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Abstract. Measures of divergence between two points play a key role in many engineering problems. One such measure is a distance

function, but there are many important measures which do not satisfy the properties of the distance. The Bregman divergence, Kullback-

Leibler divergence and f -divergence are such measures. In the present article, we study the differential-geometrical structure of a manifold

induced by a divergence function. It consists of a Riemannian metric, and a pair of dually coupled affine connections, which are studied in

information geometry. The class of Bregman divergences are characterized by a dually flat structure, which is originated from the Legendre

duality. A dually flat space admits a generalized Pythagorean theorem. The class of f -divergences, defined on a manifold of probability

distributions, is characterized by information monotonicity, and the Kullback-Leibler divergence belongs to the intersection of both classes.

The f -divergence always gives the α-geometry, which consists of the Fisher information metric and a dual pair of ±α-connections. The

α-divergence is a special class of f -divergences. This is unique, sitting at the intersection of the f -divergence and Bregman divergence

classes in a manifold of positive measures. The geometry derived from the Tsallis q-entropy and related divergences are also addressed.
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1. Introduction

Given two points P and Q in a space S, we may define a

divergence D[P : Q] which measures their discrepancy. The

standard distance is indeed such a measure. However, there

are many other measures frequently used in many areas of

applications (see, e.g., [1, 2]). In particular, for two probabil-

ity distributions p(x) and q(x), one can define various mea-

sures D[p(x) : q(x)] such as the Kullback-Leibler divergence

and the Hellinger distance. A divergence is not necessarily

symmetric, that is, the relation D[P : Q] = D[Q : P ] does

not generally hold, nor does it satisfy the triangular inequal-

ity. It usually has the dimension of squared distance, and a

Pythagorean-like relation holds in some cases.

The present paper aims at elucidating the differential-

geometrical structure of a manifold equipped with a diver-

gence function. We study the geometry induced by a diver-

gence function, and demonstrate that it endows a Riemannian

metric and a pair of dually coupled affine connections [1].

One of the original contribution of the present paper is to

give a unified geometrical framework to various divergence

functions, which have a lot of applications [2, 3]. We use

modern differential geometry, but do not follow the rigorous

mathematical formalism, and instead try to give intuitive ex-

planations to be understandable to those who are not familiar

with modern differential geometry.

We begin with two typical classes of divergences: One is

the class of Bregman divergences [4], introduced through a

convex function (see, e.g., [5]). The other is the class of in-

variant divergences, called f -divergences, where f is a convex

function [6–9]. Both are frequently used in engineering ap-

plications. Csiszár [10] gives an axiomatic characterization of

these divergences. The geometrical structures of these classes

are explained intuitively. Most properties are already known,

but here we give their new geometrical explanations.

Bregman divergences are derived from convex functions.

The Bregman divergence induces a dual structure through the

Legendré transformation. It gives a geometrical structure con-

sisting of a Riemannian metric and dually flat affine connec-

tions, called the dually flat Riemannian structure [1]. A dually

flat Riemannian manifold is a generalization of the Euclidean

space, in which the generalized Pythagorean theorem and pro-

jection theorem hold. These two theorems provide powerful

tools for solving problems in optimization, statistical infer-

ence and signal processing. We show that the Bregman type

divergence is automatically induced from the dual flatness of

a Riemannian manifold.

Then we study the class of invariant divergences [1,

11]. The invariance requirement comes from information

monotonicity, which states that a divergence measure does

not increase by coarse graining of information [12]. This

leads to the class of f -divergences. The α-divergences are

typical examples belonging to this class, which also includes

the Kullback-Leibler divergence as a special case. This class

of divergences induces an invariant Riemannian metric given

by the Fisher information matrix and a pair of invariant dual

affine connections, the ±α-connections, which are not neces-

sarily flat. See [13] for more delicate problems occurring in

the function space.

When a family of unnormalized probability distributions,

that is, a family of positive measures or arrays, is considered,

we show that the α-divergence is the only class that is both

invariant and dually flat at the same time [14].

We further study the geometry derived from a general di-

vergence in detail. This part is the original contribution of

the present paper. A divergence endows a geometrical struc-
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ture to the underlying space. We discuss the inverse problem

of constructing a divergence function from the geometrical

structure of a manifold. The study also comprises various ex-

amples of divergence functions, and provides an insight into

the geometry derived from the Tsallis q-entropy [15, 17–19].

This extends our views to study how the geometry changes

by modifying a divergence function.

2. Convex function, Bregman divergence

and dual geometry

2.1. Bregman divergence and Riemannian metric. Let

k(z) be a strictly convex differentiable function defined in

a space S with a local coordinate system z. Then, for two

points z and y in S, we can define the following function

D[z : y] = k(z) − k(y) − Grad k(y) · (z − y), (1)

where, Grad k is the gradient vector

Grad k(z) = (∂k(z)/∂zi), (2)

and the operator ‘·’ denotes the inner product,

Grad k(y) · (z − y) =
∑

i

∂k

∂yi

(zi − yi). (3)

The function D[z : y] satisfies the following condition for

divergences:

1) D[z : y] ≥ 0,

2) D[z : y] = 0, when and only when z = y,

3) For small dz, Taylor expansion

D[z + dz : z] ≈ 1

2

∑
gijdzidzj (4)

gives a positive-definite quadratic form.

We call D[z : y] the Bregman divergence between two

points z and y. In general, the divergence is not symmetric

with respect to z and y so that

D[y : z] 6= D[z : y]. (5)

When z is infinitesimally close to y,y = z + dz, we have

D[z : z + dz] =
1

2

∑ ∂2k(z)

∂zi∂zj

dzidzj = D[z + dz : z] (6)

by Taylor expansion. This is regarded as a half of the squared

distance between z and z + dz, defined in the following.

We can use the Hessian of k,

gij(z) =
∂2

∂zi∂zj

k(z), (7)

to define the squared local distance as

ds2 =
∑

gij(z)dzidzj . (8)

A space S is called a Riemannian manifold, when a positive-

definite matrix g(z) = (gij(z)) is defined at each point z ∈ S
such that (8) is the squared local distance.

When S is a Riemannian manifold, we can define a Rie-

mannian geodesic z(t) parameterized by t. A length of a curve

z(t) connecting two points z1 = z(t1) and z2 = z(t2) is de-

fined by the integral

s =

t2∫

t1

∑√
gij (z(t)) żi(t)żjdt, (9)

where żi(t) = (d/dt)zi(t). This is the Riemannian distance

along the curve between the two points. A Riemannian geo-

desic z(t) is the curve that minimizes the above distance.

We next introduce a dual structure in S, defined by the

Legendre transformation (see, e.g., [1, 20]. The gradient vec-

tor

z∗ = Grad k(z) (10)

of a convex function k(z) is in one-to-one correspondence

with z. This is the Legendre transformation, and z∗ can be

regarded as another coordinate system of S different from z.

We can calculate the dual function of k, defined by

k∗(z∗) = max
z

{z · z∗ − k(z)} , (11)

which is a convex function of z∗. Hence we can describe the

geometry of S by using the dual convex function k∗ and the

dual coordinates z∗. Obviously, z and z∗ are dual, since we

have

z = Grad k∗(z∗). (12)

The Riemannian metric is given in the dual coordinates by

g∗ij(z
∗) =

∂2

∂z∗i ∂z
∗
j

k∗(z∗). (13)

Theorem 1. The Riemannian metrics gij and g∗ij in their

matrix form are mutually inverse. They are the same tensor

represented in different coordinate systems z and z∗, giving

the same local distance.

Proof. From z∗ = Grad k(z), we have

dz∗i =
∑ ∂2k(z)

∂zi∂zj

dzj =
∑

gijdzj . (14)

In a similar way, we have

dzi =
∑

g∗ijdz
∗
j . (15)

By using the vector-matrix notation, they are rewritten as

dz∗ = gdz, dz = g∗dz∗, (16)

where g = (gij) and g∗ = (g∗ij). This shows

g∗ = g−1. (17)

The local distances of dz and dz∗ are given by the quadratic

form

ds2 = dzT gdz, (18)

ds∗2 = dz∗T g∗dz∗, (19)

where dzT is the transpose of dz. Hence, from (16) and (17),

we have

ds2 = ds∗2. (20)

In other words, g and g∗ are the same Riemannian metric

represented in two different coordinate systems.
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The dual function k∗(z∗) also induces a divergence,

D∗[y∗ : z∗] = k∗(y∗) − k∗(z∗) − gradk∗(z∗) · (z∗ − y∗).
(21)

Theorem 2.

The two divergences D and D∗ are mutually reciprocal,

in the sense of

D∗[y∗ : z∗] = D[z : y]. (22)

The divergence between two points z and y is written in the

dual form

D[z : y] = k(z) + k∗(y∗) − z · y∗. (23)

Proof. The right-hand side of (11) is maximized when z and

z∗ correspond to each other, that is,

∂

∂z
{z · z∗ − k(z)} = z∗ − Grad k(z) = 0. (24)

Hence, we have the identity from (11),

k(z) + k∗(z∗) − z · z∗ = 0. (25)

By using this relation for y, we have

D[z : y] = k(z) − k(y) − y∗ · (z − y) (26)

= k(z) + k∗(y∗) − z · y∗. (27)

Analogously, we have for k(z),

D[z : y] = D∗[y∗ : z∗]. (28)

The theorem shows that it suffices to consider only one

divergence function.

2.2. Dual affine structure and Pythagorean theorem. We

now introduce an affine structure in S [20], which is differ-

ent from the Riemannian structure defined by g. We simply

assume that the coordinate system z is affine. Hence, a curve

represented in the form

z(t) = ta + b (29)

is a geodesic in this sense, where t is the parameter along the

curve and a and b are constant vectors. This geodesic is not

a Riemannian geodesic that minimizes the length of a curve.

Further we define a dual affine structure. A dual geodesic

z∗(t) is defined by a linear curve

z∗(t) = ta∗ + b∗, (30)

for constant vectors a∗ and b∗, regarding z∗ as another affine

coordinate system of S. This defines a dual affine structure of

S, which is different from the primal affine structure. Howev-

er, we will later show their differential-geometrical formalism

and prove that the two affine structures are dually coupled

with respect to the Riemannian metric.

We have shown that space S equipped with a Bregman

divergence is Riemannian, but has two dually flat affine struc-

tures. This gives rise to the following generalized Pythagorean

theorem [1, 20]. As a preliminary, we mention the orthogonal-

ity of two curves in S. This is defined by using the Riemanni-

an metric. Let z1(t) and z2(t) be two curves intersecting at

t = 0, z1(0) = z2(0), where t is a parameter along the

curves. Then, the two curves intersect orthogonally at t = 0,

when their tangent vectors

t1 =
d

dt
z1(0), t2 =

d

dt
z2(0) (31)

satisfy the Riemannian orthogonality condition,

〈t1, t2〉 =
∑

gijt1it2j = 0, (32)

where 〈t1, t2〉 is the inner product with respect to the Rie-

mannian metric g. When the dual coordinate system is used

for one curve, say, z∗
2(t), the orthogonality condition is sim-

plified to
∑ d

dt
zi
1(0)

d

dt
z∗i
2 (0) = 0, (33)

because

〈ż1, ż2〉 = żT
1 gż2 = żT

1 ż∗
2. (34)

Pythagorean Theorem.

Let P , Q, R be three points in S whose coordinates

(and dual coordinates) are represented by zP , zQ, zR

(z∗
P , z

∗
Q, z

∗
R), respectively. When the dual geodesic connect-

ing P and Q is orthogonal at Q to the geodesic connecting

Q and R, then

D[P : R] = D[P : Q] +D[Q : R]. (35)

Dually, when the geodesic connecting P and Q is orthogonal

at Q to the dual geodesic connecting Q and R, we have

D[R : P ] = D[Q : P ] +D[R : Q]. (36)

Proof. By using (23), we have

D[R : Q] +D[Q : P ] = k(zR) + k∗(z∗
Q) + k(zQ) + k∗(z∗

P )

− zR · z∗
Q − zQ · z∗

P (37)

= k(zR) + k∗(z∗
P ) + zQ · z∗

Q

− zR · z∗
Q − zQ · z∗

P (38)

= D[zR : z∗
P ] + (zQ − zR)

· (z∗
Q − z∗

P ). (39)

The tangent vector of the geodesic connecting Q and R is

zQ − zR, and the tangent vector of the dual geodesic con-

necting Q and P is z∗
Q − z∗

P in the dual coordinate system.

Hence, the second term of the right-hand side of the above

equation vanishes, because the primal and dual geodesics con-

necting Q and R, and Q and P are orthogonal.

The following projection theorem is a consequence of the

generalized Pythagorean theorem. Let M be a smooth sub-

manifold of S. Given a point P outside M , we connect it

to a point Q in M by geodesic (dual geodesic). When the

geodesic (dual geodesic) connecting P and Q is orthogonal

to M (that is, orthogonal to any tangent vectors of M ), Q is

said to be the geodesic projection (dual geodesic projection)

of P to M .

Projection Theorem.

Given P and M , the point Q(Q∗) that minimizes diver-

gence D(P : R), R ∈ Q (D(R : P ), R ∈ M) is the projec-

tion (dual projection) of P to Q.
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This theorem is useful, when we search for the point be-

longing to M that minimizes the divergence D(P : Q) or

D(Q : P ) for preassigned P . In many engineering problems,

P is given from observed data, and M is a model to describe

the underlying structure.

2.3. Examples of dually flat geometry. The following ex-

amples illustrate our approach:

1) Euclidean geometry:

When k(z) has a quadratic form,

k(z) =
1

2

∑
z2

i , (40)

the induced Riemannian metric g is the identity matrix. Hence

the space is Euclidean. The primal and dual coordinates are

the same, z∗ = z, so that the space is self-dual. The diver-

gence is then a half of the square of Euclidean distance,

D[z : y] =
1

2

∑
|zi − yi|2 . (41)

The Pythagorean theorem and the projection theorem are ex-

actly the same as the well-known counterparts in a Euclidean

space.

2) Entropy geometry on discrete probability distributions:

Consider the set Sn of all discrete probability distributions

over n+1 elements X = {x0, x1, · · · , xn}. A probability dis-

tribution is given by

p(x) =
n∑

i=0

piδi(x), (42)

where

pi = Prob {x = xi} , δi(x) =

{
1, x = xi,

0, otherwise.
(43)

Obviously,
n∑

i=0

pi = 1. (44)

We can use a coordinate system z = (p1, · · · , pn) for the set

Sn of all such distributions, where z0 = p0 is regarded as a

function of the other coordinates,

p0 = 1 −
n∑

i=1

zi. (45)

The Shannon entropy,

H(z) = −
∑

zi log zi −
(
1 −

∑
zi

)
log

(
1 −

∑
zi

)
, (46)

is concave, so that k(z) = −H(z) is a convex function of z.

The Riemannian metric induced from k(z) is calculated as

gij(z) =
1

pi

δij +
1

p0

, (47)

which is the Fisher information matrix. The divergence func-

tion is given by

D[z : y] =

n∑

i=0

zi log
zi

yi

. (48)

which is known as the Kullback-Leibler divergence. It is writ-

ten in general as

KL[p(x) : q(x)] =
∑

x

p(x) log
p(x)

q(x)
. (49)

The dual coordinates are given by

z∗i = log
pi

p0

. (50)

and are are known as the natural parameters of an exponential

family, where the probability distribution is rewritten in the

form

p(x, z∗) = exp
{∑

z∗i δi(x) − k∗(z∗)
}
. (51)

An exponential family of probability distributions is usually

represented as

p(x,θ) = exp
{∑

θiδi(x) − ψ(θ)
}
. (52)

In our case, θi = z∗i , and ψ(θ) = k∗(z∗) is the cumulant

generating function. This is the dual potential,

ψ(θ) = k∗(z∗) = − log p0. (53)

The induced geometrical structure is studied in detail in

information geometry [1], where the Pythagorean theorem and

Projection theorem hold.

It should be mentioned that the usual definition begins

with the exponential form (52), where ψ is the convex func-

tion to define the geometry and θ = z∗ is the primal affine

coordinates. Therefore, z = p is the dual affine coordinates.

Hence, the definition of the primal and dual coordinates are

reversed.

3) Positive-definite matrices:

Let P be the set of n × n positive-definite matrices. It

is an n(n + 1)/2-dimensional manifold, since P ∈ P is a

symmetric matrix. When |P | is the determinant of P ,

k(P ) = − log |P | (54)

is a convex function of P . Its gradient is

Grad ψ(P ) = −P−1. (55)

Hence, the induced divergence is

D[P : Q] = − log
∣∣PQ−1

∣∣ + tr(PQ−1) − n, (56)

where the operator tr is the trace of a matrix. The dual affine

coordinates are

P ∗ = −P−1, (57)

and the dual potential is

k∗(P ∗) = − log |P ∗| . (58)

Consider a family of probability distributions of x,

P (x, P ) = exp

{
−1

2
xTP−1x − ψ(P )

}
. (59)

This is a multi-variate Gaussian distribution with mean 0 and

covariance matrix P . The geometrical structure introduced

here is the same as that derived from the exponential family

of distributions [1].
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Quantum information geometry [1, 21–23] uses the con-

vex function

k(P ) = tr(P logP − P ). (60)

Its gradient is

P ∗ = Grad k(P ) = logP (61)

and hence the dual affine coordinates are logP . The diver-

gence is

D(P : Q) = tr {P (logP − logQ) + P +Q} , (62)

which is the von Neumann divergence.

We further define the following function by using a convex

function f ,

kf (P ) = trf(P ) =
∑

f(λi), (63)

where λi are the eigenvalues of P . Then, kf is a convex func-

tion of P , from which we derive a dual geometrical structure

depending on f [24].

For f(λ) = (1/2)λ2, we have

kf (P ) =
1

2
tr(PTP ), (64)

and the derived divergence is

Df [P : Q] =
1

2
‖P −Q‖2 =

1

2

∑
|pij − qij |2 . (65)

The dual is P ∗ = P , so that the geometry is self-dual and

Euclidean.

The statistical case of (54) is derived from

f(λ) = − log(λ), (66)

while

f(λ) = λ logλ− λ (67)

gives the quantum-information structure (60).

More generally, by putting [22]

fα(λ) =
−4

1 − α2
(λ

1+α

2 − λ), (−1 < α < 1) (68)

we have the α-divergence,

Dα[P : Q] =

=
4

1 − α2
tr

[
1 − α

2
P +

1 + α

2
Q− P

1+α
2 Q

1−α
2

]
.

(69)

This is a generalization of the α-divergence defined in the

space of positive measures defined later.

4) Linear programming:

Let us consider the following LP (linear programming)

problem.

Problem. Minimize the cost function

c(x) =
∑

cixi (70)

under the constraints on x ∈ Rn given by

n∑

j=1

Aijxj ≥ bi, i = 1, · · · ,m. (71)

Let S = {x} be the open region satisfying the constraints

∑
Aijxj > bi. (72)

Then,

k(x) = −
m∑

i=1

log





n∑

j=1

Aijxj − bi



 (73)

is a convex function. Hence, we can introduce a dually flat

Riemannian structure to S.

The inner method of LP makes use of this structure [25].

The primal and dual curvatures play an important role in eval-

uating the efficiency of algorithms [26]. This can be general-

ized to the cone programming and semi-definite programming

problems [27].

5) Other divergences:

There are many other divergences in Sn derived from a

convex function f(z) in the form of k(z) =
∑
f(zi). We

show some of them. An extensive list of divergences is given

in [2].

i) For f(z) = − log z, we have the Itakua-Saito divergence

DIS [p : q] =
∑

(log
qi
pi

+
pi

qi
− 1), (74)

which is useful for spectral analysis of speech signals.

ii) For

f(z) = z log z + (1 − z) log(1 − z), (75)

we have the Fermi-Dirac divergence

DFD[p : q] =
∑ {

pi log
pi

qi
+ (1 − pi) log

1 − pi

1 − qi

}

(76)

iii) The β-divergence is a family divergences derived from the

following β-functions,

fβ(z) =






1

β(β + 1)

{
zβ+1 − (β + 1)z + β

}

z log z − z, β = 0

z − log z, β = −1.
(77)

The divergences are

Dβ [p : q] =





1

β(β + 1)

∑{
pβ+1

i − qβ+1

i

−(β + 1)qβ
i (pi − qi)

}
, β > −1

∑
pi log

pi

qi
, β = 0

∑(
log

qi
pi

+
pi

qi
− 1

)
, β = −1.

(78)

Hence, the family includes the KL-divergence and Itakura-

Saito divergence. It is used in machine learning [28] and

robust estimation [29–31].
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3. Invariant divergence in manifolds

of probability and positive measures

3.1. Information monotonicity. Let us consider again the

space Sn of all probability distributions over n+1 atoms X =
{x0, x1, · · · , xn}. The probability distributions are given by

p = (p0, p1, · · · , pn), pi = Prob {x = xi}, i = 0, 1, · · · , n,∑
pi = 1. We try to define a new divergence measure

D[p : q] between two distributions p and q. To this end, we

introduce the concept of information monotonicity [12, 14],

of which original idea was proposed by Chentsov in 1972

[11].

Let us divide X into m groups, G1, G2, · · · , Gm(m <
n+ 1), say

G1 = {x1, x2, x5} , G2 = {x3, x8, · · · } , · · · (79)

This is a partition of X ,

X = ∪Gi, (80)

Gi ∩Gj = φ. (81)

Assume that we do not know the outcome xi directly, but can

observe which group Gj it belongs to. This is called coarse-

graining of X .

The coarse-graining generates a new probability distribu-

tions p = (p1, · · · , pm) over G1, · · · , Gm,

pj = Prob {Gj} =
∑

xi∈Gj

Prob {xi} . (82)

Let D[p : q] be an induced divergence between p and q.

Since coarse-graining summarizes some of elements into one

group, detailed information of the outcome in each group is

lost. Therefore, it is natural to require

D[p : q] ≤ D[p : q]. (83)

When does the equality hold? For two distributions p and

q, assume that the outcome xi is known to belong to Gj .

Then, we require more information to distinguish the two

probability distributions p and q by knowing further detail

inside group Gj . Since xi belongs to group Gj , we consider

the conditional probability distributions

p (xi |xi ∈ Gj ) , q (xi |xi ∈ Gj ) (84)

inside group Gj . If they are equal, we cannot obtain further

information to distinguish p from q by observing elements

inside Gj . Hence,

D [p : q] = D[p : q] (85)

holds, when and only when

p (xi |Gj ) = q (xi |Gj ) (86)

for all Gj and all xi ∈ Gj , or

pi

qi
= λj (87)

for all xi ∈ Gj for some constant λj .

A divergence satisfying the above requirements is called

an invariant divergence, and such a property is termed as in-

formation monotonicity.

3.2. f -divergence and information monotonicity. The f -

divergence was introduced by Csiszár [7] and also by Ali and

Silvey [6]. It is defined by

Df [p : q] =
∑

pif

(
qi
pi

)
, (88)

where f is a convex function satisfying

f(1) = 0. (89)

For f = cf for a constant c, we have

Dcf [p : q] = cD[p : q]. (90)

Hence, f and cf give the same divergence except for the scale

factor. In order to standardize the scale of divergence, we may

assume that

f ′′(1) = 1, (91)

provided f is differentiable. Further, for fc(u) = f(u)−c(u−
1) where c is constant, we have

Dfc
[p : q] = Df [p : q]. (92)

Hence, we may use such an f that satisfies

f ′(1) = 0 (93)

without loss of generality. A convex function satisfying the

above three conditions (89), (91), (93) is called a standard f
function.

The f -divergence (88) is written as a sum of functions

of two variables pi and qi. Such a divergence is said to be

decomposable.

Csiszár found that an f -divergence satisfies information

monotonicity. Moreover, the class of f -divergences is unique

in the sense that any decomposable divergence satisfying in-

formation monotonicity is an f -divergence.

Theorem 3.

The f -divergence satisfies the information monotonicity.

Conversely, any decomposable information monotonic diver-

gence is written in the form of f -divergence.

The proof is found, e.g., in [14].

The Riemannian metric and affine connections derived

from the f -divergence has a common invariant structure. They

are given by the Fisher information Riemannian metric and

±α-connections, which are shown in a later section.

3.3. Examples of f -divergence in Sn. An extensive list of

f -divergences is given in [2]. Some of them are listed below.

1) Total variation: f(u) = |u − 1|.
The total variation distance is defined by

D[p : q] =
∑

|pi − qi| . (94)

Note that it is not differentiable, and no Riemannian metric

is derived. However, this gives a Minkovskian metric.

2) Squared Hellinger distance: f(u) = (
√
u− 1)

2
for which

D[p : q] =
∑

(
√
pi −

√
qi)

2
. (95)
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3) Pearson and Neyman Chi-square divergence: f(u) =
(1/2)(u− 1)2 and f(u) = (1/2)(u− 1)2/u, for which

D[p : q] =
1

2

∑ (pi − qi)
2

pi

, (96)

D[p : q] =
1

2

∑ (pi − qi)
2

qi
. (97)

4) The KL-divergence: f(u) = u− 1 − log u, and

D[p : q] =
∑

pi log
qi
pi

(98)

5) The α-divergence:

f(u) =
4

1 − α2

(
1 − u

1+α
2

)
− 2

1 − α
(u− 1), (99)

Dα[p : q] =
4

1 − α2

∑ (
1 − p

1−α
2

i q
1+α

2

i

)
. (100)

The α-divergence was introduced by Havdra and Charvát

in 1967 [32], and has been studied extensively by Amari

and Nagaoka [1]. Its applications were described earlier by

Chernoff in 1952 [33], and later in [34, 35] etc. to mention

a few. It is the squared Hellinger distance for α = 0, and

the KL-divergence and its reciprocal are obtained in the

limit of α→ ±1.

3.4. f -divergence in the space of positive measures. We

have studied both invariant and flat geometrical structures

in the manifold Sn of probability distributions. Here, we

study a similar structure in the space of positive measures

Mn over X = {x1, · · · , xn}, whose points are denoted by

z = (z1, · · · , zn), zi > 0. Here zi is the mass (measure) of

xi, where the total mass
∑
zi is arbitrary. In many applica-

tions, z is a non-negative array, and we can extend it to a

non-negative double array z = (zij) etc., that is, matrices

and tensors. We first derive an f -divergence in Mn: for two

positive measures z and y, an f -divergence is given by

Df [z : y] =
∑

zif

(
yi

zi

)
, (101)

where f is a standard convex function. It should be noted that

an f -divergence is no more invariant under the transformation

from f(u) to

fc(u) = f(u) − c(u − 1). (102)

Hence, it is absolutely necessary to use a standard f in the

case of Mn, because the condition of divergence is violated

otherwise.

Among all f -divergences, the α divergence given in the

form of

Dα[z : y] =
∑

zifα

(
yi

zi

)
, (103)

where

fα(u) =





4

1 − α2

(
1 − u

1+α

2

)
+

2

1 − α
(u− 1), α 6= ±1,

u log u− (u− 1), α = 1,

− log u+ (u− 1), α = −1,
(104)

plays a special role in Mn. This fα(u) is a standard convex

function.

The α-divergence is given in the following form,

Dα[z : y] =






4

1 − α2

∑ (
1 − α

2
zi +

1 + α

2
yi

z
1−α

2

i y
1+α

2

i

)
, α 6= ±1,

∑(
zi − yi + yi log

yi

zi

)
, α = 1,

∑(
yi − zi + zi log

zi

yi

)
, α = −1.

(105)

3.5. Characterization of α-divergence. We show that the

α-divergence is not only invariant, but also has a dually flat

structure for any α in Mn. This is different from the case

of Sn, because it is not dually flat in Sn, as will be shown

later. If Mn is dually flat, it has primal and dual affine coor-

dinate systems w,w∗ such that primal and dual geodesics are

represented in the linear forms (29), (30) in these coordinate

systems. To this end, we introduce

rα(u) =






2

1 − α

(
u

1−α

2 − 1
)
, α 6= 1

log u, α = 1,

(106)

which is called the α-representation of u. The new coordinates

w and w∗ of Mn are defined by

wi = rα(zi), w∗
i = r−α(zi). (107)

We further define convex functions k(w) and k∗(w∗) by

k(w) = kα(w) =
∑ 2

1 + α

{
1 +

1 − α

2
wi

} 2
1−α

, (108)

k∗(w∗) = k−α(w∗). (109)

Theorem 4. The α-divergence is a Bregman divergence,

where w and w∗ are affine coordinate systems, having du-

al convex functions kα(w) and k∗α(w∗), respectively.

Proof. The divergence Dα between two points w and s (dual

coordinates are w∗ and s∗, respectively) derived from kα(w)
is written as

Dα[w : s] = kα(w) + k−α(s∗) − w · s∗. (110)

For w = rα(z), s = rα(y), we have

kα(w) =
2

1 + α

∑
zi, (111)

k−α(s∗) =
2

1 − α

∑
yi (112)

and

w · s∗ =
1

1 − α2
z

1−α

2

i y
1+α

2

i . (113)

By substituting , (111)–(112) in (109), we prove that Dα

is the α-divergence given in (105). This demonstrates that

Mn has the dually flat α-structure for any α. We can fur-

thermore prove that the α-divergence is unique in the sense

that it belongs to both classes of f -divergences and Bregman

divergences [14].
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4. Geometry derived

from general divergence function

4.1. Tangent space, Riemannian metric and affine connec-

tion. We have so far studied the geometry derived from Breg-

man and f -divergences without mentioning underlying math-

ematical background. Here, we study the geometry derived

from a general divergence, together with basic mathematical

concepts from differential geometry. Let us consider a mani-

fold S having a local coordinate system z = (z1, ..., zn). Let

us consider a differentiable function D[y : z], satisfying the

condition of divergence. Then, the Taylor expansion,

D(z + dz, z) =
1

2

∑
gij(z)dzidzj (114)

is a positive definite quadratic form. Hence, a Riemannian

metric is induced in S by the second-order derivatives of D
at y = z, that is,

gij(z) =
∂2

∂zi∂zj

D(z : y)
∣∣y=z . (115)

It is easy to prove that this is a tensor.

The Bregman divergence induces a dually flat geometri-

cal structure, but this does not necessarily hold in the case

of general divergences. However, we also have a dually cou-

pled (non-flat) affine connections together with a Riemannian

metric. In order to elucidate the induced geometry, we briefly

provide here intuitive explanations of the notion of a tangent

space and an affine connection.

Let us consider the tangent space Tz of S at point z. It is

a linear space spanned by basis vectors e1, · · · , en, where ei

represents the tangent vector along the coordinate axis zi. One

may regard it as a local linearization of S in a neighborhood

of z. Any tangent vector X of Tz is represented as

X =
∑

Xiei. (116)

In particular, the tangent vector of a curve z(t) is represent-

ed by

ż(t) =
∑ d

dt
zi(t)ei. (117)

The Riemannian metric tensor is expressed by the inner

product of two basis vectors,

gij(z) = 〈ei, ej〉, (118)

so that the inner product of two tangent vectors X and Y is

〈X,Y 〉 =
∑

gijXiYj . (119)

We next consider an affine connection which is necessary

for defining a geodesic. When we consider tangent spaces at

all points z ∈ S, they are a collection of local linear approx-

imations of S at different points. Such a collection is a fibre

bundle called the tangent bundle. A geodesic is an extension

of the “straight line”, and is defined as a curve of which the

tangent directions are the same along the curve. To define

this “sameness”, we need to connect tangent spaces defined

at different points and define which directions are the same in

different tangent spaces. The basis vectors ei have always the

same directions in a flat space, provided affine coordinates are

taken. In this special case, ei(z) and ei(z+dz) have the same

direction. This is the case with a Bregman divergence. When

a space is curved, the directions of ei(z) and ei(z + dz) are

different, and we cannot have an affine coordinate system in

general.

Let us compare a basis vector ei(z) ∈ Tz with ei(z +
dz) ∈ Tz+dz . Their intrinsic change δei is defined by

δei = ẽi(z + dz) − ei(z), where ẽi(z + dz) is the vec-

tor in Tz corresponding to ei(z + dz) ∈ Tz+dz in Tz . We

need to define such correspondence by connecting Tz and

Tz+dz . By this correspondence, ẽi(z +dz) is a vector in Tz
so that it is spanned by {ei}, and it reduces to 0 as dz → 0.

Hence, it may be written in the linear form

δej =
∑

Γk
ij(z)dziek. (120)

Therefore, if we define the coefficients Γk
ij , we have a cor-

respondence between two nearby tangent spaces. This is an

affine connection, and Γk
ij are called the coefficients of the

affine connection. Note that ei(z + dz) and ei(z) belong to

different tangent spaces, so that we cannot subtract one from

the other directly. We have defined the intrinsic difference δei

by the above equation.

Formally, an affine connection is defined by using the co-

variant derivative operator ∇XY , which operates on vector

fields X and Y , and shows how the field Y changes as points

move in the direction of X . A covariant derivative ∇XY is

defined by using an affine connection as

∇XY =
∑ (

∂Y k

∂zi
+

∑
Γk

ijY
j

)
Xiek, (121)

for two vector fields

X =
∑

Xiei, (122)

Y =
∑

Yjej . (123)

The basis vectors are regarded as vector fields, and the covari-

ant derivative of vector field ej(z) in the direction of ei(z) is

∇ei
ej =

∑
Γk

ijek. (124)

This shows how ej(z) change intrinsically as points move in

the direction of ei. The covariant version of Γk
ij is

Γijk =
∑

m

Γm
ij gmk. (125)

4.2. Affine connection derived from divergence. An affine

connection is derived from a divergence function D[y : z]. It

was shown by Eguchi [37] that the coefficients of the derived

affine connection are given by

Γijk(z) = − ∂3

∂zi∂zj∂yk

D[z : y]|y=z . (126)

A curve z(t) is a geodesic, when

∇ż ż = 0, (127)
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where

ż =
d

dt
z(t).

This can be rewritten in the component form,

d2zk(t)

dt2
+

∑
Γijk żj żi = 0. (128)

Since our affine connection is different from that derived from

the Riemannian metric, it is not a curve of minimal distance

connecting two points. But it keeps straightness in the sense

of this affine connection, because the tangent direction never

changes along the curve.

We can define another affine connection, the dual connec-

tion, from the dual divergence

D∗[z : y] = D[y : z]. (129)

The dual affine connection Γ∗
ijk is given, in terms of the co-

efficients, as

Γ∗
ijk = − ∂3

∂yi∂yj∂zk

D[z : y]|y=z . (130)

Two affine connections are said to be mutually dual when

DX 〈Y ,Z〉 = 〈∇XY ,Z〉 + 〈Y ,∇∗
XZ〉 (131)

holds for three vector fields X,Y and Z. In terms of the

components, this relation can be written as

Γkij + Γ∗
kji =

∂

∂zk

gij . (132)

The Riemannian connection (Levi-Civita connection) Γ0
ijk

is given by

Γ0
ijk =

1

2

(
∂

∂zi

gjk +
∂

∂zj

gki −
∂

∂zk

gij

)
. (133)

It is the average of the two connections,

Γ0
ijk =

1

2

(
Γijk + Γ∗

ijk

)
. (134)

The Riemannian geodesic which minimizes the Riemannian

length of a curve is given by

z̈k +
∑

Γ0
ijk żiżj = 0. (135)

When two affine connections are dually coupled, we have a

tensor

Tijk = Γijk − Γ∗
ijk, (136)

which is symmetric with respect to the three indices i, j and k.

Therefore, by using this tensor, the two dually coupled affine

connections can be written as

Γijk = Γ0
ijk − 1

2
Tijk,

Γ∗
ijk = Γ0

ijk +
1

2
Tijk.

(137)

4.3. Geometry of Bregman divergence. We have already

studied the geometry derived from a Bregman divergence,

D[y : z] = k(y) − k(z) − {Grad k(z)} · (y − z). (138)

From (115), the Riemannian metric is given by the Hessian

gij(z) =
∂2

∂zi∂zj

k(z). (139)

Furthermore, we see from (126) that

Γijk(z) = 0 (140)

holds. Hence, the space is flat with respect to this connection,

and the related coordinates z are affine. However, note that

Γ∗
ijk(z) 6= 0. If we use the dual affine coordinate system z∗,

then the dual affine connection Γ∗
ijk(z∗) vanishes in the dual

coordinate system.

4.4. Geometry of f -divergence. We now study the geomet-

rical structure of Sn induced by an f -divergence which has

information monotonicity. We begin with the induced Rie-

mannian metric.

Theorem 5. Any f -divergence induces a unique information

monotonic Riemannian metric, which is given by the Fisher

information matrix.

Proof. The Riemannian metric induced by Df is calculated

from (88) as

Df [p : p + dp] =
1

2

n∑

i=0

(dpi)
2

pi

. (141)

Let z = (p1, · · · , pn) be the coordinate system, where pi =
zi (i = 1, · · · , n) and p0 = 1 − ∑

zi. By eliminating dp0 by

using dp0 = −∑
dzi, we have

gij =
1

pi

δij +
1

p0

. (142)

This coincides with the Fisher information matrix defined by

gij(z) =

∫
p(x, z)

∂ log p(x, z)

∂zi

∂ log p(x, z)

∂zj

dx. (143)

Hence for any f , the Riemannian metric is the same and given

by the Fisher information matrix. This is the only invariant

metric of Sn.

Since an f -divergence Df [p : q] cannot be written in

the form of Bregman divergence, except for the case of the

KL-divergence, there are no affine and dual affine coordinate

systems such that Γijk(z) = 0 or Γ∗
ijk(z∗) = 0 holds. This

implies that Df does not induce a flat structure in Sn. How-

ever, it induces a pair of dual affine connections, which define

primal and dual geodesics.

A symmetric tensor is defined by

Tijk(z)=

∫
p(x, z)

∂ log p(x, z)

∂zi

∂ log p(x, z)

∂zj

∂ log p(x, z)

∂zk

dx.

(144)
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The integration reduces to the summation in the discrete case.

We can then calculate the induced primal and dual affine con-

nections.

Theorem 6. An f -divergence Df [z : y] induces the primal

and dual affine connections defined by

Γijk = Γα
ijk = Γ0

ijk − α

2
Tijk, (145)

Γ∗
ijk = Γ−α

ijk = Γ0
ijk +

α

2
Tijk, (146)

where α = 3 + 2f ′′′(1).

Proof. By simple calculations, we have

Γijk = − ∂3

∂zi∂zj∂yk

Df [z : y]|y=z

= Γ0
ijk −

(
f ′′′(1) +

3

2

)
Tijk,

(147)

and its dual,

Γ∗
ijk = Γ0

ijk +

{
f ′′′(1) +

3

2

}
Tijk. (148)

They are two dually coupled affine connections, given by

Γ±α
ijk = Γ0

ijk ± α

2
Tijk, (149)

where α = 3 + 2f ′′′(1). The geometrical structure given by

the triplet {S, gij , Tijk} is called the α geometry.

The α geometry is a natural consequence of information

monotonicity. This is explained from the invariancy principle

that the geometrical structure is invariant by transformation

from x to t(x), when t is a sufficient statistics. For more

details, see [1, 11, 36].

Among these divergences, the KL-divergence and its dual

are unique in the sense that the space is dually flat in Sn.

In other words, there exist affine and dual affine coordinate

systems z and z∗ such that the two affine connections Γijk

and Γ∗
ijk vanish in the respective coordinate systems. Hence,

it is written in the form of a Bregman divergence, as is given

in Subsec. 2.3. A dually flat manifold has the Pythagorean

and Projection theorems, which are useful for a wide range

of applications.

4.5. Invariant Geometry of Mn. An f -divergence induces a

dually flat structure in Mn, as we saw in the previous section.

For positive measures z = (z1, · · · , zn), any f -divergence

gives

Df(z : z + dz) =
1

2

∑ 1

zi

(dzi)
2. (150)

Hence, the Riemannian metric is

gij(z) =
1

zi

δij . (151)

It is Euclidean, because it can be changed into

g̃ij (z̃) = δij , (152)

by the coordinate transformation

z̃i = 2
√
zi. (153)

We can also calculate the coefficients of the primal and dual

affine connections.

Theorem 7. An f -divergence Df [z : y] induces the primal

and dual affine connections in Mn,

Γijk(z) =
1

2z2
i

(−1 − α)δijk , (154)

Γ∗
ijk(z) =

1

2z2
i

(−1 + α)δijk , (155)

where α = 3 + 2f ′′′(1), and δijk = 1 when i = j = k and 0
otherwise.

This shows that any f -divergence induces a family of

affine connections indexed by α = 3+2f ′′′(1). We can further

prove the following flatness theorem.

Theorem 8. The primal and dual affine connections of Mn

induced by an f -divergence are flat.

Proof. The theorem can be proved by calculating the

Riemann-Christoffel curvature tensors, which we omit.

A flat manifold has an affine coordinate system. We have

already shown that the α-representation given in (107) is an

affine coordinate system, and −α-representation (107) is a du-

al affine coordinate system.

4.6. Canonical divergence. Given a divergence D[z : y],
we have a Riemannian metric and a dual pair of affine con-

nections. However, given a Riemannian manifold with a dual

pair of affine connections, we have infinitely many divergences

that generate the same geometrical structure. This is because

the differential geometrical structure depends only on local

properties of a divergence function. For example, given a di-

vergence D[z : y], its modification

D̃[z : y] = D[z : y] + c
∑

|zi − yi|4 , c > 0 (156)

gives the same geometry.

When a manifold S is dually flat, there exist two dual

affine coordinate systems z and z∗, accompanied by two con-

vex functions k(z) and k∗(z∗). These coordinate systems are

unique up to affine transformations, and convex functions are

unique up to linear terms. However, the divergence is uniquely

determined,

D[y : z] = k(y) + k∗(z∗) − y · z∗. (157)

We call it the canonical divergence of a dually flat manifold.

The Bregman divergence is the canonical divergence of a du-

ally flat Riemannian manifold. So we have:

Theorem 9. The α-divergence is the canonical divergence

in the dually flat space Mn of positive measures. The KL-

divergence is the canonical divergence in the dually flat space

Sn of discrete probability distributions.
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4.7. Symmetric divergence. A divergence is not symmetric

in general. However, we can construct a symmetric divergence

Ds[z : y] from an asymmetric D[z : y] by

Ds[z : y] =
1

2
{D[z : y] +D[y : z]} . (158)

Its geometry is elucidated by the following theorem.

Theorem 10. The symmetrized divergence gives the same

Riemannian metric as the asymmetric one. The derived affine

connections are self-dual, and is the Riemannian connection,

ΓS
ijk = Γ∗S

ijk = Γ0
ijk. (159)

Proof. From

∂2

∂zi∂zj

D[z : y]y=z =
∂2

∂yi∂yj

D[z : y]y=z , (160)

we have

gS
ij = gij . (161)

It is easy to see

− ∂3

∂zi∂zj∂yk

Ds[z : y]|y=z =
1

2

{
Γijk + Γ∗

ijk

}
. (162)

We may say that the squared Riemannian distance is the

canonical divergence of a space with a symmetric divergence.

4.8. Tsallis entropy, q-exponential family, and conformal

geometry. Let us define

hq(p) =
∑

pq
i , 0 < q < 1. (163)

Then, the Tsallis q-entropy [15] is defined by

Hq =
1

1 − q
(hq − 1) . (164)

It is connected with the Rényi entropy [16] defined as

HR
q =

1

1 − q
log hq, (165)

by a monotonic transformation. Since both Hq(p) and HR
q (p)

are concave functions, we can introduce dual geometric struc-

tures by using k(p) = −Hq and k̃(p) = −HR
q . We next study

how the geometry changes by a nonlinear transformation of

a convex function.

Given a convex function k(z), we can obtain a new func-

tion k̃(z) by a nonlinear transformation,

k̃(z) = f {k(z)} . (166)

When f(u) is a monotonically increasing convex function,

k̃(z) is a convex function. The geometry derived by k̃(z) is

compared with the original geometry derived by k(z).
The Riemannian metric g̃ij is given by

g̃ij(z)=f ′ {k(z)} gij(z) + f ′′ {k(z)} ∂k(z)

∂zi

∂k(z)

∂zj

. (167)

As for the affine structure, z is a common affine coordinate

system, so that the geodesics are the same in both cases. The

dual coordinates z̃
∗

are related to z∗ by

z̃
∗ = Grad k̃(z) = f ′ {k(z)} z∗. (168)

For a dual geodesic in the original geometry given by

z∗(t) = tz∗ + (1 − t)b∗, (169)

the curve in the new dual coordinate system is given by

z̃
∗(t) = tf ′(t)a∗ + (1 − t)f ′(t)b∗, (170)

where

f ′(t) = f ′ [k {z (z∗(t))}] . (171)

This is not a dual geodesic of the derived geometry.

However, when b∗ = 0, a geodesic passes through the

origin z∗ = z̃
∗
, which is the point minimizing the convex

function k(z) and k̃(z). Such a dual geodesic is again a dual

geodesic with respect to the transformed geometry, since

z∗(t) = ta∗ (172)

is transformed to

z̃
∗(t) = tf ′(t)a∗. (173)

When k(z) is the negative entropy, this represents the fact

that the maximum-entropy theorem holds commonly both for

k(z) and k̃(z).
We further study the geometry of Sn derived from the

q-exponential family [17, 18, 27]. Let us define the q-
exponential function by

expq(z) =





{1 + (1 − q)z}
1

1−q , q 6= 1,

exp z, q = 1.
(174)

Then, a family of probability distributions parameterized by z,

p(x, z) = expq {z · x − ψ(z)} (175)

is called a q-exponential family. This is an ordinary exponen-

tial family when q = 1. Here, ψ(z) is a normalizing factor to

ensure ∑

x

p(x, z) = 1. (176)

We can prove that ψ(z) is a convex function.

In the case of Sn, we have

logq p(x, z) =
1

1 − q

{
n∑

i=1

ziδi(x) − ψ(z)

}
, (177)

where we used the definition of

zi = logq pi − logq p0, (178)

ψ(z) = − logq p0(z), (179)

and

logq(z) =





1

1 − q

(
z1−q − 1

)
, q 6= 1,

log z, q = 1.
(180)

By studying the geometrical structure derived from ψ(z),
we obtain the following new theorems. We omit their proofs.

Theorem 11. The q-Riemannian metric gq
ij derived from ψ(z)

is a conformal transform of the Fisher information metric,

gq
ij(p) =

q

hq(p)
gij(p). (181)
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Theorem 12. The q-divergence is a conformal transform of

the α-divergence, with q = (1 + α)/2,

Dq[p : q] =
1

(1 − q)hq(p)

(
1 −

∑
pq

i q
1−q
i

)
. (182)

These results pave a way to develop conformal information

geometry further.

5. Conclusions

We have studied various divergence measures and the

differential-geometrical structures derived therefrom. This

connects many important engineering problems in compu-

tational vision, optimization, signal processing, neural net-

works, etc. with a modern information geometry. A divergence

function gives a Riemannian metric to the underlying space,

and furthermore a pair of dually coupled affine connections.

It has been shown that the Bregman divergence always gives

a dually flat Riemannian structure, and conversely, a dually

flat Riemannian manifold always gives a canonical divergence

of the Bregman type. We have presented a number of impor-

tant divergences of the Bregman type.

Information monotonicity is a natural requirement for a di-

vergence defined in a manifold of probability distributions.

This leads to the class of f -divergences. We have proved that

an f -divergence gives the unique Riemannian metric, which

is the Fisher information matrix. It also gives a class of α-

connections, where α- and −α-connections are dually cou-

pled. By extending it to the manifold of positive measures,

we have shown that the α-divergences are canonical diver-

gences.

We have addressed the geometrical structure inspired from

the Tsallis q-entropy and the corresponding divergences. This

will open a new field of conformal information geometry.
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