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and its ℓ2- and ℓ1-regularized Kernel versions
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Abstract. This paper introduces a new classifier design method based on regularized iteratively reweighted least squares criterion function.

The proposed method uses various approximations of misclassification error, including: linear, sigmoidal, Huber and logarithmic. Using the

represented theorem a kernel version of classifier design method is introduced. The conjugate gradient algorithm is used to minimize the

proposed criterion function. Furthermore, ℓ1-regularized kernel version of the classifier is introduced. In this case, the gradient projection

is used to optimize the criterion function. Finally, an extensive experimental analysis on 14 benchmark datasets is given to demonstrate the

validity of the introduced methods.
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1. Introduction

The classifier design is a fundamental problem in a pattern

recognition. Up to now, a lot of classifier design methods have

been proposed. An overview of these methods can be found

in [1–5]. Among classifier design methods, Support Vector

Machine (SVM) is the most successful one [6]. It maps the

input data into high- (even infinite-) dimensional feature space

using the so-called kernel function and then it founds a linear

separating hyperplane with maximal margin between classes.

The learning process of SVM is formulated as a solution of

a constrained quadratic optimization problem [7, 8]. The main

disadvantage of this state-of-the-art technique is its high com-

putational cost. To overcome this drawback a lot of alternative

methods have been proposed, including: Lagrangian support

vector machine [9], least squares support vector machine [10]

and core vector machine [11–13].

For the last few years, there has been an increasing interest

to incorporate the main result of the statistical learning the-

ory, i.e. the generalization ability of a machine depends both

on the empirical risk, on a training set and complexity of this

machine [7, 8], to the traditional pattern recognition methods,

c.f.: kernel Fisher discriminant [14], kernel Foley-Sammon

discriminant [15], kernel perceptron [16], kernel fuzzy per-

ceptron [17], kernel dissimilarity-based classifier [18].

In 1965 Y. Ho and R. Kashyap proposed an iterative

method to solve a system of linear inequalities and its appli-

cation to pattern classification problems [19, 20]. Among the

traditional methods of classifier design the Ho-Kashyap algo-

rithm is the most powerful one. On-line version of this algo-

rithm has been introduced by M. Hassoun and J. Song [21].

The Ho-Kashyap classifier with generalization control [22]

and its kernel version [23] have been also proposed. Further-

more, the above methods have been extended to a matrix pat-

tern [24] and a multiple kernel learning algorithm [25]. How-

ever, the most important disadvantage of the Ho-Kashyap al-

gorithm is its high computational effort. The algorithm needs

(N +1)× (N +1) matrix inversion, where N denotes dimen-

sionality of data from the training set.

In contrast to the Minimum Squared Error (MSE) method

of a classifier design [1, 2, 5], the Ho-Kashyap procedure fo-

cuses on the misclassified data. In each iteration, elements

of the so-called target (or margin) vector corresponding to

properly classified data are increased. Thus, squared errors

corresponding to these data are decreased or even zeroed,

so the algorithm in the next iteration pays attention to mis-

classified data. The above may be viewed as the relaxation

procedure realized in “batch” mode. A “force” to the separat-

ing hyperplane created by each properly classified datum is

relaxed. Another main disadvantage of the Ho-Kashyap pro-

cedure is the use of the quadratic loss function that leads

to an approximation of the misclassification error which is

not the best in this case. The absolute approximation of the

misclassification error in the Ho-Kashyap method using Iter-

atively Reweighted Least Squares (IRLS) procedure has been

introduced in [22].

The main goal of this work is to show that the IRLS

procedure can be used for a better approximation of misclas-

sification error than the squared one as well as may be used

for relaxation. So, the iterative modification of target vector is

not needed. The conjugate gradient algorithm is used for mini-

mization of proposed criterion function. Furthermore, ℓ2- and

ℓ1-regularized kernel version of the classifier is introduced.

For ℓ1-regularized criterion function the gradient projection

is used to optimization. The next goal is to investigate the gen-

eralization ability of the proposed classifier design methods

for synthetic and real-world benchmark data.

This paper focuses on a two-class (binary) classifiers. The

proposed method can be easily generalized to a multi-class
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problem using the “one-against-all” (class-remainder) and the

“one-against-one” (class-class) methodology [4, 26].

The remainder of this paper is organized as follows: Sec-

tion 2 presents the introduction of an iteratively reweighted

least square criterion function to design a binary classifier.

Section 3 shows that this approach may be extended to a non-

linear case using the representer theorem. Section 4 shows

that ℓ1-regularized kernel version of the classifier may be pre-

sented as an bound-constrained quadratic program. Section 5

presents simulation results and a discussion for the classifica-

tion of real-world and synthetic benchmark datasets. Finally,

conclusions are drawn in Sec. 6.

2. Classifier design method – linear case

The binary classifier is designed on the basis of a training set,

TR
(N) = {(x1, θ1) , (x2, θ2) , · · · , (xN , θN )}, where N is data

cardinality, and each independent datum (pattern) xi ∈ IRt has

a corresponding dependent datum θi ∈ {+1,−1}, which indi-

cates its assignment to one of two classes, ω1 or ω2: θi = +1
iff xi ∈ ω1 and θi = −1 iff xi ∈ ω2. Defining the augment-

ed pattern vector x′i =
[
x⊤i , 1

]⊤
, we seek a weight vector

w =
[
w̃

⊤
, w0

]⊤
∈ IRt+1, such that

d(xi) , w⊤x′i = w̃
⊤

xi + w0

{
≥ 0, xi ∈ ω1,

< 0, xi ∈ ω2,
(1)

where d(xi) is called a linear discrimination function.

If we multiply by −1 all patterns of the training set that

are members of ω2 class, then (1) can be rewritten in the form

θiw
⊤x′i ≥ 0, for i = 1, 2, · · · , N . If the above conditions are

satisfied for all members of the training set, then the data are

said to be linearly separable. For overlapping classes it is im-

possible to find the weight vector w, such that the conditions

are satisfied for all data from the training set.

Even in linearly separable case, some data may lie near

the separating hyperplane w⊤x′ = 0. Thus, according to the

statistical learning theory the safer approach is to seek the

vector w, such that

θiw
⊤x′i ≥ ε; ε > 0. (2)

Now consider the data for which the equality hold in (2).

For ω1 these data lie on the hyperplane H1 : w⊤x′ = ε,

with normal w̃ and perpendicular distance from the space

origin |ε− w0|/‖w̃‖. Similarly, for ω2 these data lie on the

hyperplane H2 : w⊤x′ = −ε, with normal w̃ and perpendicu-

lar distance from the origin |−ε− w0|/‖w̃‖. From above we

see that the margin of separation between ω1 and ω2, i.e. the

distance between H1 and H2 is M (w, ε) = 2ε/‖w̃‖. The

region between H1 and H2 is usually called the region of

separation. Note that the margin of separation is independent

to rescaling (2). If we divide both sides of (2) by ε, then

a new weight vector equals w∗ = w/ε and the margin of

separation is M (w∗, 1) = 2/
∥∥w̃

∗
∥∥ = 2ε/‖w̃‖. This states

that maximizing the margin of separation between classes is

equivalent to use ε = 1 and minimizing the Euclidean norm

of w̃. So, for the linearly separable case we seek w such that

θiw
⊤x′i ≥ 1 for i = 1, 2, · · · , N and minimizing w̃

⊤
w̃. Let

X be the N × (t + 1) matrix

X⊤
, [θ1x′1, θ2x′2, · · · , θNx′N ] . (3)

Then the above inequalities can be rewritten in the matrix

form Xw � 1, where 1 denotes the vector with all entries

equal to 1 and the symbol � stands for componentwise in-

equality. We define the error vector as e = Xw − 1. If the

pth component of e is ep > 0, then the pth pattern is on

the right side of the separation hyperplane and outside the

region of separation. Otherwise, if ep ∈ [−1, 0], then the pth

pattern is on the right side of the separation hyperplane but

inside the region of separation. Moreover, if ep < −1, then

the respective pattern is on the wrong side of the separation

hyperplane. Thus, the misclassification error on the training

set can be written as

N∑

i=1

S (−ei − 1) =

N∑

i=1

S
(
−θiw

⊤x′i
)
, (4)

where S (·) denotes the unit step function, S (ζ) = 1 for

ζ > 0, and zero otherwise. Due to nonconvexity of (4) its

minimization is NP-complete problem. There are many ap-

proximations of (4) to make this minimization problem math-

ematically tractable. In minimum squared error procedure of

a classifier design the minimized criterion function takes the

form [1, 5]

J (w) =
N∑

i=1

(
θiw

⊤x′i − bi

)2
, (5)

where bis form the so-called target or margin vector. Its ele-

ments are chosen arbitrarily (bi > 0) – usually all elements

are set to one. Above approximation is symmetric. So, its

pay attention on misclassified and well classified data. In the

Ho-Kashyap modification elements of vector b are iteratively

updated. bis corresponding to properly classified data are in-

creased (errors are decreased), so impact of these data to the

separation hyperplane is also decreased. In support vector ma-

chine the linear soft margin is introduced. No penalty occurs

for pattern on the right side of the separation hyperplane and

outside the region of separation. If pattern lie on the region

of separation, even on right side of the separation hyperplane,

then penalty is increased linearly to the perpendicular distance

from the edge of this region [6]

J (w) =

N∑

i=1

max
(
0, 1− θiw

⊤x′i
)
. (6)

In proposed method of classifier design a various approx-

imation of misclassification error and idea of the soft margin

are used. We seek vector w by the following minimization

min
w∈IRt+1

J (w) ,

N∑

i=1

hi

2
L

(
θiw

⊤x′i − 1
)

+
τ

2
w̃

⊤
w̃, (7)

where L (·) stands for a loss function used to approximation of

misclassification error, hi is a weight corresponding to the ith
pattern (its role is explained later). The second term is related
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to the maximization of the margin of separation (minimiza-

tion complexity of classifier). Parameter τ > 0 controls the

trade-off between the complexity of classifier and the amount

up to which errors are tolerated.

If we choose the quadratic loss function then in matrix

notation (7) takes the form

min
w∈IRt+1

J (w) ,
1

2
(Xw− 1)

⊤
H (Xw− 1) +

τ

2
w̃

⊤
w̃, (8)

where the matrix H = diag (h1, h2, · · · , hN). Indeed, this

loss function is symmetric – the patterns equally distant from

the edge of the region of separation, independently they lie on

the right or on the wrong side has the same penalty. To obtain

asymmetric loss function the weights hi may be used. If we

set hi = 0 for ei ≥ 0 and 1 otherwise, then only patterns lie

on the region of separation are penalized. However, to check

the sign of ei we must known vector w. Thus, criterion func-

tion (8) should be minimized by iteratively reweighting. Let

us denote w, H and e in kth iteration as w(k), H(k) and e(k),

respectively. Criterion function (8) for kth iteration takes the

form

min
w(k)∈IRt+1

J (k)
(

w(k)
)

,
1

2

(
Xw(k) − 1

)⊤

H(k)

(
Xw(k) − 1

)
+

τ

2

(
w̃

(k)
)⊤

w̃
(k)

,

(9)

where

h
(k)
i =





0, e
(k−1)
i ≥ 0,

1, e
(k−1)
i < 0,

(10)

e(k−1) = Xw(k−1) − 1. (11)

Thus, to minimize the criterion function for the kth iteration

the weights are obtained using (10), (11) and the result of

optimization of the criterion function for the previous iter-

ation. To start this sequential optimizations we set weights

in the 0th iteration as hi = 1 for all i. Above minimiza-

tion may be viewed as Iteratively Reweighted Least Square

(IRLS) method with control the complexity of a solution. The

loss function obtained in (9), (10) can be called asymmetric

quadratic or Asymmetric SQuaRe (ASQR) function. Classifi-

er design methods need to be robust. It is well-known from

literature [27], that the squared error loss function does not

lead to robustness to noised data and outliers. Also, it is not

a good approximation of misclassification error (4). A better

is to use the absolute error function. This loss function is easy

to obtain by taking

h
(k)
i =





0, e

(k−1)
i ≥ 0,

1
/∣∣∣e(k−1)

i

∣∣∣ , e
(k−1)
i < 0.

(12)

In this case, reweighting is used for both asymmetrization

(relaxation) and changing the loss function. The loss function

obtained in (9), (12) can be called asymmetric absolute or

Asymmetric LINear (ALIN) function. Many other loss func-

tions may be easily obtained:

• Asymmetric HUBer (AHUB)

h
(k)
i =





0, e
(k−1)
i ≥ 0,

1, −1 ≤ e
(k−1)
i < 0,

1
/∣∣∣e(k−1)

i

∣∣∣ , e
(k−1)
i < −1.

(13)

• SIGmoidal (SIG)

h
(k)
i = 1

/((
e
(k−1)
i

)2(
1 + exp

(
α

(
e
(k−1)
i + 1

))))
. (14)

• Asymmetric SIGmoidal-Linear (ASIGL)

h
(k)
i = 1

/(∣∣∣e(k−1)
i

∣∣∣
(
1 + exp

(
α
(
e
(k−1)
i + 1

))))
. (15)

• Asymmetric LOGarithmic (ALOG)

h
(k)
i =






0, e
(k−1)
i ≥ 0,

log
(
1 +

(
e
(k−1)
i

)
2
)/(

e
(k−1)
i

)2

, e
(k−1)
i < 0.

(16)

• Asymmetric LOG-Linear (ALOGL)

h
(k)
i =





0, e
(k−1)
i ≥ 0,

log
(
1 +

(
e
(k−1)
i

)
2
)/∣∣∣e(k−1)

i

∣∣∣ , e
(k−1)
i < 0.

(17)

The condition for optimality of (9) for the kth iteration is

obtained by its differentiating with respect to w and setting

the result equals to zero

w(k) =
(

X⊤H(k)X + τ Ĩ
)−1

X⊤H(k)1, (18)

where Ĩ is the identity matrix with the last element on the

main diagonal set to zero.

The iteratively reweighted least square error minimization

procedure for classifier design can be summarized in the fol-

lowing steps:

1. Fix τ > 0 and H(0) = I. Set the iteration index k = 0.

2. w(k) =
(

X⊤H(k)X + τ Ĩ
)−1

X⊤H(k)1.

3. e(k) = Xw(k) − 1.

4. H(k+1) = diag
(
h

(k+1)
1 , h

(k+1)
2 , · · · , h

(k+1)
N

)
, where

h
(k+1)
i = f

(
e
(k)
i

)
, for i = 1, 2, · · · , N , and f(·) stands

for selected loss function (10), (12)–(17).

5. if k > 1 and
∥∥w(k) − w(k−1)

∥∥ < ξ, then stop

else k ← k + 1, go to (2).

Remarks. The iterations were stopped as soon as the Euclid-

ean norm in a successive pair of w vectors is less than ξ. The

quantity ξ is a pre-set small positive value. In all experiments

ξ = 10−3 is used. The above algorithm requires the inversion

of an (t + 1)× (t + 1) matrix that lead to a running time of

O
(
(t + 1)

3
)

, where t stands for the dimensionality of input

data. So, this algorithm is computationally infeasible for large

data dimensionality.
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In above algorithm, to solve unconstrained quadratic opti-

mization problem (9) the well-known conjugate gradient ap-

proach can be used. In contrast to solution (18) this algorithm

produce a minimizing sequence w(k),[n], where n = 0, 1, · · · .
For the sake of simplicity superscript (k) will be omitted

w[n+1] = w[n] + ν[n]d[n], (19)

where ν[n] denotes the step size, d[n] stands for the search

direction, both for the nth iteration. Let us assume that the

search direction is known, then the step size is chosen to

minimize J
(
w[n+1]

)
= J

(
w[n] + ν[n]d[n]

)
. Differentiating

above with respect to ν[n] and setting the result equals to

zero, we have

ν[n] = −
τ

(
d[n]

)⊤

Ĩw[n] +
(

d[n]
)⊤

X⊤H e[n]

(
d[n]

)⊤

Gd[n]
, (20)

where G = X⊤H X + τ Ĩ and e[n] = Xw[n] − 1.

After some simple algebra criterion function (9) may be

presented as

J (w) =
1

2
w⊤Gw− b⊤

1 + c, (21)

where b1 = X⊤H1 and c = 1
21⊤H1. In the conjugate gradient

method the current search direction should be G-conjugate to

the previously chosen directions, i.e.
(

d[n1]
)⊤

Gd[n2] = 0 for

all n1 6= n2. A new search direction is obtained as a combi-

nation of the previous one and the current gradient vector g[n]

d[n] = g[n] + β[n]d[n−1], (22)

where β[n] is chosen to obtain G-conjugacy with the previous

direction. Thus,
(

d[n−1]
)⊤

G
(

g[n] + β[n]d[n−1]
)

= 0. After

some simple algebra, we have

β[n] = −

(
d[n−1]

)⊤

Gg[n]

(
d[n−1]

)⊤

Gd[n−1]
. (23)

The gradient vector is obtained using (9)

g[n] =
∂J (w)

∂w

∣∣∣∣
w=w[n]

= τ Ĩw[n] + X⊤H
(

Xw[n] − 1
)

. (24)

Comparing (20) and (24) a simpler form of the step size is

obtained

ν[n] = −

(
d[n]

)⊤

g[n]

(
d[n]

)⊤

Gd[n]
. (25)

The minimization of (9) using the conjugate gradient method

may be summarized in the following steps

1. Set the iteration index n = 0 and w[0] = 0.

2. Calculate gradient vector g[n] using (24).

3. if n = 0, then β[0] = 0, else calculate β[n] using (23).

4. Calculate search direction d[n] using (22).

5. Calculate step size ν[n] using (25).

6. Update w using (19).

7. if
∥∥w[n+1] − w[n]

∥∥ < ζ, then stop,

else n← n + 1, go to (2).

Remarks. The iterations were stopped as soon as the Euclid-

ean norm in a successive pair of w vectors is less than ζ,

where ζ is a pre-set small positive value. In all experiments

ζ = 10−3 is used. The conjugate gradient algorithm con-

verges theoretically in p + 1 steps, where p is rank of matrix

G. If G is full rank then algorithm converges in t + 1 steps,

where t denotes the dimensionality of input data. This al-

gorithm replaces step (2) in the previous one. The quantity(
d[n]

)⊤

Gd[n] calculated in step (5) may be saved and used

in step (3) of the next iteration.

3. Classifier design method – nonlinear case

Among nonlinear classifiers the so-called kernel-based based

methods are of special interest in last years [6]. The methods

may be motivated by the Cover’s theorem on separability of

patterns. This theorem states that nonlinearly separated pat-

terns in the input space can be linearly separable in a new

space obtained by nonlinear mapping of the original one, if

the dimensionality of new space is high enough [28]. So, we

seek a function that leads to small classification error and has

small norm in Reproducing Kernel Hilbert Space (RHKS) H:

min
d∈H

J (d) ,

N∑

i=1

L (θid (xi)− 1) +
τ

2
‖d‖

2
K , (26)

where L denotes loss function used to approximation of mis-

classification error and ‖d‖2K is the norm in reproducing ker-

nel Hilbert space H induced by positive definite kernel func-

tion K . As previously, τ stands for a regularization parame-

ter. Taking into account (26) and the representer theorem [6],

function d can be written as

d (x) =

N∑

j=1

αjK (x,xj) . (27)

In the SVM an additional unregularized bias term is used.

According to the representer theorem this term is not needed.

However, in the remaining part of this paper the bias term γ0

is added and its usefulness will be investigated in the experi-

mental part:

d (x) =

N∑

j=1

αjK (x,xj) + γ0. (28)

Taking into account that θj ∈ {−1, +1} the αj’s can be writ-

ten as αj = θjγj . Thus, we can write

θid (xi) =

N∑

j=1

γjθiθjK (xi,xj) + θiγ0. (29)
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From RHKS theory it is well-known that

‖d‖2K =

N∑

i=1

N∑

j=1

αiαjK (xi,xj)

=

N∑

i=1

N∑

j=1

γiγjθiθjK (xi,xj) .

(30)

Defining (N ×N)-dimensional kernel matrix

K = [θiθj K(xi,xj)]
N

i,j=1 , (31)

and vectors Γ
⊤ = [γ1, γ2, · · · , γN ]

⊤
, Θ

⊤ =

[θ1, θ2, · · · , θN ]
⊤

criterion function (26) for weighted (us-

ing H(k)) least square loss takes the form

min
Γ(k)∈IRN

γ
(k)
0 ∈IR

J (k)
(
Γ

(k), γ
(k)
0

)
=

τ

2

(
Γ

(k)
)⊤

KΓ
(k)

+
1

2

(
KΓ

(k) + γ
(k)
0 Θ− 1

)⊤

H(k)
(
KΓ

(k) + γ
(k)
0 Θ− 1

)
.

(32)

Let Φ : x ∈ IRt 7−→ Φ (x) ∈ F be a nonlinear transformation

of the input vectors x into a feature space F , which may be

high- or even infinite-dimensional. Taking into account that K

may be decomposed K(xi,xj) = Φ (xi)
⊤ Φ (xj) minimiza-

tion of (32) means that we design a linear IRLS classifier in

the feature space F , i.e. a nonlinear one in the original input

space. Commonly used kernel functions includes polynomial

and Gaussian:

K (x, xi) =
(
1 + βx⊤xi

)δ
; β ∈ IR+, δ ∈ IN, (33)

K (x, xi) = exp
(
−χ ‖x− xi‖

2
)

; χ ∈ IR+, (34)

where β, δ and χ denote parameters.

The decision function of the classifier for input pattern x

can be represented as

d (x) =

N∑

i=1

θiγi K(x,xi) + γ0, (35)

where {γi}
N
i=0 are parameters of the classifier obtained in the

process of training. Before we use the conjugate gradient opti-

mization of (32), it is rewritten in more compact form. Defin-

ing Γ
⊤
e = [γ0, γ1, · · · , γN ]

⊤
=

[
γ0 Γ

⊤
]⊤

and K̃ = [Θ K],
(32) takes the form

min
Γ

(k)
e ∈IRN+1

J (k)
(
Γ

(k)
e

)
=

τ

2

(
Γ

(k)
e

)⊤

Ĩ⊤KĨ Γ
(k)
e

+
1

2

(
K̃Γ

(k)
e − 1

)⊤

H(k)
(
K̃Γ

(k)
e − 1

)
,

(36)

where matrix Ĩ = [0 I] is used to unregularize the bias term.

For minimization of (36) with respect to Γ
(k)
e the conju-

gate gradient method can be used. For the sake of simplicity

in minimizing sequence Γ
(k),[n]
e , where n = 0, 1, · · · the su-

perscript (k) will be omitted

Γ
[n+1]
e = Γ

[n]
e + ν[n]

d
[n], (37)

where as previously ν[n] denotes the step size and d[n] stands

for the search direction. Repeating calculations from the linear

case, it is easy obtain that

ν[n] = −
τ

(
d[n]

)⊤

Ĩ⊤K Ĩ Γ
[n] +

(
d[n]

)⊤

K̃⊤ H e[n]

(
d[n]

)⊤

G d[n]

= −

(
d[n]

)⊤

g[n]

(
d[n]

)⊤

G d[n]
,

(38)

β[n] = −

(
d[n−1]

)⊤

G g[n]

(
d[n−1]

)⊤

G d[n−1]
, (39)

where in this case G = τ Ĩ⊤KĨ + K̃⊤HK̃, e[n] = K̃Γ
[n]
e − 1

and

g[n] =
∂J (Γe)

∂Γe

∣∣∣∣
Γe=Γ

[n]
e

= τ Ĩ⊤KĨ Γ
[n]
e + K̃⊤ H e[n]. (40)

The algorithm for design a nonlinear IRLS classifier can be

summarized in the following steps:

1. Fix τ > 0, H(0) = I and calculate the kernel matrix K̃. Set

the iteration index k = 0.

2. Γ
(k),[0] = 0. Set the iteration index n = 0.

3. Calculate e(k),[n].

4. Calculate g(k),[n] using (40).

5. if n = 0 then β(k),[0] = 0 else calculate β(k),[n] using (39).

6. Calculate the search direction d(k),[n] using (22).

7. Calculate ν(k),[n] using (38).

8. Update Γ
(k),[n+1]
e using (37).

9. Calculate e(k),[n].

10. if ‖Γ
(k),[n+1]
e − Γ

(k),[n]
e ‖ < ζ then go to (11), else n ←

n + 1, go to (3).

11. H(k+1) = diag
(
h

(k+1)
1 , h

(k+1)
2 , · · · , h

(k+1)
N

)
, where

h
(k+1)
i = f

(
e
(k)
i

)
, for i = 1, 2, · · · , N , and f(·) stands

for selected loss function (10), (12)–(17).

12. if k > 1 and
∥∥∥Γ(k),[nk

max
+1]

e − Γ
(k−1),[nk−1

max
+1]

e

∥∥∥ < ξ,

then stop

else k ← k + 1, go to (2).

Remarks. The quantity nk
max + 1 denotes a number of iter-

ation performed in the kth step. The iterations were stopped

as soon as the Euclidean norm in a successive pair of Γe

vectors is less than ζ, where ζ is a pre-set small positive val-

ue. In all experiments ζ = 10−6 and ξ = 10−3 are used.

The conjugate gradient algorithm converges theoretically in

p + 1 steps, where p is rank of matrix G. If matrix G is full

rank then number of steps is equal to N +1, where N denotes

the cardinality of the training set. The quantity
(

d[n]
)⊤

Gd[n]

calculated in step (7) may be saved and used in step (5) of

the next iteration.
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4. Classifier design method

– ℓ1-regularized nonlinear case

The method for classifier design presented in the previous sec-

tion is based on ℓ2 regularization. However, it is well known

that using of the ℓ1 regularization encourages small compo-

nents of Γ to become zero and inducing sparse solution [29,

30]. In contrast, solution of ℓ2 regularization problem has all

nonzero elements of Γ. Now, criterion function (32) takes the

form

min
Γ(k)∈IRN

γ
(k)
0 ∈IR

J (k)
(
Γ

(k), γ
(k)
0

)
=

τ

2

∥∥∥Γ(k)
∥∥∥

1

+
1

2

(
KΓ

(k) + γ
(k)
0 Θ− 1

)
⊤H(k)

(
KΓ

(k) + γ
(k)
0 Θ− 1

)
,

(41)

where
∥∥Γ(k)

∥∥
1

=
∑N

i=1

∣∣∣γ(k)
i

∣∣∣. The above criterion function

is convex but not differentiable. Several optimization algo-

rithms have been proposed to solve the above minimization,

including: LARS [31], LASSO [32] and interior-point [33]

methods. Among these methods gradient projection method

introduced in [34, 35], and used for sparse signal reconstruc-

tion in [30], is especially interesting due to its low compu-

tational effort comparing to other methods. In this section

this idea is used for minimization of criterion function (39).

Introducing Γ
+,Γ− � 0 such that Γ = Γ

+ − Γ
− the min-

imization problem (39) (omitting the iteration index k) may

be written as

min
Γ+�0

Γ
−�0

γ0∈IR

J
(
Γ

+,Γ−, γ0

)
=

τ

2
1⊤

(
Γ

+ + Γ
−

)

+
1

2

(
KΓ

+ −KΓ
− + γ0Θ− 1

)⊤
H

(
KΓ

+ −KΓ
− + γ0Θ− 1

)
.

(42)

So, we obtain bound-constrained quadratic programming for-

mulation of (39). Assuming that γ0 is fixed, after some simple

matrix algebra the above criterion function takes the following

form

J
(
Γ
±

)
=

1

2

(
Γ
±

)⊤
AΓ

± + b⊤
1 Γ

± + c, (43)

where

Γ
± =

[
Γ

+

Γ
−

]
,

A =

[
KHK −KHK

−KHK KHK

]
,

b1 =

[
τ1 −KH (1− γ0Θ)

τ1 +KH (1− γ0Θ)

]

and

c =
1

2
(1− γ0Θ)⊤ (1− γ0Θ) .

Gradient of criterion function (41) can be written as

g =

[
τ1 +KHe

τ1−KHe

]
, (44)

where error vector is e = K (Γ+ − Γ
−) + γ0Θ − 1. The

feasible region of solution to (41) is nonnegative orthant

Ω =
{
Γ
±|Γ± ∈ IR2N ,Γ± � 0

}
. The gradient projection

method is based on successive projections of the negative

gradient on the feasible region Ω and performing line search

minimization. The descent direction is computed for nth iter-

ation as [35]

d[n] = PΩ

(
Γ
±,[n] − α[n]g[n]

)
− Γ

±,[n], (45)

where PΩ stands for the orthogonal projection on Ω and Γ
±,[n]

denotes Γ
± for the nth iteration. For bound constraints from

(40) PΩ is simply replaced by componentwise maximum op-

eration, i.e. PΩ (·) = max(0, ·). The steplength α[n] selection

is based on the Barzilai-Borwein rule

α̂[n] =

(
d[n−1]

)⊤

d[n−1]

(
d[n−1]

)⊤

Ad[n−1]
, (46)

with the following modification [34, 35]: if(
d[n−1]

)⊤

Ad[n−1] ≤ 0, then α[n] = αmax, else α[n] =

med
{
αmin, α̂

[n], αmax

}
, where med {·} stands for the median

operation, 0 < αmin < αmax denote preset values (usually

αmin = 10−30 and αmax = 1030). Vector Γ
± is updated using

Γ
±,[n+1] = Γ

±,[n] + λ[n]d[n], (47)

with λ[n] given by a limited minimization

λ[n] = arg min
λ∈[0,1]

J
(
Γ
±,[n] + λd[n]

)
. (48)

The above minimization can be obtained for (41) analytically

∂J
(
Γ
±,[n] + λd[n]

)

∂λ
= 0. (49)

Some simple algebra yields

λ̂ = −

(
d[n]

)⊤

g[n]

(
d[n]

)⊤

Ad[n]
. (50)

Taking into account that (41) is strictly convex the limited

minimization (46) given

λ[n] = med





0,−

(
d[n]

)⊤

g[n]

(
d[n]

)⊤

Ad[n]
, 1





. (51)

The condition for optimality of (41) with respect to γ0 is giv-

en assuming that Γ± is fixed, differentiating (42) with respect

γ0 and setting the result equals to zero

γ
[n]
0 = −

Θ
⊤
H

(
KΓ

+,[n] −KΓ
−,[n] − 1

)

Θ⊤HΘ
. (52)

The algorithm for design ℓ1-regularized nonlinear IRLS clas-

sifier can be summarized in the following steps:

1. Fix τ > 0, H(0) = I, αmin = 10−30 and αmax = 1030.

Calculate the kernel matrix K using (31). Set the iteration

index k = 0.
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2. Γ
±,(k),[0] = 0. Set the iteration index n = 0.

3. Calculate γ
(k),[n]
0 using (52).

4. Calculate e(k),[n].

5. Calculate g(k),[n] using (42).

6. Calculate d[n] using (43).

7. Calculate λ[n] using (50).

8. Calculate Γ
±,[n+1] using (45).

9. if
(

d[n−1]
)⊤

Ad[n−1] ≤ 0, then α[n] = αmax, else calculate

α̂[n] using (46) and set α[n] = med
{
αmin, α̂

[n], αmax

}
.

10. Calculate γ
(k),[n]
0 using (52).

11. if ‖Γ±,(k),[n+1] − Γ
±,(k),[n]‖ < ζ then go to (12), else

n← n + 1, go to (4).

12. H(k+1) = diag
(
h

(k+1)
1 , h

(k+1)
2 , · · · , h

(k+1)
N

)
, where

h
(k+1)
i = f

(
e
(k)
i

)
, for i = 1, 2, · · · , N , and f(·) stands

for selected loss function (10), (12)–(17).

13. if k > 1 and
∥∥∥Γ±,(k),[nk

max
+1] − Γ

±,(k−1),[nk−1
max

+1]
∥∥∥ < ξ,

then stop

else k← k + 1, go to (2).

Remarks. The iterations were stopped as soon as the Euclid-

ean norm in a successive pair of Γ
± vectors is less than ζ,

where ζ is a pre-set small positive value. In all experiments

ζ = 10−3 is used. The quantity
(

d[n]
)⊤

Ad[n] calculated in

step (9) may be saved and used in step (7) of the next iteration.

5. Numerical experiments and discussion

All experiments were done on Hewlett-Packard HP Com-

paq dx7300 Intel Core 2 CPU 6300 @ 1.86 GHz with

1 GB RAM, running Windows XP (Service Pack 2)

and MATLAB 6.5 environment. The lagrangian sup-

port vector machine (LSVM) was obtained by Inter-

net – http://www.cs.wisc.edu/dmi/lsvm. For experiments 13
well-known benchmark datasets from IDA repository was

used http://ida.first.fraunhofer.de/projects/bench. For ‘Banana’

(Ban), ‘Breast Cancer’ (BreC), ‘Diabetis’ (Diab), ‘Flare So-

lar’ (FlaSol), ‘German’ (Ger), ‘Heart’ (Hea), ‘Image’ Ima,

‘Ringnorm’ (RingN), ‘Splice’ (Spl), ‘Thyroid’ (Thy), ‘Titan-

ic’ (Tita), ‘Twonorm’ (TwN) and ‘Waveform’ (WaF) this

repository includes 100 predefined splits into training and

testing sets. Another dataset used in experiments was Rip-

ley synthetic two-class problem (Syn) – http://www.stats.ox.

ac.uk/pub/PRNN. The union of original training and testing

parts were randomly partitioned into 100 pairs of training (250

points) and testing (1000 points) sets. The structure of experi-

ments is as follows: for each database 10% of splits were used

to estimate the parameters (regularization parameter and ker-

nel parameter). These parameters was used to 100-fold cross

validation. The averege and standard deviation of generaliza-

tion error as well as computing time were used to comparison

with the LSVM algorithm.

5.1. Linear classification. The purpose of experiments in

this subsection was to compare the generalization ability of

the linear version LSVM to the linear IRLS classifier with

various approximations of misclassification error. In all ex-

periments the parameter ν for LSVM was changed in the

range from 0.1 to 25 (step 0.1). The regularization parameter

τ was in the range from 0.1 to 2.5 (step 0.01). Table 1 shows

for each database the average generalization performance (top

line) and standard deviation (middle line).

Table 1

Comparison between Lagrangian Support Vector Machine (LSVM) and

linear IRLS classifier on benchmark datasets. Each cell contains: average

(top), standard deviation (middle) of generalization error and running time

(bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

Ban

46.985
4.472
1.00

46.969
4.463
0.36

45.534
3.203
0.90

45.196
3.201
0.59

46.966
4.466
0.38

45.484
3.898
0.42

46.457
4.216
0.50

46.990
4.479
0.48

BreC

27.065
4.580
1.00

27.091
4.799
0.19

28.260
4.552
0.73

27.390
4.832
0.23

26.935
4.755
0.27

27.172
4.766
0.31

27.494
4.732
0.32

27.260
4.899
0.59

Diab

23.387
1.778
1.00

23.417
1.796
0.15

23.447
1.706
0.68

23.523
1.708
0.16

23.363
1.786
0.27

23.413
1.797
0.21

23.417
1.797
0.24

23.353
1.775
0.38

FlaSol

33.210
1.686
1.00

33.415
1.525
0.13

32.532
2.253
0.24

33.660
1.973
0.15

33.485
1.555
0.25

33.015
1.690
0.20

32.940
1.693
0.24

33.493
1.515
0.39

Ger

24.077
2.150
1.00

24.073
2.154
0.13

24.037
2.269
0.57

24.823
2.096
0.15

24.383
2.183
0.21

24.043
2.236
0.21

24.053
2.186
0.20

24.017
2.154
0.36

Hea

16.110
2.814
1.00

16.480
2.827
0.33

16.780
2.911
0.89

16.350
3.448
0.29

16.030
2.983
0.56

16.670
3.015
0.41

16.620
3.034
0.45

16.560
2.790
0.57

Ima

16.832
0.878
1.00

16.891
0.949
0.13

15.500
0.952
0.53

16.351
1.037
0.09

16.020
0.962
0.25

15.411
0.954
0.19

15.609
0.745
0.21

16.985
0.975
0.25

RingN

25.031
0.810
1.00

25.109
0.828
0.40

24.729
0.690
0.82

24.580
0.612
0.41

24.860
0.768
0.53

24.751
0.726
0.46

24.750
0.724
0.48

25.179
0.847
0.50

Spl

16.202
0.784
1.00

16.172
0.723
0.26

16.260
0.658
0.46

16.292
0.693
0.15

16.211
0.650
0.32

16.189
0.783
0.34

16.184
0.721
0.34

16.253
0.778
0.47

Syn

11.872
0.648
1.00

11.840
0.654
0.20

11.824
0.623
0.53

11.862
0.688
0.19

11.816
0.661
0.33

11.811
0.665
0.23

11.825
0.683
0.25

11.824
0.643
0.33

Thy

10.800
2.629
1.00

10.760
2.641
0.31

10.720
2.693
0.70

15.720
3.161
0.26

11.067
2.677
0.65

10.067
2.495
0.38

10.240
2.528
0.41

10.627
2.393
0.55

Tita

22.686
1.082
1.00

22.685
1.132
0.42

22.649
1.110
0.66

22.593
1.114
0.56

22.654
1.152
0.57

22.630
1.160
0.56

22.652
1.139
0.61

22.685
1.139
0.85

TwN

2.836
0.262
1.00

2.803
0.258
0.50

2.852
0.264
0.88

2.604
0.168
0.37

2.640
0.185
0.68

2.783
0.245
0.53

2.735
0.225
0.54

2.763
0.242
0.57

WaF

13.275
0.673
1.00

13.297
0.673
0.45

13.228
0.623
0.90

15.650
0.999
0.32

13.705
0.818
1.08

13.195
0.606
0.53

13.138
0.596
0.58

13.317
0.680
0.68

In each cell the bottom line shows computing time nor-

malized to the computing time of the LSVM. The best results

for each database are in boldface. The results demonstrate that

IRLS performs better than LSVM. The average and standard

deviation (confidence interval) of generalization error for each

database excluding Tita are lower for the IRLS. Only for Tita
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the standard deviation of the generalization error is lower for

the LSVM. Running time is also lower for the IRLS classifier,

except one case – WaF database and the ASIGL approxima-

tion of misclassification error. For 11 databases the AHUB

and ALOG approximations lead to lower average general-

ization error comparing to the LSVM. However, the AHUB

and ALOG approximations lead to lower standard deviation

of generalization error, respectively for 6 and 7 databases.

Both average and standard deviation of generalization error

are better with respect to the LSVM for 7 databases in case

of the ALOG approximation and for 6 databases in case of

the AHUB approximation. The worse results are obtained for

the ASQR and SIG approximations – only for 3 databases

both average and standard deviation of generalization error

are better comparing to the LSVM. The running time for the

IRLS is up to 10 times lower comparing to the LSVM.

5.2. ℓ2-regularized nonlinear classification. The purpose of

experiments in this subsection was to compare the gener-

alization ability of the kernel version LSVM to the kernel

ℓ2-regularized IRLS classifier with various approximations

of misclassification error. Comparison was performed for the

IRLS classifier with bias γ0 and for bias equals zero. In all

experiments the parameter ν for LSVM was changed in the

range from 0.1 to 25 (step 0.1). The regularization parameter τ
was in the range from 0.1 to 2.5 (step 0.01). The Gaussian ker-

nel (34) was used. The kernel parameter χ was selected from

the set {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0}. Ta-

bles 2 and 3 show the results for IRLS classifier with bias and

without bias, respectively. As previously, for each database the

average generalization performance (top line) and standard de-

viation (middle line) are presented. In each cell the bottom

line shows computing time normalized to the computing time

of the kernel LSVM. The best results for each database are in

boldface.

Taking Table 2 into account, several observations can be

made. The average of generalization error for 4 databases

(Ban, Syn, Thy and TwN) are lower for the LSVM. However,

only for TwN both the average and standard deviation of the

generalization error are lower for the LSVM. For the ALIN

approximation the IRLS classifier leads to lower average gen-

eralization error for 10 databases. For the ASQR, ASIGL,

AHUB, ALOG and ALOGL approximations the IRLS per-

forms better with respect to the average generalization error

for 8 databases. Both average and standard deviation of gen-

eralization error are better for TwN database in case of the

LSVM, whereas in case of the AHUB approximation for 7

databases. Running time is lower for the IRLS classifier for

Ban, RingN, Spl, Tita, TwN and WaF databases up to 10

times. For the rest of databases the running time is lower

for the LSVM up to 10 times. However, the running time is

usually lower for the IRLS classifier for large databases.

Taking Table 3 which contains comparison LSVM to IRLS

without bias, the following observations can be made. The av-

erage of generalization error for 5 databases (Ban, BreC Syn,

Thy and TwN) are lower for the LSVM. However, for BreC,

Syn and TwN both the average and standard deviation of the

generalization error is lower for the LSVM. For the ALIN,

ASIGL and ALOG approximations the IRLS classifier leads

to lower average generalization error for 9 databases. Both av-

erage and standard deviation of generalization error are better

in case of the ALIN approximation for 7 databases. Running

time is usually lower for the IRLS classifier up to 10 times.

However, for small databases (BreC, Thy) the running time

is lower for the LSVM classifier up to 4 times.

Table 2

Comparison between kernel version of Lagrangian Support Vector Machine

(LSVM) and kernel IRLS classifier (with bias) on benchmark datasets. Each

cell contains: average (top), standard deviation (middle) of generalization

error and running time (bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

Ban

10.344
0.429
1.00

10.390
0.420
0.54

10.450
0.397
0.62

10.398
0.394
0.20

10.378
0.415
0.36

10.403
0.421
0.35

10.386
0.423
0.34

10.400
0.432
0.47

BreC

25.195
3.963
1.00

26.325
4.738
2.30

24.805
4.167
4.22

25.727
4.308
2.46

25.623
4.662
2.75

25.753
4.522
3.30

25.506
4.501
4.11

26.805
4.794
10.75

Diab

23.143
1.687
1.00

23.086
1.775
2.32

23.003
1.654
4.29

22.993
1.638
0.62

23.113
1.758
1.27

23.117
1.674
11.57

23.050
1.710
1.17

23.067
1.668
2.40

FlaSol

33.645
1.759
1.00

33.318
1.540
0.66

32.657
1.598
2.13

33.727
1.758
1.03

33.410
1.844
1.11

33.193
1.593
0.89

32.990
1.627
1.06

33.407
1.579
1.77

Ger

23.587
2.148
1.00

23.303
2.272
1.54

23.397
2.163
3.70

23.537
2.167
2.07

23.400
2.211
1.65

23.317
2.155
1.99

23.300
2.195
2.08

23.417
2.164
4.33

Hea

15.680
3.345
1.00

15.850
3.066
0.96

15.440
3.163
2.90

15.910
3.282
1.53

15.700
3.261
1.48

15.720
3.101
1.84

15.700
3.112
1.95

15.760
3.159
3.50

Ima

4.619
0.709
1.00

3.054
0.640
1.09

3.059
0.675
1.44

2.906
0.616
0.24

2.916
0.625
0.06

3.074
0.600
0.41

3.074
0.601
1.31

2.871
0.609
1.77

RingN

9.214
1.388
1.00

1.529
0.092
0.11

1.607
0.113
0.18

1.823
0.157
0.08

1.755
0.138
0.10

1.529
0.091
0.10

1.521
0.092
0.11

1.524
0.084
0.30

Spl

12.028
0.731
1.00

10.956
0.685
0.89

10.816
0.646
0.95

10.885
0.606
1.19

10.885
0.592
0.69

10.949
0.687
0.87

11.005
0.734
0.90

11.023
0.780
2.66

Syn

9.460
0.545
1.00

9.570
0.577
1.13

9.639
0.622
1.54

9.491
0.534
0.40

9.531
0.564
1.10

9.521
0.564
1.07

9.580
0.531
1.93

9.496
0.564
0.79

Thy

4.147
2.305
1.00

4.293
2.002
2.37

4.187
2.186
3.27

4.160
2.104
1.51

4.507
2.065
2.10

4.333
2.079
2.37

4.360
2.066
2.57

4.333
1.973
7.14

Tita

22.455
1.250
1.00

22.372
1.018
0.08

22.083
1.680
0.11

22.456
1.012
0.09

22.406
1.050
0.12

22.412
1.061
0.10

22.370
0.980
0.11

22.380
1.041
0.18

TwN

2.387
0.121
1.00

2.518
0.157
0.07

2.557
0.179
0.09

2.498
0.149
0.08

2.472
0.178
0.05

2.505
0.156
0.07

2.474
0.144
0.07

2.488
0.159
0.09

WaF

10.274
0.407
1.00

10.004
0.385
0.19

10.072
0.508
0.21

9.732
0.385
0.09

9.750
0.401
0.10

10.037
0.374
0.19

10.055
0.386
0.20

10.023
0.376
0.25
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Table 3

Comparison between kernel version of Lagrangian Support Vector Machine

(LSVM) and kernel IRLS classifier (without bias) on benchmark datasets.

Each cell contains: average (top), standard deviation (middle) of

generalization error and running time (bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

Ban

10.344
0.429
1.00

10.358
0.411
0.37

10.416
0.415
0.47

10.367
0.417
0.17

10.370
0.418
0.25

10.369
0.406
0.38

10.366
0.409
0.38

10.364
0.412
0.47

BreC

25.195
3.963
1.00

26.351
4.804
0.63

25.312
4.447
1.87

25.286
4.497
0.60

26.026
4.622
1.06

25.766
4.636
1.03

25.442
4.548
1.14

26.766
4.824
2.20

Diab

23.143
1.687
1.00

23.097
1.710
0.64

23.077
1.589
2.19

22.933
1.692
0.50

23.087
1.673
1.06

23.047
1.690
0.92

23.020
1.709
1.00

23.140
1.681
1.99

FlaSol

33.645
1.759
1.00

33.343
1.592
0.56

32.540
1.704
1.84

33.688
1.676
0.79

33.475
1.795
0.97

33.208
1.742
0.77

32.938
1.645
0.92

33.315
1.744
1.57

Ger

23.587
2.148
1.00

23.273
2.216
1.18

23.463
2.236
3.05

23.487
2.296
0.73

23.507
2.252
1.33

23.637
2.240
1.59

23.270
2.194
1.66

23.197
2.220
3.52

Hea

15.680
3.345
1.00

15.770
3.051
0.86

15.470
3.189
1.64

15.780
3.246
0.64

15.620
3.234
0.84

15.690
3.123
1.01

15.580
3.260
1.08

15.780
3.060
2.01

Ima

4.619
0.709
1.00

2.960
0.561
0.90

2.960
0.585
0.92

2.876
0.600
0.27

2.881
0.549
0.46

2.936
0.544
0.89

2.975
0.547
0.88

2.792
0.596
1.24

RingN

9.214
1.388
1.00

6.011
0.808
0.08

6.039
0.908
0.08

8.126
1.525
0.05

8.176
1.497
0.06

6.011
0.808
0.08

6.010
0.815
0.08

6.190
0.869
0.17

Spl

12.028
0.731
1.00

11.278
0.694
0.68

11.168
0.612
0.72

11.099
0.704
0.40

11.067
0.664
0.56

11.278
0.714
0.68

11.274
0.662
0.69

11.306
0.726
2.13

Syn

9.460
0.545
1.00

9.558
0.578
0.64

9.652
0.628
0.99

9.538
0.566
0.33

9.482
0.558
0.50

9.505
0.556
0.66

9.484
0.563
0.68

9.509
0.582
1.09

Thy

4.147
2.305
1.00

4.293
2.090
2.46

4.787
2.259
2.98

4.333
2.197
0.78

4.400
2.302
1.56

4.560
2.252
2.55

4.307
2.201
2.55

4.187
2.110
4.30

Tita

22.455
1.250
1.00

22.435
1.086
0.08

22.423
1.148
0.11

22.473
1.010
0.09

22.398
1.039
0.10

22.447
1.084
0.10

22.417
1.100
0.10

22.412
1.067
0.14

TwN

2.387
0.121
1.00

2.522
0.157
0.06

2.556
0.151
0.07

2.506
0.148
0.03

2.461
0.145
0.05

2.503
0.155
0.06

2.472
0.144
0.06

2.478
0.155
0.07

WaF

10.274
0.407
1.00

10.053
0.435
0.14

10.041
0.453
0.16

9.715
0.407
0.07

9.745
0.436
0.08

10.064
0.414
0.14

10.075
0.414
0.15

10.117
0.454
0.19

Comparing the IRLS classifier with and without bias, it

can be noted that excluding bias leads to a lower running

time and a bit worse performance of the classifier. Moreover,

for classifier with bias the ALOG approximation is the best,

whereas for classifier without bias the ALIN approximation

is the best. Taking into account the average of generalization

error the IRLS with ALIN approximation usually gives the

best performance in case of including a bias. For the IRLS

classifier without a bias the LSVM usually outperforms it. In

conclusion, for the kernel version of classifiers, the IRLS is

not so concurrent to the LSVM as in linear case. It also can be

noted that the superiority of a classification method depends

on the dataset. The above presented conclusions relate to the

’average’ behavior of the tested methods to the classifiers de-

sign. For each new database selection method of designing

a classifier should be performed experimentally. The above

is consistent with the no-free-lunch theorem, which says that

if a classifier generalizes better to certain databases, then it

is a result of a better match for a specific problem than its

superiority over other classifiers.

5.3. ℓ1-regularized nonlinear classification. The purpose of

experiments in this subsection was to compare the general-

ization ability of the kernel version LSVM to the kernel ℓ1-

regularized IRLS classifier with various approximations of

misclassification error. Comparison was performed for IRLS

classifier with bias γ0 and for bias equals zero. In all exper-

iments the parameter ν for LSVM was changed in the range

from 0.1 to 25 (step 0.1). The regularization parameter τ was

in the range from 0.1 to 2.5 (step 0.01). The Gaussian ker-

nel (34) was used. The kernel parameter χ was selected from

the set {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0}. Ta-

bles 4 and 5 show the results for IRLS classifier with bias and

without bias, respectively. As previously, for each database the

average generalization performance (top line) and standard de-

viation (middle line) are presented. In each cell the bottom

line shows computing time normalized to the computing time

of the kernel LSVM. The best results for each database are in

boldface.

Taking Table 4 into account, we see that the average of

generalization error for 6 databases (Ban, BreC, Diab, Spl,

Syn and TwN) are lower for the kernel LSVM. However, on-

ly for BreC, Spl, Syn, TwN both the average and standard

deviation of the generalization error is lower for the kernel

LSVM. For the ASQR and ASIGL approximations the IRLS

classifier leads to lower average generalization error for 5 data-

bases. Both average and standard deviation of generalization

error are better for BreC, Spl, Syn, TwN databases in case

of the LSVM, whereas in case of the ASIGL approximation

also for 4 databases (FlaSol, Hea, RingN and Thy). Running

time is lower for the kernel IRLS classifier for 11 databas-

es up to 20 times. For the rest of databases (BreC, Hea and

Thy databases) the running time is lower for the LSVM up to

15 times. However, the running time is usually lower for the

IRLS classifier for large databases.
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Table 4

Comparison between kernel version of Lagrangian Support Vector Machine

(LSVM) and ℓ1-regularized kernel IRLS classifier (with bias) on

benchmark datasets. Each cell contains: average (top), standard deviation

(middle) of generalization error and running time (bottom)

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

Ban

10.344
0.429
1.00

10.544
0.469
0.46

10.435
0.397
0.20

10.502
0.427
0.13

10.487
0.418
0.14

10.570
0.449
0.51

10.569
0.411
0.53

10.529
0.423
0.61

BreC

25.195
3.963
1.00

25.623
4.172
3.18

25.325
4.183
2.36

25.351
4.109
1.73

25.519
4.239
1.36

25.740
4.207
1.65

25.779
4.029
1.80

25.740
4.291
4.30

Diab

23.143
1.687
1.00

23.223
1.627
0.65

23.257
1.667
0.65

23.227
1.814
0.55

22.227
1.659
0.65

23.197
1.591
0.65

23.287
1.593
0.65

23.753
1.841
0.65

FlaSol

33.645
1.759
1.00

33.053
1.829
0.88

33.985
2.542
0.50

32.425
1.779
0.47

33.175
1.683
0.49

33.237
1.775
0.50

33.263
1.797
0.50

33.005
1.745
0.50

Ger

23.587
2.148
1.00

24.107
2.062
0.45

24.990
2.189
0.45

24.127
2.166
0.45

24.150
2.034
0.45

24.743
2.013
0.45

25.190
2.230
0.45

23.407
2.239
0.45

Hea

15.680
3.345
1.00

15.670
3.337
2.16

15.710
3.288
3.68

15.410
3.216
1.90

15.480
3.252
2.21

15.740
3.199
3.44

15.670
3.111
3.44

15.810
3.228
7.27

Ima

4.619
0.709
1.00

4.911
0.648
0.36

7.431
1.550
0.23

7.292
1.461
0.48

4.594
0.900
0.42

5.144
0.672
0.62

5.297
0.638
0.63

5.010
0.769
0.86

RingN

9.214
1.388
1.00

1.579
0.117
0.14

1.528
0.108
0.13

1.804
0.131
0.05

1.713
0.126
0.08

1.567
0.114
0.14

1.547
0.105
0.14

1.555
0.110
0.19

Spl

12.028
0.731
1.00

14.209
1.325
0.26

14.260
1.316
0.30

14.260
1.332
0.26

14.234
1.337
0.26

13.963
1.352
0.35

13.883
1.330
0.37

14.253
1.417
0.26

Syn

9.460
0.545
1.00

9.622
0.586
1.14

9.603
0.581
0.73

9.540
0.556
0.34

9.549
0.557
0.40

9.649
0.640
1.47

9.654
0.631
1.37

9.643
0.601
1.60

Thy

4.147
2.305
1.00

4.587
2.205
8.10

4.027
1.960
3.21

3.747
1.775
2.06

3.680
1.748
2.35

4.493
2.341
8.27

4.400
2.393
8.42

4.507
2.280
15.64

Tita

22.455
1.250
1.00

22.384
1.123
0.10

22.635
0.941
0.11

22.633
0.880
0.10

22.578
0.931
0.09

22.466
1.102
0.11

22.585
0.962
0.11

22.216
1.021
0.12

TwN

2.387
0.121
1.00

2.561
0.181
0.07

2.467
0.159
0.05

2.455
0.142
0.04

2.467
0.144
0.04

2.544
0.187
0.07

2.512
0.165
0.06

2.552
0.175
0.05

WaF

10.274
0.407
1.00

10.254
0.861
0.13

10.269
0.920
0.12

10.293
0.962
0.11

10.292
0.946
0.11

10.201
0.638
0.14

10.297
0.677
0.15

10.300
0.841
0.13

Taking Table 5 which contains comparison of the kernel

LSVM to the kernel IRLS without bias, the following ob-

servations can be made. The average of generalization error

for 4 databases (Ban, Diab, Hea and Spl) are lower for the

kernel LSVM. However, only for Diab and Spl both the av-

erage and standard deviation of the generalization error is

lower for the kernel LSVM. For the ALOGL approximation

the IRLS classifier leads to lower average generalization error

for 7 databases. Both average and standard deviation of gener-

alization error are better in case of the ASQR approximation

for 4 databases. Running time is usually lower for the kernel

IRLS classifier up to 33 times. However, for small databases

(Hea, Hea and Thy) the running time is lower for the kernel

LSVM classifier up to 12 times.

Table 5

Comparison between kernel version of Lagrangian Support Vector Machine

(LSVM) and ℓ1-regularized kernel IRLS classifier (without bias) on

benchmark datasets. Each cell contains: average (top), standard deviation

(middle) of generalization error and running time (bottom).

Name LSVM ASQR ALIN SIG ASIGL AHUB ALOG ALOGL

Ban

10.344
0.429
1.00

10.461
0.439
0.39

10.429
0.380
0.17

10.476
0.425
0.13

10.478
0.427
0.13

10.520
0.443
0.45

10.518
0.441
0.47

10.490
0.460
0.54

BreC

25.195
3.963
1.00

25.260
4.616
5.07

25.104
4.469
3.15

25.312
4.358
2.86

25.286
4.259
3.07

25.130
4.377
4.85

25.610
4.446
4.73

25.325
4.467
7.14

Diab

23.143
1.687
1.00

23.580
1.974
0.97

23.580
1.915
0.48

24.050
2.050
0.39

23.980
2.010
0.39

23.537
1.831
1.36

23.590
1.928
1.52

23.637
1.927
1.07

FlaSol

33.645
1.759
1.00

33.960
1.684
0.66

33.587
1.717
1.04

33.815
1.856
0.60

33.922
1.749
0.57

33.697
1.646
0.74

33.752
1.590
0.82

33.917
1.697
0.63

Ger

23.587
2.148
1.00

23.783
2.101
0.75

23.440
2.202
5.15

23.517
2.258
3.12

23.603
2.184
4.22

23.540
2.312
8.33

23.563
2.230
8.28

23.327
2.162
8.32

Hea

15.680
3.345
1.00

16.340
3.334
11.40

17.060
3.104
6.33

16.640
3.433
3.32

16.020
3.387
4.81

16.330
3.300
12.43

16.060
3.372
12.00

15.860
3.226
12.23

Ima

4.619
0.709
1.00

5.460
0.618
0.26

8.228
1.029
0.09

7.807
1.202
0.05

7.817
1.120
0.05

5.579
0.608
0.30

5.708
0.714
0.31

5.624
0.495
0.24

RingN

9.214
1.388
1.00

6.638
0.923
0.29

5.808
1.176
0.13

4.508
0.832
0.09

4.627
0.884
0.10

6.662
1.015
0.30

6.649
0.920
0.29

7.646
0.992
0.35

Spl

12.028
0.731
1.00

15.954
0.757
0.60

18.837
1.622
0.46

18.363
1.552
0.24

18.140
1.509
0.36

16.182
1.022
0.76

16.361
1.043
0.79

16.124
1.039
0.74

Syn

9.460
0.545
1.00

9.480
0.562
0.64

9.492
0.530
0.47

9.458
0.544
0.28

9.460
0.546
0.28

9.557
0.590
0.78

9.501
0.582
0.90

9.426
0.571
1.13

Thy

4.147
2.305
1.00

4.293
2.310
6.86

4.787
2.390
1.53

4.600
2.385
1.29

4.600
2.392
1.41

4.133
2.270
6.82

4.867
2.531
6.63

4.107
2.311
5.58

Tita

22.455
1.250
1.00

22.446
0.953
0.12

22.493
0.930
0.11

22.524
1.035
0.10

22.477
1.044
0.11

22.458
0.993
0.12

22.486
0.955
0.11

22.385
0.955
0.14

TwN

2.387
0.121
1.00

2.347
0.119
0.04

2.352
0.116
0.03

2.350
0.105
0.03

2.347
0.106
0.03

2.349
0.115
0.04

2.348
0.116
0.05

2.362
0.122
0.04

WaF

10.274
0.407
1.00

9.732
0.390
0.78

9.637
0.509
0.35

9.486
0.458
0.19

9.593
0.505
0.29

9.782
0.438
0.82

9.785
0.430
0.80

9.749
0.422
0.75

Comparing the ℓ1-regularized kernel IRLS classifier with

and without bias, it can be noted that excluding bias leads to

a lower running time and similar performance of the classifier.

For classifier with bias the ASIGL approximation is the best,

whereas for classifier without bias the ASQR approximation

is the best. Taking into account both the average and standard

deviation of the generalization error the IRLS classifier leads

to better results for 4 databases in both cases, ie. with and

without bias. However, the LSVM classifier leads to better
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results for 4 databases when bias is used in the IRLS clas-

sifier and for 2 databases when bias is not used in the IRLS

classifier. For the ℓ1-regularized kernel IRLS classifier better

results are obtained for its version without bias. Comparing

the ℓ1- and ℓ2-regularized kernel IRLS classifier, it must be

noted that ℓ2-regularization leads to better performance and

similar running time. In conclusion, the LSVM gives best per-

formance in case of the ℓ1-regularized kernel IRLS classifier.

6. Conclusions

In the paper it is shown that various approximations of mis-

classification error can be written as iteratively reweighted

least squares (IRLS) criterion function. The IRLS procedure

can be used for a better than squared approximation of mis-

classification error as well as may be used for relaxation of

a “force” to the separating hyperplane created by properly

classified data. The conjugate gradient algorithm is compu-

tationally effective method for minimization of proposed cri-

terion function. Furthermore, ℓ2- and ℓ1-regularized kernel

version of the classifier is introduced. For ℓ1-regularized cri-

terion function the gradient projection is used to optimization.

An extensive experimental analysis on 14 benchmark datasets

showing that proposed classifier design methods are a good

alternative, in terms of both generalization performance and

computational cost, to the-state-of-the-art algorithm as La-

grangian support vector machine. For the linear classification

the best performance is observed on the ALOG approxima-

tion of misclassification error. For the kernel version of clas-

sifier the best are the ALOG and ALIN approximations for

classifier with and without bias, respectively. Excluding bias

leads to a lower running time and a bit worse performance

of the classifier in case of ℓ2-regularization. In case of the

ℓ1-regularized kernel IRLS classifier better results are ob-

tained for its version without bias. Comparing the ℓ1- and

ℓ2-regularized kernel IRLS classifier, it must be noted that

ℓ2 regularization leads to a better performance and a similar

running time.
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