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Abstract. This paper introduces a new classifier design method based on regularized iteratively reweighted least squares criterion function.
The proposed method uses various approximations of misclassification error, including: linear, sigmoidal, Huber and logarithmic. Using the
represented theorem a kernel version of classifier design method is introduced. The conjugate gradient algorithm is used to minimize the
proposed criterion function. Furthermore, ¢;-regularized kernel version of the classifier is introduced. In this case, the gradient projection
is used to optimize the criterion function. Finally, an extensive experimental analysis on 14 benchmark datasets is given to demonstrate the

validity of the introduced methods.
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1. Introduction

The classifier design is a fundamental problem in a pattern
recognition. Up to now, a lot of classifier design methods have
been proposed. An overview of these methods can be found
in [1-5]. Among classifier design methods, Support Vector
Machine (SVM) is the most successful one [6]. It maps the
input data into high- (even infinite-) dimensional feature space
using the so-called kernel function and then it founds a linear
separating hyperplane with maximal margin between classes.
The learning process of SVM is formulated as a solution of
a constrained quadratic optimization problem [7, 8]. The main
disadvantage of this state-of-the-art technique is its high com-
putational cost. To overcome this drawback a lot of alternative
methods have been proposed, including: Lagrangian support
vector machine [9], least squares support vector machine [10]
and core vector machine [11-13].

For the last few years, there has been an increasing interest
to incorporate the main result of the statistical learning the-
ory, i.e. the generalization ability of a machine depends both
on the empirical risk, on a training set and complexity of this
machine [7, 8], to the traditional pattern recognition methods,
c.f.: kernel Fisher discriminant [14], kernel Foley-Sammon
discriminant [15], kernel perceptron [16], kernel fuzzy per-
ceptron [17], kernel dissimilarity-based classifier [18].

In 1965 Y. Ho and R. Kashyap proposed an iterative
method to solve a system of linear inequalities and its appli-
cation to pattern classification problems [19, 20]. Among the
traditional methods of classifier design the Ho-Kashyap algo-
rithm is the most powerful one. On-line version of this algo-
rithm has been introduced by M. Hassoun and J. Song [21].
The Ho-Kashyap classifier with generalization control [22]
and its kernel version [23] have been also proposed. Further-
more, the above methods have been extended to a matrix pat-
tern [24] and a multiple kernel learning algorithm [25]. How-
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ever, the most important disadvantage of the Ho-Kashyap al-
gorithm is its high computational effort. The algorithm needs
(N +1) x (N +1) matrix inversion, where N denotes dimen-
sionality of data from the training set.

In contrast to the Minimum Squared Error (MSE) method
of a classifier design [1, 2, 5], the Ho-Kashyap procedure fo-
cuses on the misclassified data. In each iteration, elements
of the so-called target (or margin) vector corresponding to
properly classified data are increased. Thus, squared errors
corresponding to these data are decreased or even zeroed,
so the algorithm in the next iteration pays attention to mis-
classified data. The above may be viewed as the relaxation
procedure realized in “batch” mode. A “force” to the separat-
ing hyperplane created by each properly classified datum is
relaxed. Another main disadvantage of the Ho-Kashyap pro-
cedure is the use of the quadratic loss function that leads
to an approximation of the misclassification error which is
not the best in this case. The absolute approximation of the
misclassification error in the Ho-Kashyap method using Iter-
atively Reweighted Least Squares (IRLS) procedure has been
introduced in [22].

The main goal of this work is to show that the IRLS
procedure can be used for a better approximation of misclas-
sification error than the squared one as well as may be used
for relaxation. So, the iterative modification of target vector is
not needed. The conjugate gradient algorithm is used for mini-
mization of proposed criterion function. Furthermore, ¢2- and
{1 -regularized kernel version of the classifier is introduced.
For ¢,-regularized criterion function the gradient projection
is used to optimization. The next goal is to investigate the gen-
eralization ability of the proposed classifier design methods
for synthetic and real-world benchmark data.

This paper focuses on a two-class (binary) classifiers. The
proposed method can be easily generalized to a multi-class
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problem using the “one-against-all” (class-remainder) and the
“one-against-one” (class-class) methodology [4, 26].

The remainder of this paper is organized as follows: Sec-
tion 2 presents the introduction of an iteratively reweighted
least square criterion function to design a binary classifier.
Section 3 shows that this approach may be extended to a non-
linear case using the representer theorem. Section 4 shows
that ¢;-regularized kernel version of the classifier may be pre-
sented as an bound-constrained quadratic program. Section 5
presents simulation results and a discussion for the classifica-
tion of real-world and synthetic benchmark datasets. Finally,
conclusions are drawn in Sec. 6.

2. Classifier design method - linear case

The binary classifier is designed on the basis of a training set,
Tr™) = {(x1,01), (x2,02) - , (Xn,0n)}, where N is data
cardinality, and each independent datum (pattern) x; € R? has
a corresponding dependent datum 6; € {+1, —1}, which indi-
cates its assignment to one of two classes, wy or wy: 6; = +1
iff x; € wy and 0; = —1 iff X; € wy. Defining the augment-
/ T T
ed pattern vector Xx; = [xi ,1}

=T T t+1
w = [w ,wo} € R*™*, such that

, we seek a weight vector

>0,
<0,

X; € w1, )
X; € wa,
where d(x;) is called a linear discrimination function.

If we multiply by —1 all patterns of the training set that
are members of ws class, then (1) can be rewritten in the form
HZ-WTXQ >0, fori=1,2,---, N. If the above conditions are
satisfied for all members of the training set, then the data are
said to be linearly separable. For overlapping classes it is im-
possible to find the weight vector w, such that the conditions
are satisfied for all data from the training set.

Even in linearly separable case, some data may lie near
the separating hyperplane w'x’ = 0. Thus, according to the
statistical learning theory the safer approach is to seek the
vector w, such that

O;w'x, > ¢; e>0. )

Now consider the data for which the equality hold in (2).
For w; these data lie on the hyperplane H; : w'x = g,
with normal w and perpendicular distance from the space
origin |e — wo|/||w||. Similarly, for wo these data lie on the
hyperplane Ho: w'x’ = —&, with normal w and perpendicu-
lar distance from the origin |—¢ — wg|/||w||. From above we
see that the margin of separation between w; and wo, i.e. the
distance between H; and Hy is M (w,e) = 2¢/||w||. The
region between H; and Hs is usually called the region of
separation. Note that the margin of separation is independent
to rescaling (2). If we divide both sides of (2) by e, then
a new weight vector equals w* = w/e and the margin of
separation is M (w*,1) = 2/HVV* = 2¢/||w||. This states
that maximizing the margin of separation between classes is
equivalent to use € = 1 and minimizing the Euclidean norm
of w. So, for the linearly separable case we seek w such that
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g;w'x, > 1 fori=1,2,---,N and minimizing W' W. Let
X be the N x (¢t + 1) matrix

X" 2 [0,x),00x5, -, OnXy]. 3)

Then the above inequalities can be rewritten in the matrix
form Xw > 1, where 1 denotes the vector with all entries
equal to 1 and the symbol > stands for componentwise in-
equality. We define the error vector as e = Xw — 1. If the
pth component of e is e, > 0, then the pth pattern is on
the right side of the separation hyperplane and outside the
region of separation. Otherwise, if e, € [—1, 0], then the pth
pattern is on the right side of the separation hyperplane but
inside the region of separation. Moreover, if ¢, < —1, then
the respective pattern is on the wrong side of the separation
hyperplane. Thus, the misclassification error on the training
set can be written as

N N

Y S(—ei—1) =) S(-biw'x]), 4)

i=1 i=1
where S (+) denotes the unit step function, S ({) = 1 for
¢ > 0, and zero otherwise. Due to nonconvexity of (4) its
minimization is NP-complete problem. There are many ap-
proximations of (4) to make this minimization problem math-
ematically tractable. In minimum squared error procedure of
a classifier design the minimized criterion function takes the
form [1, 5]

N
J(w) = Z (0:w'x; — bi)2 , 3)
i=1
where b;s form the so-called target or margin vector. Its ele-
ments are chosen arbitrarily (b; > 0) — usually all elements
are set to one. Above approximation is symmetric. So, its
pay attention on misclassified and well classified data. In the
Ho-Kashyap modification elements of vector b are iteratively
updated. b;s corresponding to properly classified data are in-
creased (errors are decreased), so impact of these data to the
separation hyperplane is also decreased. In support vector ma-
chine the linear soft margin is introduced. No penalty occurs
for pattern on the right side of the separation hyperplane and
outside the region of separation. If pattern lie on the region
of separation, even on right side of the separation hyperplane,
then penalty is increased linearly to the perpendicular distance
from the edge of this region [6]

N
J(w) = max (0,1—6;w'x}). (6)
i=1
In proposed method of classifier design a various approx-
imation of misclassification error and idea of the soft margin
are used. We seek vector w by the following minimization

D+-w'w, O

N
hi
min J (w) £ Z ) L(0;w'x; — 5

weRtH!
=1

where L (-) stands for a loss function used to approximation of
misclassification error, h; is a weight corresponding to the ith
pattern (its role is explained later). The second term is related
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to the maximization of the margin of separation (minimiza-
tion complexity of classifier). Parameter 7 > 0 controls the
trade-off between the complexity of classifier and the amount
up to which errors are tolerated.

If we choose the quadratic loss function then in matrix
notation (7) takes the form

) al T T T~
wéangIJ(w) =3 (Xw—-1) H(Xw-—1) + 5V W, (8)
where the matrix H = diag (hq, ho, -+ ,hn). Indeed, this
loss function is symmetric — the patterns equally distant from
the edge of the region of separation, independently they lie on
the right or on the wrong side has the same penalty. To obtain
asymmetric loss function the weights h; may be used. If we
set h; = 0 for e; > 0 and 1 otherwise, then only patterns lie
on the region of separation are penalized. However, to check
the sign of e; we must known vector w. Thus, criterion func-
tion (8) should be minimized by iteratively reweighting. Let
us denote w, H and e in kth iteration as w(*), H*®) and e(¥),
respectively. Criterion function (8) for kth iteration takes the
form

min  J® (w(k)) 2l (Xw(k) - 1)T He®
w(k) cRt+1 2 (9)

(xw® - 1)+ (509) 5,

where
0, ">,
h = . (10)
1, ez(- P 0,
e~ = xwlk—1 _ 1. (1)

Thus, to minimize the criterion function for the kth iteration
the weights are obtained using (10), (11) and the result of
optimization of the criterion function for the previous iter-
ation. To start this sequential optimizations we set weights
in the Oth iteration as h; = 1 for all 7. Above minimiza-
tion may be viewed as Iteratively Reweighted Least Square
(IRLS) method with control the complexity of a solution. The
loss function obtained in (9), (10) can be called asymmetric
quadratic or Asymmetric SQuaRe (ASQR) function. Classifi-
er design methods need to be robust. It is well-known from
literature [27], that the squared error loss function does not
lead to robustness to noised data and outliers. Also, it is not
a good approximation of misclassification error (4). A better
is to use the absolute error function. This loss function is easy
to obtain by taking

egky-1) >0,
hP = (12)

el(-kfl) el(-kfl) < 0.

0,
1/ :
In this case, reweighting is used for both asymmetrization
(relaxation) and changing the loss function. The loss function
obtained in (9), (12) can be called asymmetric absolute or
Asymmetric LINear (ALIN) function. Many other loss func-
tions may be easily obtained:

Bull. Pol. Ac.: Tech. 58(1) 2010

e Asymmetric HUBer (AHUB)

0, e >

= 17
1/

e SIGmoidal (SIG)

h® = 1/<(e§’“‘1>)2(1 +exp (o (e + 1)))) (14)

o Asymmetric SIGmoidal-Linear (ASIGL)

i =1 /(e V] (1+ exp(ale + 1)) as9)

e Asymmetric LOGarithmic (ALOG)

A —1<eF V<0, 3

egk_l) ez(-k_l) < —1.

)

07 ei 2 07
Rk — 9
' log (1 + (el(-k_l))z)/(el(-k_l)) , egk_l) < 0.
(16)
e Asymmetric LOG-Linear (ALOGL)
0 e* 1 >
W=y L
' log (1 + (egkfl))Q)/ el(-kfl) , egkfl) < 0.
(7)

The condition for optimality of (9) for the kth iteration is
obtained by its differentiating with respect to w and setting
the result equals to zero

-1
wik) — (XTH(’“)X + TI) X H®1, (18)
where T is the identity matrix with the last element on the
main diagonal set to zero.
The iteratively reweighted least square error minimization

procedure for classifier design can be summarized in the fol-
lowing steps:

1. Fix 7> 0and HY = 1. S_elt the iteration index k£ = 0.

2 wh = (XTHOX +71)  XTH®1,

3. e = Xwlk) — 1.

4 HEHD -~ diag ( ), where
h§k+1) =f (egk)), fori =1,2,---,N, and f(-) stands
for selected loss function (10), (12)—(17).

5. if k> 1 and Hw(k) - W(kfl)’ < &, then stop
else k«— k+1, goto (2).

E4+1) 5 (k+1
hg ),hé )

Remarks. The iterations were stopped as soon as the Euclid-
ean norm in a successive pair of w vectors is less than £. The
quantity £ is a pre-set small positive value. In all experiments
&€ = 1073 is used. The above algorithm requires the inversion
of an (¢ + 1) x (¢ + 1) matrix that lead to a running time of

@) ( (t+ 1)3) , where ¢ stands for the dimensionality of input

data. So, this algorithm is computationally infeasible for large
data dimensionality.
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In above algorithm, to solve unconstrained quadratic opti-
mization problem (9) the well-known conjugate gradient ap-
proach can be used. In contrast to solution (18) this algorithm
produce a minimizing sequence w(*)-[", where n = 0,1, - - -.
For the sake of simplicity superscript (k) will be omitted

wintl = w4y iglnl (19)

where ") denotes the step size, d™ stands for the search
direction, both for the nth iteration. Let us assume that the
search direction is known, then the step size is chosen to

minimize J (W["H]) =J (w["] + V["]d["]). Differentiating

above with respect to v[™ and setting the result equals to
zero, we have

- (d[nl) Twlnl ¢ (d["l) 'XTHe
(d[n]) " Gdl
where G = X 'HX + 71 and el = Xwl" — 1.

After some simple algebra criterion function (9) may be
presented as

il — _

, (20)

1
J(w) = §WTGw—b1T + ¢, 1)

where b; = X' Hl and ¢ = %ITHI. In the conjugate gradient
method the current search direction should be G-conjugate to

5
the previously chosen directions, i.e. d["l]) Gd™2! = 0 for

all ny # no. A new search direction is obtained as a combi-
nation of the previous one and the current gradient vector g™

al" = gl 4 glrlgln—11, (22)
where 8" is chosen to obtain G-conjugacy with the previous

T
direction. Thus, (d["_l]) G (g["] + 6["]d["_1]) = (. After
some simple algebra, we have

(d[n—ll) " Gglt!
(d[nfu) T e

The gradient vector is obtained using (9)

g[n] - _

(23)

gl = 9L W) = 7w +XTH (Xw["] - 1) .24
8W w=wln]
Comparing (20) and (24) a simpler form of the step size is
obtained -
(dw) gl
vl =~ (25)
(d["]) Gd™

The minimization of (9) using the conjugate gradient method
may be summarized in the following steps

Set the iteration index n = 0 and wl = 0.

Calculate gradient vector gl using (24).

if n =0, then 8% = 0, else calculate 31"} using (23).
Calculate search direction d!™ using (22).

Calculate step size v using (25).

Al
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6. Update w using (19).
7. if Hw["+1] — winl H < ¢, then stop,
else n < n+1, go to (2).

Remarks. The iterations were stopped as soon as the Euclid-
ean norm in a successive pair of w vectors is less than (,
where ( is a pre-set small positive value. In all experiments
¢ = 1073 is used. The conjugate gradient algorithm con-
verges theoretically in p + 1 steps, where p is rank of matrix
G. If G is full rank then algorithm converges in ¢ + 1 steps,
where ¢ denotes the dimensionality of input data. This al-
gorithm replaces step (2) in the previous one. The quantity

a
d")  Gd" calculated in step (5) may be saved and used
in step (3) of the next iteration.

3. Classifier design method — nonlinear case

Among nonlinear classifiers the so-called kernel-based based
methods are of special interest in last years [6]. The methods
may be motivated by the Cover’s theorem on separability of
patterns. This theorem states that nonlinearly separated pat-
terns in the input space can be linearly separable in a new
space obtained by nonlinear mapping of the original one, if
the dimensionality of new space is high enough [28]. So, we
seek a function that leads to small classification error and has
small norm in Reproducing Kernel Hilbert Space (RHKS) H:

N

: N d(x) — T dn?
15161171{J(d) = ;E(de(xz) 1)+ D) I

(26)
where £ denotes loss function used to approximation of mis-
classification error and ||d|\§( is the norm in reproducing ker-
nel Hilbert space  induced by positive definite kernel func-
tion K. As previously, 7 stands for a regularization parame-
ter. Taking into account (26) and the representer theorem [6],
function d can be written as

N
d(x) =Y oK (x,%;). 27
j=1

In the SVM an additional unregularized bias term is used.
According to the representer theorem this term is not needed.
However, in the remaining part of this paper the bias term ~q
is added and its usefulness will be investigated in the experi-
mental part:

N
d(x) =Y ;K (x,%;) + . (28)
j=1

Taking into account that §; € {—1,+1} the «;’s can be writ-
ten as a;; = 0;7;. Thus, we can write

N
0id (x;) = Y 73600, K (xi,%;) + 0i70.

Jj=1

(29)
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From RHKS theory it is well-known that

HdHK _ZZO‘ZO‘J (xi,%;)

=1 j=1 (30)
= ZZ iv30i0; K (%i,%;) .
i=1 j=1
Defining (N x N)-dimensional kernel matrix
N

K= [eiej K(Xivxj)]m‘:l ) 31
and vectors TI'T = [v1,7v2, - ,’yN]T, <H =
[61, 62, ,HN]T criterion function (26) for weighted (us-

ing H(k)) least square loss takes the form
-
in J® (T® <k>) - Z( <k>) (k)
F(gléIllRN J (I‘ N ) =3 r Kr
'y(()k)elR

1 T
+3 (kr® +5P@ —1) H® (kT +4Pe ~1).
(32)

Let & : x € R’ — ® (x) € F be a nonlinear transformation
of the input vectors x into a feature space F, which may be
high- or even infinite-dimensional. Taking into account that K
may be decomposed K (x;,x;) = (x;)" @ (x;) minimiza-
tion of (32) means that we design a linear IRLS classifier in
the feature space F, i.e. a nonlinear one in the original input
space. Commonly used kernel functions includes polynomial
and Gaussian:

K(x,x;) = (1+ 5XTX1')6;
K (xx) =exp (—xx=x): x € Ry,

where (3, § and x denote parameters.
The decision function of the classifier for input pattern x
can be represented as

Z Oivi K

where {”yz} i—o are parameters of the classifier obtained in the
process of training. Before we use the conjugate gradient opti-
mization of (32), it is rewritten in more compact form. Defin-
. T =~

mng I‘Z = [707717 e 77N]T = [’YO FT] and K = [6 IC]’
(32) takes the form

J® (rg’“) - % (rg@)T ITKITW

BER,,JEN, (33)

(34)

(x,%;) + 70, (35)

min
P erN+1

+ % (Ko - 1)T H*

(36)
) (iﬁrg’“ - 1) ,

where matrix Z = [0 I] is used to unregularize the bias term.
For minimization of (36) with respect to I‘ék) the conju-

gate gradient method can be used. For the sake of simplicity

in minimizing sequence I‘gk)’["], where n = 0,1, the su-
perscript (k) will be omitted
rinti — il 4 plglnl, (37)
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where as previously v} denotes the step size and d" stands
for the search direction. Repeating calculations from the linear
case, it is easy obtain that

r () " TR 4 (a™) "RT Hel

= (d[n])T G
(38)
) (a) T gl
- (d[n])T Gd"
gl — _ (a) es (39)

(d[nfu) Teany

where in this case G = 72 KZ + KTHK, el = KT — 1
and
aJ (T.)

__FT [n] T
ar. =717 /CIF +KTHe™

r.=rb

gl =

- (40)

The algorithm for design a nonlinear IRLS classifier can be
summarized in the following steps:

1. Fix 7 >0, H® = I and calculate the kernel matrix K. Set
the iteration index k = 0.

2. TR0 = 0. Set the iteration index n = 0.

3. Calculate e(®)-["],

4. Calculate g®)["] using (40).

5. if n = 0 then B3%):[0) = 0 else calculate 5)-1" using (39).

6. Calculate the search direction d*)["! using (22).

7. Calculate v*)-[" ysing (38).

8. Update T%"" ™ ysing (37).

9. Calculate e(%):[n],

10. if [T p® < ¢ then go to (11), else n —
n+ 1, go to (3).

11. HO+D diag (hg’””,hg’””,--- ,h§§“>), where
h§k+1) =f (egk) ,fori =1,2,--- /N, and f(-) stands

for selected loss function (10), (12)—(17).
k
12.if £ > 1and Hré’”*"w*” — il

then stop
else k—k+1, goto(2).

1
7nar+ ]H < é‘

Remarks. The quantity n¥,,. + 1 denotes a number of iter-
ation performed in the kth step. The iterations were stopped
as soon as the Euclidean norm in a successive pair of I',
vectors is less than ¢, where ( is a pre-set small positive val-
ue. In all experiments ( = 107 and & = 1073 are used.
The conjugate gradient algorithm converges theoretically in
p + 1 steps, where p is rank of matrix G. If matrix G is full
rank then number of steps is equal to N + 1, where N denotes

T Gl

calculated in step (7) may be saved and used in step (5) of
the next iteration.

the cardinality of the training set. The quantity (d[”])
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4. Classifier design method
— (;-regularized nonlinear case

The method for classifier design presented in the previous sec-
tion is based on ¢y regularization. However, it is well known
that using of the ¢; regularization encourages small compo-
nents of I' to become zero and inducing sparse solution [29,
30]. In contrast, solution of ¢, regularization problem has all
nonzero elements of I'. Now, criterion function (32) takes the
form
i k) (p®) &) _ T |lp(k)
F(glé?RN J (F » 7o ) ) HF Hl

75" ER 41)

+% (kr® + 5P —1JH® (KkT® 4 1Mo ~1),

where HI‘(’“)H1 = Zf\il ‘wfk) ‘ The above criterion function

is convex but not differentiable. Several optimization algo-
rithms have been proposed to solve the above minimization,
including: LARS [31], LASSO [32] and interior-point [33]
methods. Among these methods gradient projection method
introduced in [34, 35], and used for sparse signal reconstruc-
tion in [30], is especially interesting due to its low compu-
tational effort comparing to other methods. In this section
this idea is used for minimization of criterion function (39).
Introducing TT, '~ = 0 such that T = T't — '~ the min-
imization problem (39) (omitting the iteration index k) may
be written as
. + e _T.T + _
Frgth(r T7,9) = 517 (TF +T7)
I~ >0
YoER
(42)

+= (KTt —KT~ +7©—-1)"H

DN | =

(KT — KT~ 4+ 7© — 1) .
So, we obtain bound-constrained quadratic programming for-
mulation of (39). Assuming that vy is fixed, after some simple
matrix algebra the above criterion function takes the following
form
J(T%) =

(T*) " AT* 4+ b]T* ¢, (43)

1
2
where

r+
-

I =

)

KHK
—KHK

— KHK
KHK

1=

T1-KH(1 —~09)
1+ KH(1 —~0)
and

1
c=3 1-7%0)" (1-0).

Gradient of criterion function (41) can be written as
71+ KHe
71 — KHe

; (44)
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where error vector is e = (It —T'7) + 7® — 1. The
feasible region of solution to (41) is nonnegative orthant
Q = {I‘i| '+ c R?Y 1+ - 0}. The gradient projection
method is based on successive projections of the negative
gradient on the feasible region () and performing line search
minimization. The descent direction is computed for nth iter-
ation as [35]

a" = p, (Fi,m _ a[n]g[n]) _rl (45)
where Py, stands for the orthogonal projection on € and I'*["!
denotes T'* for the nth iteration. For bound constraints from
(40) P is simply replaced by componentwise maximum op-
eration, i.e. Po (-) = max(0, -). The steplength o™l selection
is based on the Barzilai-Borwein rule

(d[nfu) T g1l
al"l = — : (46)
(d[n—u) Adln—1
with  the following modification [34, 35]: if
T
d["_l]) Ad" Y < 0, then o™ = Omax, €lse al™l =

med { otmin, @™, iy }, where med {-} stands for the median
operation, 0 < amin < Qmax denote preset values (usually
Qmin = 1073 and apex = 10%°). Vector I'* is updated using

1] = ptilnl + /\["]d["], (47)
with A" given by a limited minimization
A" = arg min J (ria["l n /\d[”]) . (48)

A€0,1]

The above minimization can be obtained for (41) analytically

aJ (rﬂn] + /\d["])

=0. 49
7 (49)
Some simple algebra yields
o (a) T gl
A= (50)
(d[n]) Ad™

Taking into account that (41) is strictly convex the limited
minimization (46) given
-
(dm) gl

(dw) T agi

The condition for optimality of (41) with respect to 7 is giv-
en assuming that T'F is fixed, differentiating (42) with respect
7o and setting the result equals to zero

©H (Kkr+ M — k-1 — 1)
a ©THO '
The algorithm for design ¢;-regularized nonlinear IRLS clas-
sifier can be summarized in the following steps:

1. Fix 7 > 0, HY = L amin = 107% and ama = 10%°.

Calculate the kernel matrix K using (31). Set the iteration

index k = 0.

A =med{ 0, — 13, (51)

[n]

Y =

(52)
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I+ ().10] = . Set the iteration index n = 0.
Calculate 7" using (52).

Calculate e(%)-[],

Calculate g*)-["] using (42).

Calculate d!™ using (43).

Calculate A" using (50).

Calculate T+ ["+1] using (45).

.
if (d["_”) Ad" Y <0, then o/ = O'max» €lse calculate
al" using (46) and set a!") = med { apin, 3", ax -

10. Calculate 7\ using (52).

11. if |THE ] _ pE()l|| < ¢ then go to (12), else
n«—n-+1, go to (4).

12. H+D

A e A il

diag (hgk-i-l)’ h§k+1)7 . ,hg\’,”l))

hEkH) =f (ez(-k)), fori =1,2,---,N, and f(-) stands
for selected loss function (10), (12)—(17).
13. if k > 1 and Hri=<k>=["5m+1l - ri-(k*l)v[”i’ai“]H <¢

then stop
else kK« k+1, goto (2).

,  where

Remarks. The iterations were stopped as soon as the Euclid-
ean norm in a successive pair of I't vectors is less than (,
where ( is a pre-set small positive value. In all experiments

T
¢ = 1073 is used. The quantity (d["]) Ad"™ calculated in
step (9) may be saved and used in step (7) of the next iteration.

5. Numerical experiments and discussion

All experiments were done on Hewlett-Packard HP Com-
paq dx7300 Intel Core 2 CPU 6300 @ 1.86 GHz with
1 GB RAM, running Windows XP (Service Pack 2)
and MATLAB 6.5 environment. The lagrangian sup-
port vector machine (LSVM) was obtained by Inter-
net — http://www.cs.wisc.edu/dmi/lsvm. For experiments 13
well-known benchmark datasets from IDA repository was
used http://ida.first.fraunhofer.de/projects/bench. For ‘Banana’
(Ban), ‘Breast Cancer’ (BreC), ‘Diabetis’ (Diab), ‘Flare So-
lar’ (FlaSol), ‘German’ (Ger), ‘Heart’ (Hea), ‘Image’ Ima,
‘Ringnorm’ (RingN), ‘Splice’ (Spl), ‘Thyroid’ (Thy), ‘Titan-
ic’ (Tita), ‘Twonorm’ (TwN) and ‘Waveform’ (WaF) this
repository includes 100 predefined splits into training and
testing sets. Another dataset used in experiments was Rip-
ley synthetic two-class problem (Syn) — http://www.stats.ox.
ac.uk/pub/PRNN. The union of original training and testing
parts were randomly partitioned into 100 pairs of training (250
points) and testing (1000 points) sets. The structure of experi-
ments is as follows: for each database 10% of splits were used
to estimate the parameters (regularization parameter and ker-
nel parameter). These parameters was used to 100-fold cross
validation. The averege and standard deviation of generaliza-
tion error as well as computing time were used to comparison
with the LSVM algorithm.

5.1. Linear classification. The purpose of experiments in
this subsection was to compare the generalization ability of

the linear version LSVM to the linear IRLS classifier with
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various approximations of misclassification error. In all ex-
periments the parameter v for LSVM was changed in the
range from 0.1 to 25 (step 0.1). The regularization parameter
7 was in the range from 0.1 to 2.5 (step 0.01). Table 1 shows
for each database the average generalization performance (top
line) and standard deviation (middle line).

Table 1
Comparison between Lagrangian Support Vector Machine (LSVM) and
linear IRLS classifier on benchmark datasets. Each cell contains: average
(top), standard deviation (middle) of generalization error and running time
(bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

46.985 46.969 45.534 45.196 46.966 45.484 46.457 46.990
4472 4463 3203 3.201 4.466 3.898 4.216 4.479
Ban 1.00 036 090 059 038 042 050 0.48
27.065 27.091 28.260 27.390 26.935 27.172 27.494 27.260
4.580 4.799 4.552 4.832 4755 4766 4.732 4.899
BreC 100 019 073 023 027 031 032 0.59
23.387 23.417 23.447 23.523 23.363 23.413 23.417 23.353
1.778 1.796 1.706 1.708 1.786 1.797 1.797 1.775
Diab 1.00 015 068 0.16 027 021 024 0.38
33.210 33.415 32.532 33.660 33.485 33.015 32.940 33.493
1.686 1525 2253 1973 1555 1.690 1.693 1.515
FlaSol 1.00 013 024 015 025 020 0.24 0.39
24.077 24.073 24.037 24.823 24.383 24.043 24.053 24.017
2.150 2.154 2269 2.096 2.183 2236 2.186 2.154
Ger 1.00 013 057 0.5 021 021 020 0.36
16.110 16.480 16.780 16.350 16.030 16.670 16.620 16.560
2.814 2827 2911 3.448 2983 3.015 3.034 2.790

Hea 1.00 033 089 029 056 041 045 0.57

16.832 16.891 15.500 16.351 16.020 15.411 15.609 16.985
0.878 0949 0952 1.037 0962 0954 0.745 0.975
Ima 1.00  0.13 053 0.09 025 019 021 0.25
25.031 25.109 24.729 24.580 24.860 24.751 24.750 25.179
0.810 0.828 0.690 0.612 0.768 0.726 0.724  0.847
RingN 1.00 040 082 041 053 046 048 0.50
16.202 16.172 16.260 16.292 16.211 16.189 16.184 16.253
0.784 0.723 0.658 0.693 0.650 0.783 0.721 0.778
Spl 1.00 026 046 015 032 034 034 0.47
11.872 11.840 11.824 11.862 11.816 11.811 11.825 11.824
0.648 0.654 0.623 0.688 0.661 0.665 0.683 0.643
Syn 1.00 020 053 019 033 023 025 0.33
10.800 10.760 10.720 15.720 11.067 10.067 10.240 10.627
2,629 2.641 2693 3.161 2.677 2495 2.528 2393

Thy 1.00 031 070 026 0.65 038 041 0.55

22.686 22.685 22.649 22.593 22.654 22.630 22.652 22.685
1.082 1.132 1.110 1.114 1.152 1.160 1.139 1.139
Tita 1.00 042 066 056 057 056 0.61 0.85
2.836 2803 2.852 2.604 2640 2783 2.735 2.763
0.262 0.258 0264 0.168 0.185 0.245 0225 0.242
TwN 1.00 050 088 037 068 053 054 0.57
13.275 13.297 13.228 15.650 13.705 13.195 13.138 13.317
0.673 0.673 0.623 0999 0.818 0.606 0.596 0.680

WaF 1.00 045 090 032 108 053 058 0.68

In each cell the bottom line shows computing time nor-
malized to the computing time of the LSVM. The best results
for each database are in boldface. The results demonstrate that
IRLS performs better than LSVM. The average and standard
deviation (confidence interval) of generalization error for each
database excluding Tita are lower for the IRLS. Only for Tita
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the standard deviation of the generalization error is lower for
the LSVM. Running time is also lower for the IRLS classifier,
except one case — WaF database and the ASIGL approxima-
tion of misclassification error. For 11 databases the AHUB
and ALOG approximations lead to lower average general-
ization error comparing to the LSVM. However, the AHUB
and ALOG approximations lead to lower standard deviation
of generalization error, respectively for 6 and 7 databases.
Both average and standard deviation of generalization error
are better with respect to the LSVM for 7 databases in case
of the ALOG approximation and for 6 databases in case of
the AHUB approximation. The worse results are obtained for
the ASQR and SIG approximations — only for 3 databases
both average and standard deviation of generalization error
are better comparing to the LSVM. The running time for the
IRLS is up to 10 times lower comparing to the LSVM.

5.2. {5-regularized nonlinear classification. The purpose of
experiments in this subsection was to compare the gener-
alization ability of the kernel version LSVM to the kernel
ly-regularized IRLS classifier with various approximations
of misclassification error. Comparison was performed for the
IRLS classifier with bias 7y and for bias equals zero. In all
experiments the parameter v for LSVM was changed in the
range from 0.1 to 25 (step 0.1). The regularization parameter 7
was in the range from 0.1 to 2.5 (step 0.01). The Gaussian ker-
nel (34) was used. The kernel parameter x was selected from
the set {0.01,0.1,0.2,0.5,1.0,2.0,5.0,10.0,20.0, 50.0}. Ta-
bles 2 and 3 show the results for IRLS classifier with bias and
without bias, respectively. As previously, for each database the
average generalization performance (top line) and standard de-
viation (middle line) are presented. In each cell the bottom
line shows computing time normalized to the computing time
of the kernel LSVM. The best results for each database are in
boldface.

Taking Table 2 into account, several observations can be
made. The average of generalization error for 4 databases
(Ban, Syn, Thy and TwN) are lower for the LSVM. However,
only for TwN both the average and standard deviation of the
generalization error are lower for the LSVM. For the ALIN
approximation the IRLS classifier leads to lower average gen-
eralization error for 10 databases. For the ASQR, ASIGL,
AHUB, ALOG and ALOGL approximations the IRLS per-
forms better with respect to the average generalization error
for 8 databases. Both average and standard deviation of gen-
eralization error are better for TwN database in case of the
LSVM, whereas in case of the AHUB approximation for 7
databases. Running time is lower for the IRLS classifier for
Ban, RingN, Spl, Tita, TwN and WaF databases up to 10
times. For the rest of databases the running time is lower
for the LSVM up to 10 times. However, the running time is
usually lower for the IRLS classifier for large databases.

Taking Table 3 which contains comparison LSVM to IRLS
without bias, the following observations can be made. The av-
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erage of generalization error for 5 databases (Ban, BreC Syn,
Thy and TwN) are lower for the LSVM. However, for BreC,
Syn and TwN both the average and standard deviation of the
generalization error is lower for the LSVM. For the ALIN,
ASIGL and ALOG approximations the IRLS classifier leads
to lower average generalization error for 9 databases. Both av-
erage and standard deviation of generalization error are better
in case of the ALIN approximation for 7 databases. Running
time is usually lower for the IRLS classifier up to 10 times.
However, for small databases (BreC, Thy) the running time
is lower for the LSVM classifier up to 4 times.

Table 2
Comparison between kernel version of Lagrangian Support Vector Machine
(LSVM) and kernel IRLS classifier (with bias) on benchmark datasets. Each
cell contains: average (top), standard deviation (middle) of generalization
error and running time (bottom)

SIG ASIGL AHUB ALOG ALOGL

Name LSVM ASQR ALIN

10.344 10.390 10.450 10.398 10.378 10.403 10.386 10.400
0.429 0.420 0397 0394 0415 0421 0423 0432
Ban 1.00 054 062 020 036 035 034 0.47
25.195 26.325 24.805 25.727 25.623 25.753 25.506 26.805
3.963 4.738 4.167 4308 4.662 4.522 4501 4.794
BreC  1.00 230 422 246 275 330 4.11 10.75
23.143 23.086 23.003 22.993 23.113 23.117 23.050 23.067
1.687 1.775 1.654 1.638 1.758 1.674 1.710 1.668
Diab 1.00 232 429 062 127 1157 1.17 2.40
33.645 33.318 32.657 33.727 33.410 33.193 32.990 33.407
1.759 1.540 1598 1.758 1.844 1.593 1.627 1.579

FlaSol 1.00 0.66 2.13 1.03 1.11 089 1.06 1.77

23.587 23.303 23.397 23.537 23.400 23317 23.300 23.417
2148 2272 2163 2.167 2211 2.155 2.195 2.164
Ger 100 154 370 207 165 199 208 433
15.680 15.850 15.440 15.910 15700 15.720 15.700 15.760
3345 3.066 3.163 3.282 3261 3.101 3.112  3.159
Hea 100 096 290 153 148 184 195 3.50
4619 3.054 3.059 2906 2916 3.074 3.074 2.871
0709 0.640 0.675 0.616 0.625 0.600 0.601 0.609
Ima  1.00 109 144 024 006 041 131 177
9214 1529 1.607 1.823 1755 1.529 1.521 1.524
1388 0.092 0.113 0.157 0.138 0.091 0.092 0.084
RingN 1.00 0.1 0.8 008 0.10 010 0.11 030
12.028 10.956 10.816 10.885 10.885 10.949 11.005 11.023
0731 0.685 0.646 0.606 0.592 0.687 0.734 0.780
Spl 100 089 095 119 069 087 090 2.66
9.460 9.570 9.639 9.491 9531 9.521 9.580 9.496
0.545 0577 0.622 0.534 0564 0.564 0531 0.564
Syn 100 1.I13 154 040 110 1.07 193 079
4.147 4293 4.187 4.160 4.507 4333 4360 4.333
2305 2.002 2.186 2.104 2.065 2.079 2.066 1.973
Thy 100 237 327 151 210 237 257 714
22.455 22.372 22.083 22.456 22.406 22.412 22370 22.380
1250 1.018 1.680 1012 1.050 1.061 0980 1.041
Tita 100 0.08 011 009 012 010 011 018
2.387 2518 2.557 2498 2472 2505 2474 2488
0.121 0.157 0.179 0.149 0.178 0.156 0.144 0.159
TwN 100 007 009 008 005 007 007 009
10.274 10.004 10.072 9.732 9.750 10.037 10.055 10.023
0407 0385 0.508 0.385 0401 0374 0386 0.376
WaF  1.00 019 021 009 010 019 020 025
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Table 3
Comparison between kernel version of Lagrangian Support Vector Machine
(LSVM) and kernel IRLS classifier (without bias) on benchmark datasets.
Each cell contains: average (top), standard deviation (middle) of
generalization error and running time (bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

10.344 10.358 10.416 10.367 10.370 10.369 10.366 10.364
0429 0411 0415 0417 0418 0406 0.409 0.412
Ban 1.00 037 047 017 025 038 038 0.47

25.195 26.351 25312 25.286 26.026 25.766 25.442 26.766
3.963 4.804 4.447 4.497 4.622 4.636 4.548 4.824
BreC  1.00 0.63 1.87 0.60 1.06 1.03 1.14 2.20

23.143 23.097 23.077 22.933 23.087 23.047 23.020 23.140
1.687 1.710 1.589 1.692 1.673 1.690 1.709 1.681
Diab 1.00 064 219 050 1.06 092 1.00 1.99
33.645 33.343 32.540 33.688 33.475 33.208 32.938 33.315
1.759 1.592 1.704 1.676 1.795 1.742 1.645 1.744
FlaSol 1.00 0.56 1.84 0.79 097 077 092 1.57
23.587 23.273 23.463 23.487 23.507 23.637 23.270 23.197
2.148 2216 2236 2296 2252 2240 2.194 2.220

Ger 1.00 1.18 3.05 0.73 1.33 1.59  1.66 3.52

15.680 15.770 15.470 15.780 15.620 15.690 15.580 15.780
3345 3.051 3.189 3246 3.234 3.123 3260 3.060
Hea  1.00 086 1.64 0.64 084 101 108 201
4619 2960 2.960 2.876 2.881 2936 2975 2.792
0709 0.561 0.585 0.600 0.549 0.544 0.547 0.596
Ima 100 090 092 027 046 089 088 124
9214 6011 6.039 8.126 8.176 6011 6.010 6.190
1.388 0.808 0.908 1.525 1.497 0.808 0.815 0.869
RingN 100 008 008 005 006 008 008 0.17
12.028 11.278 11.168 11.099 11.067 11.278 11.274 11.306
0731 0.694 0612 0704 0.664 0714 0.662 0.726
Spl 1.00 068 072 040 056 068 069 2.13
9.460 9.558 9.652 9.538 9.482 9.505 9.484 9.509
0.545 0.578 0.628 0.566 0.558 0.556 0.563 0.582
Syn 100 064 099 033 050 066 068 1.09
4.147 4293 4787 4333 4400 4.560 4307 4.187
2305 2090 2259 2197 2302 2252 2201 2.110
Thy 100 246 298 078 156 255 255 430
202.455 22.435 22.423 22473 22.398 22.447 22417 22412
1250 1.086 1.148 1.010 1.039 1.084 1.100 1.067
Tita 100 008 011 009 0.10 010 010 0.14
2387 2.522 2556 2.506 2461 2.503 2472 2478
0121 0.157 0.151 0.148 0.145 0.155 0.144 0.155
TwN 100 006 007 003 005 006 006 007
10.274 10.053 10.041 9.715 9.745 10.064 10.075 10.117
0407 0435 0453 0407 0436 0414 0414 0454

WaF 1.00 0.14 0.16 0.07 0.08 0.14 0.15 0.19

Comparing the IRLS classifier with and without bias, it
can be noted that excluding bias leads to a lower running
time and a bit worse performance of the classifier. Moreover,
for classifier with bias the ALOG approximation is the best,
whereas for classifier without bias the ALIN approximation
is the best. Taking into account the average of generalization
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error the IRLS with ALIN approximation usually gives the
best performance in case of including a bias. For the IRLS
classifier without a bias the LSVM usually outperforms it. In
conclusion, for the kernel version of classifiers, the IRLS is
not so concurrent to the LSVM as in linear case. It also can be
noted that the superiority of a classification method depends
on the dataset. The above presented conclusions relate to the
“average’ behavior of the tested methods to the classifiers de-
sign. For each new database selection method of designing
a classifier should be performed experimentally. The above
is consistent with the no-free-lunch theorem, which says that
if a classifier generalizes better to certain databases, then it
is a result of a better match for a specific problem than its
superiority over other classifiers.

5.3. /;-regularized nonlinear classification. The purpose of
experiments in this subsection was to compare the general-
ization ability of the kernel version LSVM to the kernel ¢;-
regularized IRLS classifier with various approximations of
misclassification error. Comparison was performed for IRLS
classifier with bias =y and for bias equals zero. In all exper-
iments the parameter v for LSVM was changed in the range
from 0.1 to 25 (step 0.1). The regularization parameter 7 was
in the range from 0.1 to 2.5 (step 0.01). The Gaussian ker-
nel (34) was used. The kernel parameter x was selected from
the set {0.01,0.1,0.2,0.5,1.0,2.0,5.0, 10.0,20.0, 50.0}. Ta-
bles 4 and 5 show the results for IRLS classifier with bias and
without bias, respectively. As previously, for each database the
average generalization performance (top line) and standard de-
viation (middle line) are presented. In each cell the bottom
line shows computing time normalized to the computing time
of the kernel LSVM. The best results for each database are in
boldface.

Taking Table 4 into account, we see that the average of
generalization error for 6 databases (Ban, BreC, Diab, Spl,
Syn and TwN) are lower for the kernel LSVM. However, on-
ly for BreC, Spl, Syn, TwN both the average and standard
deviation of the generalization error is lower for the kernel
LSVM. For the ASQR and ASIGL approximations the IRLS
classifier leads to lower average generalization error for 5 data-
bases. Both average and standard deviation of generalization
error are better for BreC, Spl, Syn, TwN databases in case
of the LSVM, whereas in case of the ASIGL approximation
also for 4 databases (FlaSol, Hea, RingN and Thy). Running
time is lower for the kernel IRLS classifier for 11 databas-
es up to 20 times. For the rest of databases (BreC, Hea and
Thy databases) the running time is lower for the LSVM up to
15 times. However, the running time is usually lower for the
IRLS classifier for large databases.
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Table 4
Comparison between kernel version of Lagrangian Support Vector Machine
(LSVM) and ¢; -regularized kernel IRLS classifier (with bias) on
benchmark datasets. Each cell contains: average (top), standard deviation
(middle) of generalization error and running time (bottom)

LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

10.344 10.544 10.435 10.502 10.487 10.570 10.569 10.529
0.429 0469 0.397 0427 0418 0.449 0411 0423
Ban 1.00 046 020 013 0.14 051 053 0.61

25.195 25.623 25.325 25351 25.519 25.740 25.779 25.740
3.963 4.172 4.183 4.109 4239 4207 4.029 4291
BreC 100 3.18 236 173 136 1.65 1.80 4.30

Name

23.143 23.223 23.257 23.227 22.227 23.197 23.287 23.753
1.687 1.627 1.667 1.814 1.659 1.591 1593 1.841
Diab 1.00 065 065 055 065 0.65 0.65 0.65

33.645 33.053 33.985 32.425 33.175 33.237 33.263 33.005
1759 1.829 2.542 1.779 1.683 1775 1.797 1.745
FlaSol 1.00 088 050 047 049 050 050 050
23.587 24.107 24.990 24.127 24.150 24.743 25.190 23.407
2.148 2,062 2.189 2.166 2.034 2.013 2230 2.239
Ger 100 045 045 045 045 045 045 045
15.680 15.670 15.710 15.410 15.480 15.740 15.670 15.810
3345 3337 3288 3216 3252 3.199 3111 3.228
Hea  1.00 216 3.68 190 221 344 344 727
4.619 4911 7431 7292 4.594 5144 5297 5010
0709 0.648 1.550 1.461 0900 0.672 0.638 0.769
Ima 100 036 023 048 042 062 063 086
9214 1579 1.528 1.804 1713 1.567 1.547 1.555
1.388 0.117 0.108 0.131 0.126 0.114 0105 0.110
RingN 100 0.4 0.3 005 008 014 0.4 019
12.028 14.209 14.260 14.260 14.234 13.963 13.883 14.253
0731 1325 1316 1332 1337 1352 1330 1417
Spl 100 026 030 026 026 035 037 026
9.460 9.622 9.603 9.540 9.549 9.649 9.654 9.643
0.545 0.586 0.581 0.556 0.557 0.640 0.631 0.601
Syn 100 1.14 073 034 040 147 137 160
4.147 4.587 4.027 3747 3.680 4.493 4.400 4.507
2305 2205 1960 1775 1.748 2341 2393 2280
Thy 100 810 321 206 235 827 842 15.64
22.455 22.384 22.635 22.633 22.578 22.466 22.585 22.216
1250 1.123 0941 0.880 0931 1.102 0962 1.021
Tita 100 010 011 010 009 011 011 012
2.387 2561 2467 2455 2467 2544 2512 2552
0121 0.181 0.159 0.142 0.144 0.187 0.165 0.175
TwN 100 007 005 004 004 007 006 005
10.274 10.254 10.269 10.293 10.292 10.201 10.297 10.300
0.407 0.861 0920 0962 0946 0.638 0.677 0.841

WaF 1.o0 013 012 011 011 0.14 0.15 0.13

Taking Table 5 which contains comparison of the kernel
LSVM to the kernel IRLS without bias, the following ob-
servations can be made. The average of generalization error
for 4 databases (Ban, Diab, Hea and Spl) are lower for the
kernel LSVM. However, only for Diab and Spl both the av-
erage and standard deviation of the generalization error is
lower for the kernel LSVM. For the ALOGL approximation
the IRLS classifier leads to lower average generalization error
for 7 databases. Both average and standard deviation of gener-
alization error are better in case of the ASQR approximation
for 4 databases. Running time is usually lower for the kernel
IRLS classifier up to 33 times. However, for small databases
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(Hea, Hea and Thy) the running time is lower for the kernel
LSVM classifier up to 12 times.

Table 5
Comparison between kernel version of Lagrangian Support Vector Machine
(LSVM) and /7 -regularized kernel IRLS classifier (without bias) on
benchmark datasets. Each cell contains: average (top), standard deviation
(middle) of generalization error and running time (bottom).

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL
10.344 10.461 10.429 10.476 10.478 10.520 10.518 10.490
0.429 0.439 0380 0.425 0.427 0.443 0441 0.460
Ban 1.00 039 0.17 013 013 045 047 0.54
25.195 25.260 25.104 25.312 25.286 25.130 25.610 25.325
3.963 4.616 4.469 4358 4.259 4377 4446 4.467
BreC  1.00 5.07 3.15 286 3.07 485 473 7.14
23.143 23.580 23.580 24.050 23.980 23.537 23.590 23.637
1.687 1974 1915 2.050 2.010 1.831 1.928 1.927
Diab 1.00 097 048 039 039 136 152 1.07
33.645 33.960 33.587 33.815 33.922 33.697 33.752 33.917
1.759 1.684 1.717 1856 1.749 1.646 1.590 1.697
FlaSol 1.00 0.66 1.04 0.60 0.57 074 0.82 0.63
23.587 23.783 23.440 23.517 23.603 23.540 23.563 23.327
2.148 2101 2202 2258 2.184 2312 2230 2.162
Ger 1.00 075 515 312 422 833 828 8.32
15.680 16.340 17.060 16.640 16.020 16.330 16.060 15.860
3.345 3.334 3104 3433 3387 3300 3.372 3.226
Hea 1.00 1140 633 332 481 1243 12.00 1223
4.619 5460 8228 7.807 7.817 5.579 5.708 5.624
0.709 0.618 1.029 1.202 1.120 0.608 0.714 0.495
Ima 1.00 026 009 005 005 030 031 0.24
9.214 6.638 5.808 4.508 4.627 6.662 6.649 7.646
1.388 0923 1.176 0.832 0.884 1.015 0.920 0.992
RingN 1.00 029 0.13 0.09 010 030 0.29 0.35
12.028 15.954 18.837 18.363 18.140 16.182 16.361 16.124
0.731 0.757 1.622 1552 1509 1.022 1.043 1.039
Spl 1.00 060 046 024 036 076 0.79 0.74
9.460 9.480 9.492 9.458 9.460 9.557 9.501 9.426
0.545 0562 0.530 0.544 0.546 0.590 0.582 0.571
Syn 1.00 064 047 028 028 078 0.90 1.13
4.147 4293 4787 4.600 4.600 4.133 4.867 4.107
2305 2310 2390 2385 2392 2270 2531 2311
Thy 1.00 686 153 129 141 682 6.63 5.58
22.455 22.446 22.493 22.524 22.477 22.458 22.486 22.385
1.250 0953 0930 1.035 1.044 0.993 0955 0.955
Tita 1.00 0.12 011 010 0.11 012 0.11 0.14
2.387 2347 2352 2350 2.347 2349 2348 2362
0.121 0.119 0.116 0.105 0.106 0.115 0.116 0.122
TwN 1.00 004 003 003 003 004 0.05 0.04
10.274 9.732 9.637 9.486 9.593 9.782 9.785 9.749
0.407 0.390 0.509 0.458 0.505 0.438 0430 0.422

WaF 1.00 078 035 019 029 082 0.80 0.75

Comparing the ¢;-regularized kernel IRLS classifier with
and without bias, it can be noted that excluding bias leads to
a lower running time and similar performance of the classifier.
For classifier with bias the ASIGL approximation is the best,
whereas for classifier without bias the ASQR approximation
is the best. Taking into account both the average and standard
deviation of the generalization error the IRLS classifier leads
to better results for 4 databases in both cases, ie. with and
without bias. However, the LSVM classifier leads to better
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results for 4 databases when bias is used in the IRLS clas-
sifier and for 2 databases when bias is not used in the IRLS
classifier. For the ¢;-regularized kernel IRLS classifier better
results are obtained for its version without bias. Comparing
the ¢1- and ¢y-regularized kernel IRLS classifier, it must be
noted that /s-regularization leads to better performance and
similar running time. In conclusion, the LSVM gives best per-
formance in case of the ¢;-regularized kernel IRLS classifier.

6. Conclusions

In the paper it is shown that various approximations of mis-
classification error can be written as iteratively reweighted
least squares (IRLS) criterion function. The IRLS procedure
can be used for a better than squared approximation of mis-
classification error as well as may be used for relaxation of
a “force” to the separating hyperplane created by properly
classified data. The conjugate gradient algorithm is compu-
tationally effective method for minimization of proposed cri-
terion function. Furthermore, ¢o- and ¢;-regularized kernel
version of the classifier is introduced. For ¢;-regularized cri-
terion function the gradient projection is used to optimization.
An extensive experimental analysis on 14 benchmark datasets
showing that proposed classifier design methods are a good
alternative, in terms of both generalization performance and
computational cost, to the-state-of-the-art algorithm as La-
grangian support vector machine. For the linear classification
the best performance is observed on the ALOG approxima-
tion of misclassification error. For the kernel version of clas-
sifier the best are the ALOG and ALIN approximations for
classifier with and without bias, respectively. Excluding bias
leads to a lower running time and a bit worse performance
of the classifier in case of {y-regularization. In case of the
¢1-regularized kernel IRLS classifier better results are ob-
tained for its version without bias. Comparing the ¢;- and
{y-regularized kernel IRLS classifier, it must be noted that
{5 regularization leads to a better performance and a similar
running time.
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