) =

1

4r

(
‖ e ‖2 +(rC)2

∥∥∥∥
de

dt

∥∥∥∥
2
)

is the existence of (de/dt) of the source signal. Thus e(t)
have to be smooth enough. This is shown in Fig. 3.
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Fig. 3. The waveform of source voltage L
1-impulse and its derivative

versus time

Example 2. In Fig. 4 the power source equivalent circuit is
shown with its inner impedance operator. The source voltage
square wave has 1 V maximum value and τ duration.

Fig. 4. Equivalent circuit of the power source and its voltage wave-
form

In this case:

Z(s) =
1

2

(4 + s)

1 + s
,

R(s) =
(4 − s2)

2(1 − s2)
,

E(s) =
1

s
(1 − e−eτ ),

R(s)−1 = 2
(1 + s)(1 − s)

(2 + s)(2 − s)
, (14)

Idop(s) = Φ(s)(1 − e−sτ ), (15)

where Φ(s) =
s2 − 1

s(s + 2)(s − 2)
.

Fig. 5. Poles distribution of Φ(s)

In Fig. 5 the pole distribution of Φ(s) is shown. Point
s = 0 is the removable pole of Idop(s) because:

[
1

s
(1 − e−sτ )

]

s→0

→ τ.

With the Jordan lemma we get:

idop(t)=





(−1)
2πj

Φ(s)(1 − e−sτ )estds t<0

1
2πj

Φ(s)estds + 1
2πj

Φ(s)es(t−τ)ds 0<t<τ

1
2πj

Φ(s)(1 − e−sτ )estds t>τ

.

Thus from the Caushy residue formula results that:

idop =





− 3
8 (1 − e−2τ )e2t t < 0

1
4 + 3

8

[
e−2t + e2(t−T )

]
0 < t < τ

− 3
8 (e2τ − 1)e−2t t > τ

(16)

and

Pmax =
1

2
(e, idop) =

1

2

∞∫

−∞

e(t)idop(t)dt =

=
1

2

T∫

0

idop(t)dt = τ

(
1

8
+

3

16

(1 − e2τ)

τ

)
.

The maximum power value can be also calculated using
complex variable integral

Pmax =
1

4
(R−1e, e)=

1

4

1

2πj
R−1(s)E(s)E(−s)ds=

=
1

2πj

s2 − 1

(s + 2)(s − 2)

(esτ − 1)

s2
ds =

= τ

(
1

8
+

3

16

(1 − e−2τ )

τ

)
.

(17)

The integration curve for (17) is shown in Fig. 6. The in-
tegrated function is chosen so as to meet the Jordan lemma
condition (21) [6].
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Fig. 6. Integration curve used in (16) integral

Using in turn the isomorphism we get time signal of the
L

1-impulse:

R−1(s) = 2
(1 + s)(1 − s)

(2 + s)(2 − s)
= 2 − 3

2

1

2 + s
− 3

2

1

2 − s
↔

↔ 2δ(t) − 3

2
e2t1(−t) − 3

2
e−2t1(t) = r−1(t).

(18)

Then the impulse (16) derive from linear convolution

idop(t) =
1

2

∞∫

−∞

r−1(t − t′)e(t′)dt′. (19)

In Fig. 7 the T -periodic L
1-impulse of source voltage with

duration τ < T is shown, achieved using Poison’s formula:

ẽ(t) =
∞∑

p=−∞

e(t + pT ).

Fig. 7. Periodic L
1-impulse of source voltage

We can directly calculate the matching current:

ĩdop =

∞∑

p=−∞

idop(t + pT ) =

= −3

8
(1 − e−2τ )

∞∑

p=−∞

e2(t+pT )1(−t − pT )+

+

∞∑

p=−∞

(
1

4
+

3

8

(
e−2(t+pT ) + e2(t=pT−τ)

))

(1(t + pT )− 1(t + pT − τ)) − 3

8
(e2τ − 1)

∞∑

p=−∞

e−2(t+pT )1(t + pT − τ),

for 0 < t < τ

ĩdop =
1

4
+

3

8

1 − e−2(T−τ)

1 − e−2T

(
e−2t + e2(t−τ)

)

and for τ < t < T :

ĩdop(t)=−3

8

1

1 − e−2T

(
(e2τ − 1)e−2t + (1 − e−2τ )e2(t−T )

)
,

(20)
thus

Pmax =
1

2
(ẽ, ĩdop) =

1

2

T∫

0

ẽ(t)̃idop(t)dt =

=
1

2

T∫

0

ĩdop(t)dt = 2
e2τ − 1

(1 − e−2T )2
e−2T .

(21)

The calculation of cyclic convolution has the following
stages

1. from (18) we get cyclic impulse function

r̃−1(t) =

∞∑

p=−∞

r−1(t + pT )

and for t ∈ [0, T ):

r̃−1(t) = 2δ(t) − 3

2

∞∑

p=0

e−2(t+pT ) − 3

2

∞∑

p=1

e2(t−pT ) =

= 2δ(t) − 3

2

e−2t

(1 − e−2T )
− 3

2

e2(t−T )

(1 − e−2T )

1. from the formula of cyclic convolution (the equivalent for
linear convolution (19)) we get:

ĩdop = e(t) +
1

2

t∫

0

γ(t − t′)e(t′)dt′+

+
1

2

T∫

t

γ(t − t′ + T )e(t′)dt′ =

=





1+ 1
2

t∫
0

γ(t − t′)dt′+ 1
2

T∫
t

γ(t − t′ + T )dt′ 0 < t < τ

1
2

τ∫
0

γ(t − t′)dt′ otherwise
.

The integration result is the same as in (20). It is worth
to note that:

ĩdop(t) → idop(t)

for T → ∞.
Now we must change a bit the formula (47) [6] to use

homomorphism F−1
T because the function Idop(s) (see 15)

is qausi-rational i.e. has the time delay part. Such function
describes square wave signals or strobe pulses.

When the homomorphism transform (47) has form [6]:

Y (s) = H(s)
1 − e−sτ

s
, (22)
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then the equivalent L
1-impulse time form is given by the

integral formula of the inverse Fourier transform:

y(t) =

(
− 1

2πj
H(s)

1 − e−sτ

s
estds

)
1(−t)+

+

(
1

2πj
H(s)

1

s
estds +

1

2πj
H(s)

es(t−τ)

s
ds

)

(1(t) − 1(t − τ)) +

(
1

2πj
H(s)

1 − e−sτ

s
estds

)
1(t − τ).

(23)
Especially for a partial fraction

Y (s) =
1

s − σ

1 − e−sτ

s
, (24)

using (23) we get:
for Re σ > 0:

y(t) =

( −1

2πj

1

s − σ

1 − e−st

s
estds

)
1(−t)+

+

(
1

2πj

1

s − σ
estds +

1

2πj

1

2 − σ

es(t−τ)

s
ds

)

(1(t) − 1(t − τ)) = −1 − e−σt

σ
eσt1(−t)+

+
1

σ

(
eσ(t−τ) − 1

)
(1(t) − 1(t − τ))

and for Re σ < 0:

y(t) =

(
1

2πj

1

s − σ
estds +

1

2πj

1

s − σ

es(t−τ)

s
ds

)

[1(−t)−1(t − τ)]+

(
1

2πj

1

s − σ

1 − e−sτ

s
estds

)
1(t − τ)=

=
1 − e−σt

σ
eσt1(t − τ) +

1

σ

(
eσt − 1

)
[1(t) − 1(t − τ)].

For rational function H(s) without poles in infinity:

H(s) = H(∞) −
∑

σ∈P+

a+(σ)

s − σ
+
∑

σ∈P−

a−(σ)

s − σ

we get the L
1-impulse

y(t) = 1(−t)
∑

σ∈P+

a+(σ)

σ
(1 − e−στ )eσt

=


H(∞) +

∑

σ∈P+

a+(σ)

σ

(
1 − eσ(t−τ)

)
+

+
∑

σ∈P−

a−(σ)

σ

(
eσt − 1

)

 [1(t) − 1(t − τ)] +

+ 1(t − τ)
∑

σ∈P−

a−(σ)

σ

(
1 − e−στ

)
eσt.

(25)

Determining the T -periodic extension of y(t) L
1-impulse

according to the Poisson formula

ỹ(t) =

∞∑

p=−∞

y(t + pT ),

in the range t ∈ [0, T ) we get:

ỹ(t) =
∑

σ∈P+

a+(σ)

σ
(1 − e−στ )eσt

∞∑

p=1

(e−σT )p + H(∞)+

+
∑

σ∈P+

a+(σ)

σ
(1 − eσ(t−τ)) +

∑

σ∈P−

a−(σ)

σ
(eσt − 1)+

+
∑

σ∈P−

a−(σ)

σ
(1 − e−στ )eσt

∞∑

p=1

(eσT )p = H(∞)+

+
∑

σ∈P+

a+(σ)

σ

(
1 − eσ(t−τ) +

1 − e−στ

1 − e−σT
eσ(t−T )

)
+

+
∑

σ∈P−

a−(σ)

σ

(
eσt − 1 +

1 − e−στ

1 − e−σT
eσ(t+T )

)
,

when 0 < t < τ
and:

ỹ(t) =
∑

σ∈P+

a+(σ)

σ

1 − e−στ

1 − e−σT
eσ(t−T ) +

+
∑

σ∈P−

a−(σ)

σ

1 − e−στ

1 − eσT
eσt

(26)

when τ < t < T .
It is easy to check that the received formulas (25) and (26)

confirm previous results (16) and (20).
Another example of optimization task in power theory is

the current norm minimization with assumed main power flux
value (see diagram 1.1), [2]:

(i, i) → min,

(e, i) − (Ri, i) = P.
(27)

It can be proved that the solution of above problem is the
family of current signals meeting equation

(1 + λR)i = 0.5λe, (28)

where λ is the real parameter. For the λ values for which the
solution of (28) exists the energy flux function is definite as

F (λ) = (e, iλ) − (Riλ, iλ), (29)

where
iλ = 0.5λ(1 + λR)−1e. (30)

For the assumed main power flux value P the λ∗ values
are calculated from

F (λ) = P (31)

and its corresponding current is referred to as optimal current

iopt = 0.5λ∗(1 + λ∗R)−1e. (32)
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Fig. 8. Main energy flux function versus λ

It can be proved [5] that for λ > 0 the F (λ) function
is ascending monotonically and is bounded by Pmax value
(which is also the solution of maximization task)

(e, i) − (Ri, i) → max .

Treating (28) analogically, as before, as operator-
convolution equation in the L

1:

[1 + λR(s)]I(s) = 0.5λE(s), (33)

we get the whole λ-family of the L
1-impulse current trans-

forms:

Iλ(s) =
0.5λ

1 + λR(s)
E(s). (34)

If R(s) is the rational function i.e.

R(s) =
LR(s)

MR(s)
, (35)

where LR(s), MR(s) are polynomials then

Iλ(s) =
0.5λMR(s)

Mλ(s)
E(s) (36)

and

F (λ) =
0.5λ

2πj

Mλ|2(s)MR(s)

[Mλ(s)]2
E(s)E(−s)ds, (37)

where
Mλ(s) = MR(s) + λLR(s),

Mλ|2(s) = MR(s) +
λ

2
LR(s).

(38)

It is easily shown that derivative of F (λ) is

F ′(λ) = 0.5
1

2

(
MR(s)

Mλ(s)

)3

E(s)E(−s)ds (39)

and the solution of (31) can be always achieved using New-
ton’s method

δλ =
P − F (λ)

F ′(λ)
→ λ =: λ + δλ. (40)

But this equation can be also resolved using an approxi-
mation of F (λ) e.g.

F (λ) ∼= Pmax ·
(

1 −
(

1

(1 + a · λ)2

))
, (41)

we can calculating a from

F ′(0) =

[
2Pmaxa

(1 + aλ)3

]

λ→0

= 0.5(e, e),

then we get the Eq. (31) in form:

1

(1 + a · λ)2
= 1 − P

Pmax

and

λ∗ =

1 −
√

1 − P

Pmax√
1 − P

Pmax
a

=

1 −
√

1 − P

Pmax√
1 − P

Pmax

0.5(e, e)

2Pmax

. (42)

Example 3. The power source with diagram shown in Fig. 4.
(see Example 2) will be now considered. Now we have

MR(s) = 2(1 − s2),

Mλ(s) = 2 + 4λ − (2 + λ)s2,

Mλ|2 =

(
2 +

λ

2

)(
4 + 4λ

4 + λ
− s2

)

and

F (λ) = aλ

1

2πj

(s2 − σλ)(s2 − 1)

(s − sλ)2(s + sλ)2
ds,

where

Aλ +
λ(4 + λ)

(2 + λ)2
,

σλ = 4
1 + λ

4 + λ
,

sλ = −
√

2 + 4λ

2 + λ
.

(43)

Fig. 9. Contour used to calculate values of F (λ)

When λ → ∞: aλ → 1, σλ → 4, sλ → −2 then (see 17):

F (λ) → 1

2πj

s2 − 1

(s + 2)(s − 2)

esτ − 1

s2
ds = Pmax.

The transform of current L
1-impulse Iλ(s) is calculated

from (36)

Iλ = bλ

s2 − 1

(s − sλ)(s + sλ)

1 − e−sτ

s
, (44)

where bλ =
λ

2 + λ
.
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Using isomorphism (25) we get time function of the L
1-

impulse iλ(t)

iλ(t) = −cλ(1 − esλτe−sλt1(−t)+

+

(
bλ

s2
λ

+ cλ

(
esλt + e−sλ(t−τ)

))
[1(t) − 1(t − τ)]−

− cλ

(
e−sλτ − 1

)
esλt1(t − τ),

(45)

where

cλ = bλ
s2

λ − 1

2s2
λ

=
3

4

λ2

(2 + λ)(1 + 2λ)
,

bλ

s2
λ

=
λ

2(1 + 2λ)
.

(46)

It is easy to check that when λ → ∞: bλ → 1, sλ → −2,
cλ → 3/8 then

iλ(t) → idop(t).

Received formulas (43), (45), (46) describes migration of
Iλ(s) roots with λ changes from 0 to ∞, which is marked in
Fig. 10.

Fig. 10. Root lines in (λ, sλ) and in Gauss coordinates

For periodic square voltage source (see Fig. 7) the solution
of (28) ĩλ is given by the Poisson formula

ĩλ(t) =

∞∑

p=−∞

iλ(t + pT ).

For t ∈ [0, T ):

ĩλ =
bλ

s2
λ

+ cλ

1 − esλ(T−τ)

1 − eeλT

(
esλt + e−sλ(t−τ)

)
,

when 0 < t < τ , and

ĩλ =−cλ

1

1 − eeλT

(
(e−sλτ − 1)esλt + (1 − esλτ )e−sλ(t−T )

)
,

when τ < t < T .
The example of calculus the L

1-impulse optimal current
will be now presented:

for τ = 1;
P

Pmax
= 0.75

the formula (42) is:

λ∗ =
1 −

√
1 − 0.75√

1 − 0.75a
=

=
1 −

√
1 − 0.75

√
1 − 0.75

0.5

2

(
1

8
+

3

16
(1 − e−2)

)
= 1.1485

thus:

sλ = −1.45,

cλ = 0.314,

bλ

s2
λ

= 0.174,

iopt = −0.240e1.45t1(−t)+

+
(
0.174 + 0.314(e−1.45t + 0.234e1.45t)

)

[1(t) − 1(t − 1)] − 1.02e−1.45t1(t − 1).

Another example of power optimization task is the dif-
ference voltage minimization defined as a norm of difference
between source and terminal voltage when main power flux
P is given [2, 3] (see Fig. 1).

(e − u, e − u) → min

(e, i) − (Ri, i) = P.
(47)

The solution of (47) is a λ-family of signals meeting

(Z∗Z + λR)i = 0.5λe. (48)

The specimen of current signal which meets the main pow-
er flux condition is given by (31).

The special case of (48) is the no-loss source i.e. with
zero loss operator:

Z∗Zi = 0.5λe. (49)

Such equation can be easily solved:

iλ = 0.5λY Y ∗e, (50)

where Y is the reciprocal of Z – source inner impedance
operator.

The Eq. (31) simplifies to

0.5λ(Y Y ∗e, e) = P,

thus the optimal current is:

iopt =
P

Y Y ∗e, e
Y Y ∗e. (51)

Example 4. The quasi lossless source will be now considered.
The source having an inner impedance and giving the voltage
pulse is shown in Fig. 11.
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Fig. 11. Diagram of almost lossless source

To move poles away from the imaginary axis the little
dissipation caused by the resistance r was assumed.

Then

Z(s) = 2r + s +
1

s
=

s2 + 2rs + 1

s
.

Assuming r ≪ 1 we get approximation of zeros of im-
pedance function Z(s):

σ = −r + j, σ∗ = −r − j.

Thus the Y Y ∗ operator is given by

Y (s)Y (−s) =
−s2

(s − σ)(s − σ∗)(s + σ)(s + σ∗)
. (52)

The distribution of poles resulting from (52) is shown in
Fig. 12.

Fig. 12. Poles distribution of source from Fig. 11

The quadratic form (51) has values:

(Y Y ∗e, e) =
1

2πj
Y (s)Y (−s)E(s)E(−s)ds =

=
1

2πj

−s2

(s − σ)(s − σ∗)(s + σ)(s + σ∗)
ds =

1

4r
.

Thus from (51) results transform of the optimal current

Iopt(s) = 4rP
s2

(s − σ)(s − σ∗)(s + σ)(s + σ∗)
, (53)

now from isomorphism [6] (see 31) or from the curvilinear
integral method we get the L

1-impulse in time domain:

iopt(t) =

(
(−1)

2πj
Iopt(s)e

stds

)
1(−t)+

=

(
1

2πj
Iopt(s)e

stds

)
1(t) =

= (Pert cos(t))1(−t) + (Pe−rt cos(t))1(t) =

=
1

2
P
(
e−σt + e−σ∗t

)
1(−t)+

+
1

2
P
(
eσt + eσ∗t

)
1(−t).

(54)

The equivalent T -periodic extension of the L
1-

impulse (54) ca be received by the Poisson formula

iopt(t) =

∞∑

p=−∞

iopt(t + pT ) =

=
1

2
P

(
e−σt

∞∑

p=−∞

(eσT )p + e−σ∗t

∞∑

p=1

(eσ∗T )p +

+eσt

∞∑

p=0

(eσT )p + eσ∗t

∞∑

p=0

(eσ∗T )p

)

=
1

2
P

(
e−σ(t−T )

1 − eσT
+

e−σ∗(t−T )

1 − eσ∗T
+

eσt

1 − eσT
+

eσ∗t

1 − eσ∗T

)
=

=
P

|1 − P σT |
(
er(t−T ) cos(t − T + ϕ) + e−rt cos(t + ϕ)

)

for 0 < t < T , where ϕ = ∡(1 − eσT ).

2. Some aspects concerning realization

of compensatory and matching circuits

In this chapter we will describe the synthesis problem of the
optimal receiver according to an optimal criterion. It means
that the receiver should be designed as to assure the optimal
working condition of source by minimizing assumed optimum
criteria. This can be physically realized by two or four ter-
minal compensatory network connected between source and
receiver (see diagrams in Fig. 13).

a) b)

c) d)

Fig. 13. Compensation concepts: a) circuit to compensate; b) source
loaded by an optimal receiver, c) two and d) four-terminal networks

matching load to source

The compensation rules will be described below in an
example of source which diagram and voltage waveform are
shown in Fig. 14.
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Fig. 14. Example of source and its L
1-voltage impulse with infinite

duration

Now for the synthesis purpose the maximum of the main
power flux variant will be chosen.

In this case:

Z(s) = 2
1 + s

4 + s
,

R(s) = 2
(2 + s)(2 − s)

(4 + s)(4 − s)

and for impulse (see Fig. 14)

e(t) = et1(−t) + e−t1(t),

the transform is

E(s) =
1

1 + s
+

1

1 − s
=

2

(1 + s)(1 − s)
.

Then the transform of matching current is

Idop(s) = 0.5R(s)−1E(s) =

= 0.5
16 − s2

(1 + s)(1 − s)(2 + s)(2 − s)

(55)

and its L
1-impulse counterpart is

idop(t) = (1.25et − 0.5e2t)1(−t)+

+ (1.25e−t − 0.5e−2t)1(t).
(56)

From Poisson formula we get T -periodic extension of sig-
nals

ẽ(t) =

∞∑

p=−∞

e(t + pT ) =

∞∑

p=1

et−pT +

+

∞∑

p=0

e−(t+pT ) =
1

1 − e−T
(et−T + e−t),

(57)

ĩdop(t) =

∞∑

p=−∞

idop(t) =

∞∑

p=1

(1.25e(t−pT ) − 0.5e2(t−pT ))+

+

∞∑

p=0

(1.25e−(t+pT ) − 0.5e−2(t+pT )) =

=
1.25

1 − e−T
(et−T + e−t) − 0.5

1 − e−2T
(e2(t−T ) + e−2t),

(58)

for t ∈ [0, T ].
Thus the maximum energy value is

Pmax = 0.5

∞∫

−∞

e(t)idop(t)dt =
11

24
. (59)

P̃max = 0.5

T∫

0

ẽ(t)̃idop(t)dt =

=
5

8

1

(1 − e−T )2
(2Te−T + 1 − e−2T )−

− 1

4

1

(1 − e−T )(1 − e2T )

(
2

3
(1 − e−3T ) + 2e−T (1 − e−T )

)
.

(60)
When T → ∞, P̃max → Pmax.
The all other signals can be calculated using the convolu-

tion (see diagrams 2.1 (a) and (c))

Zidop(t) =

∞∫

−∞

z(t − τ)idop(τ)dtτ,

where

Z(s) = 2
1 + s

4 + s
= 2 − 6

4 + s
→ z(t) = 2δ(t) − 6e−4t1(t).

Thus the L
1-impulse:

Zidop(t) = (et − 0.5e2t)1(−t) + 0.5e−2t1(t) (61)

and its T -periodic extension:

Z̃idop(t) =

∞∑

p=−∞

Zidop(t + pT ) =

=
1

1 − e−T
et−T − 0.5

1 − e−2T
e2(t−T ) +

0.5

1 − e−2T
e−2t

(62)
and

ũdop(t) = ẽ(t) − Z̃idop(t) =

=
0.5

1 − e−2T
(e2(t−T ) − e−2t) +

1

1 − e−T
e−t

(63)

for t ∈ [0, T ).
The synthesis process is shown in Fig. 15.

Fig. 15. Synthesis of matching load in ±R,C class realizing adjoin
operator

The matching problem with respect to the maximum main
energy flux is meet by the load described by the adjoint op-
erator:
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R + R1 + RR1Cs

1 + RCs
= Z(−s) =

1

2
− 1

2
s

1 − 1

4
s

, G =
1

R
.

Thus comparing coefficients of the rational functions we get
set of equations for parameters:

R1 + R =
1

2
,

RR1C = −1

2
,

RC = −1

4
.

It has unequivocal solution:

R = −3

2
,

R1 = 2,

C =
1

6
.

The diagram of source with matching load is shown in
Fig. 16.

Fig. 16. Matching circuit with negative resistance

The drawback of that matching circuit is a negative resis-
tance. It can be realized by a system with positive feedback
e.g. by separately exited DC generator (see Fig. 17a). The ar-
mature of motor as a controlled voltage source ek(t) is put in
place of negative resistance.

a)

b)

Fig. 17. a) Separately exited DC generator as the negative resistance
realization and b) matched load realized with ‘intelligent’ voltage

controlled source

However, such realization of matching circuit (Figs. 16
and 17a) is impractical because is not stable. The main source
current in a transient state [5]

i(t) = 1(t)

T∫

0

ỹ(t ⊖ t′)ẽ(t′)dt′ + itr(t) = ĩdop(t) + itr(t)

has infinitely ascending transient component:

itr(t) =
∑

σ∈P(Y )

a(σ)eσt1(t), (64)

where:

Y (s) = [R(s)]−1 =
1

2

s2 − 16

(s − 2)(s + 2)
– the admittance seen

from the output terminals of source,
P(Y ) – set of Y (s) poles,

a(σ) =

[
Y (s)

1 − e−sT
E(s)(s − σ)

]

s→σ

– residue,

E(s) =
T∫
0

ẽ(t)e−stdt – the finite Laplace transform.

Supply source is then instable circuit which ascending
transient component of current (64) is

itr(t) =
(
a(2)e2t + a(−2)e−2t

)
1(t),

where

a(2) =

(
−3

2

)

1 − e−2T

T∫

0

ẽ(t)e−2tdt =

=

(
−3

2

)

(1 − e−T )(1 − e−2T )

(
1

3
+ e−T − e−2T − 1

3
e−3T

)
,

a(−2) =

(
−3

2

)

e2T − 1

T∫

0

ẽ(t)e2tdt =

=

(
−3

2

)

(1 − e−T )(e2T − 1)

(
1

3
e2T + eT − 1

3
e−T − 1

)
.

The stable, correct working condition of source can be
ensured by ‘intelligent’ controlled source which provide the
T -periodic voltage signal (see Fig. 17b):

ẽk(t) = ũdop(t) − 2idop(t) =

=
1

1 − e−2T
(1.5e2(t−T ) + 0.5e−2t)−

− 1

1 − e−T
(2.5e(t−T ) + 1.5e−t)

for t ∈ [0, T ) (see (57), (58), (62), (63)).
In this case couple of emf connected series-opposing ‘see’

the stable circuit as shown in Fig. 18.
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Fig. 18. The circuit with ‘intelligent’ matching source to examine
the stability

The integral impedance operator is given by:

Z1(s) =
2 + 2s

4 + s
+ 2 =

s + 2.5

s + 4

and transient component is

Itr(t) = a(−2.5)e−2.5t1(t),

where

a(−2.5) =
1

4

(
s + 4

1 − e−sT
(E(s) − Ek(s))

)

s→2.5

=

=
0.375

e2.5T − 1
(Ek − E)(−2.5),

(Ek − E)(−2.5) =

T∫

0

(ẽk(t) − ẽ(t))e2.5tdt =

=
1

1 − e−2T
(0.3e2.5T + 0.3e−2T + e0.5 − 1)−

− 1

1 − e−T
(e2.5T + 1.7e1.5T − e−T − 1.7).

Of course the modern controlled sources doesn’t use
electro-motors components in action but power-electronic
ones. The model of such circuits derived from [3] and [7]
is shown in Fig. 19.

Fig. 19. Realization of the so-called universal branch

The so-called universal compensation branch consists of
energy storage component and a two polar switch. By the
pulse width modulation we can achieve any signal ek(t). The
RL part smoothes the current.

3. Conclusions

In the article the two principal optimization problems of the
so-called average power theory was described. One of these
is the problem of the maximization of the source power de-
livered to the receiver and the second is the minimization
of the current norm while the assumed power is delivered
to the load. This problem was solved by the new method of
L

1-impulses [6], instead of still commonly used Fourier se-
ries method. The advantage of the L

1-impulse method over
the Fourier series method is noticeable when the energy is
transmitted with highly distorted periodic signals.

In the article also the new approach to the synthesis of
a compensatory circuit which assures the optimal current-
voltage signals of the source was presented.

REFERENCES

[1] M. Pasko and J.Walczak, “The optimization of energetic qual-
ity properties of electrical systems with periodic sinusoidal
waveforms”, Electrical engineering 150, 7–14 (1996), (in Pol-
ish).

[2] M. Siwczyński and M. Jaraczewski, “Electric circuit analysis
by means of optimization criteria. Part one – simple circuits”,
Bull. Pol. Ac.: Tech. 52 (4), 359–367 (2004).

[3] M. Siwczyński and M. Jaraczewski, “Electric circuit analysis
by means of optimization criteria. Part II – complex circuits”,
Bull. Pol. Ac.: Tech. 54 (1), 107–123 (2006).

[4] M. Siwczyński, “The optimization methods in power theory
of electrical networks”, The electrical engeneering series 183,
CD-ROM (1995), (in Polish).

[5] M. Siwczyński, Power Engineering Circuit Theory, Mineral
and Energy Economy Research Institute, Kraków, 2003, (in
Polish).

[6] M. Siwczyński and M. Jaraczewski, “The L1-impulse method
as an alternative to the Fourier series in the power theory of
continues time systems”, Bull. Pol. Ac.: Tech. 57 (1), 79–85
(2009).

[7] M. Siwczyński and M. Jaraczewski, “The Poincaré theorem
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