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Abstract. Basic features of narrow optical beam interactions with a dielectric interface are analysed. As it was recently shown, two types of

paraxial beams – elegant Hermite-Gaussians of linear polarization and elegant Laguerre-Gaussians of circular polarization – can be treated

as vector normal modes of the interface [1]. In this contribution the problem of normal modes is discussed with special attention paid

for the case of beam oblique incidence. Excitation of higher-order modes by cross-polarization coupling is described and it is shown that

this process critically depends on a propagation direction of the incident beam. Besides the expected changes of mode indices induced by

generalised transmission and reflection matrices, the new phenomenon of optical vortex spectral splitting at the interface is revealed and

off-axis spectral placements of the splitted vortices are determined. Results of numerical simulations given here for beam reflection entirely

confirm theoretical predictions even for beams beyond the range of paraxial approximation.

Key words: reflection, refraction, normal modes, elegant beams, Hermite-Gaussian beams, Laguerre-Gaussian beams, cross-polarization

coupling, vortex excitation, vortex splitting, total internal reflection.

1. Introduction

A field structure of a bounded beam of light reflected or re-

fracted at a planar interface differs from that of an incident

beam in its polarization, intensity and phase distribution. It is

known that a cross-polarization coupling (XPC) of mutually

orthogonal beam components is responsible for these differ-

ences [1], in spite of the direct beam amplitude reduction

determined by the Fresnel coefficients [2]. The field distri-

bution of the reflected or refracted beam component of one

– from the two orthogonal – polarization basically mimics

the field distribution of the incident beam. However, in the

opposite beam component, the XPC effect leads to the excita-

tion of higher-order or lower-order beam modes. This process

critically depends on polarization and a propagation direction

of the incident beam. Details of analysis of these phenom-

ena were presented in [1], where also normal modes of the

interface were defined. Although those definitions are almost

obvious for normal incidence of paraxial beams, the case of

beam oblique incidence needs more careful examination. This

paper is mainly devoted to this problem.

It is also well understood that a field structure of bounded

beams of light reflected or refracted at a planar interface dif-

fers from that prescribed by geometrical optics (g-o) not only

in its polarization, intensity and phase transverse distribution

but also by positions and directions of their beam axes [3, 4].

For sufficiently wide beams these differences can be described

approximately by the beam frame spatial displacements from

g-o predictions and by appropriate coordinate scaling (see

e.g. [4] and references therein). Within effects of this sort the

most known are the longitudinal Goos-Hänchen (G-H) [5, 6]

and transverse Imbert-Fedorov (I-F) [7, 8] shifts or displace-

ments. However, this geometrical approach works well for

three-dimensional (3D) beams of cross-section diameters not

less than around ten wavelengths. Moreover, even in this range

and in spite of the case of the fundamental Gaussian, only

higher-order non-singular beams like Hermite-Gaussian (HG)

beams, the beams the field of which can be factorised into

two two-dimensional (2D) beam fields, can be in principle

treated efficiently in this way [4]. For these reasons the ap-

proximations of this sort do not seem suitable for the general

analysis of the XPC beam-interface interactions.

Recently, beams of helical phase structure like Laguerre-

Gaussian (LG) beams have been under intense research, be-

cause of many interesting applications ranging from classical

to quantum optics, including those in nanophotonics, nanoma-

terial modelling, optical informatics as well as optical com-

munication and visualisation in biology and medicine. How-

ever, the narrow LG beams suffer from such huge distortions

during their reflection/transmission at the interface [9] that

their description only in terms of the spatial shifts may ap-

pear insufficient even approximately. In other words, the field

distribution of the LG beams in their amplitude and phase is

rather distorted than displaced at the interface, especially in

the case of critical incidence. It seems that reasons for these

distortions are inhibited, besides of beam elliptic polarization,

in the very specific interrelations between beam angular mo-

mentum, beam spectrum and placement of optical vortices

embedded in the beam field [10]. A remedy in this situation

may be to search for the information on beams directly in

their field distribution exactly evaluated in the spectral do-

main [11], instead of approximate estimation of their field

distribution by the spatial beam shifts. Within this approach

the G-H and I-F spatial shifts are replaced by their phase

counterparts in the spectral domain what makes the analysis

in principle exact and leads to a form of the field patterns suit-

able for their immediate interpretation. Therefore, the spectral,

instead of the spatial, approach removes the issue of the beam
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spatial shifts from theoretical considerations presented in this

work.

Exactly this type of spectral analysis of vector beam fields

at the dielectric interface was presented in [1]. The HG and

LG beams in their elegant version, devised some time ago by

Siegman [12, 13], served as a starting point in this analysis.

Such beams, with their definitions appropriately modified and

their possible non-paraxial extensions, appeared to be good

candidates for normal modes at any planar dielectric struc-

ture. It was shown that the XPC effect is responsible for ex-

citation of higher-order beams at such a structure. Although

the method presented in [1] is quite general, this contribution

extends further those results. The beam reflection for arbitrary

beam incidence direction will be discussed here in parallel in

the configuration and spectral domains. Similarities and dif-

ferences in behaviour of HG and LG beams at the interface

will be considered, basic mechanism of optical vortices ex-

citation and splitting will be described in detail and off-axis

placements of excited optical vortices will be determined in

the beam spectra. Numerical examples, showing reflection of

the beams with their radius of the order of one wavelength,

that is narrow enough to be below the paraxial limit, will be

presented. The interface will be considered as homogeneous,

lossless and isotropic. Only numerical results on beam inter-

nal reflection at the interface, with a dielectric contrast equal

to 2, will be given, as those on beam refraction were already

reported in [1].

In Sec. 2 basic relations pertaining elegant beams will be

shortly outlined and their modifications yielding the defini-

tions of the normal modes at the interface will be defined.

Section 3 and 4 are devoted to the HG and LG modes, re-

spectively, where theoretical predictions will be presented and

verified by numerical simulations. Only basic expressions nec-

essary to interpret the XPC phenomenon under beam trans-

mission and reflection will be given. Details of their derivation

were presented in [1], which in turn follows earlier author’s

analyses [14–16] published in the past in another context.

Note that the idea of the XPC beam-interface interactions

was first explicitly introduced in [15] and subsequently ap-

plied in evaluation of field distribution of the first-order [17]

or all higher-order [18] modes excited by the XPC effects at

the interface. Finally, main conclusions summarise the paper

in Sec. 5. In addition, definitions of generalized transmission

and reflection coefficients will be given in Appendix 1 and

the issue of the beam shifts will be briefly commented in

Appendix 2.

2. Basic definitions for elegant beams

There are two levels of spectral analysis of beam fields at the

interface. At the geometric-optical (g-o) level the standard

Snell and Fresnel laws govern a single plane wave incident

at a polar incidence angle ϑ(i). On the second level plane

waves are spectral ingredients of the 3D beams and therefore

dependent, besides ϑ(i), on an azimuthal incidence angle ϕ.

In this paper the beams are treated analytically and exactly on

the second level, where the well-known Fresnel coefficients

should be replaced in the spectral or momentum domain by

appropriately defined transmission and reflection matrices, de-

pendent on both angles ϑ(i) and ϕ. Subsequently, by the use

of the standard 2D Fourier transform, the beam fields are ob-

tained numerically in the configuration or direct domain, with

incidence angles θ(i) and ψ (see Fig. 1).

Fig. 1. Interface OXY Z and beam Oxyz reference frames viewed

in a main incidence plane X−Z; local planes of incidence are given

by rotation of the plane X −Z by an azimuthal angle ψ around the

axis Z. Beam waist centres are placed in centres of beam frames,

incidence of internal reflection is assumed.

In general, a complex electric field vector E
(b)
⊥

transverse

to the normal to the interface is obtained by the decomposi-

tion consisted of suitably defined mode solutions G
(b)
c,d to the

problem:

E
(b)
⊥

(X,Y, Z) =
∑

c,d

a
(b)
c,d e ◦ G

(b)
c,d(X,Y, Z

′), (1)

where a
(b)
c,d are expansion coefficients, c and d are expansion

indices, Z ′ = Z−Zw, as the beam waist centres are assumed

to be placed in general in planes Z = Zw parallel to the inter-

face, b = i, t, r indicate the incident, transmitted (refracted)

and reflected beam, respectively (see Fig. 1). The polarization

2D versor e is defined in the interface plane X − Y . On-

ly monochromatic fields are considered with the propagation

term exp(−iωt+ik(b)Z ′
/
/cos θ(b)) assumed and suppressed

in all field expressions, where ω is an angular frequency and

k(b) are wave numbers of the respective beam fields with their

Z components fixed by the divergence constraint. Note that

in the following the alternative notation k(i) = k(r) ≡ k also

will be used.

For uniform beam polarization a scalar wave approach

suffices to describe the beam field in its paraxial region with

polarization components of G
(b)
c,d regarded as modes of the

optical system. However, the true modes at the interface are

vectors not scalars because the interface couples the polariza-

tion and spatial characteristics of beam fields [1]. Therefore,

the scalar modes are considered in this Section, their vector

counterparts will be analysed in the next Sections. The aim of

this paper is to show and discuss examples of these suitably

defined partial solutions to the problem. If the modes consti-
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tute a complete and orthogonal or bi-orthogonal set of square

integrable functions, they can be called as normal modes of

the interface.

For any normal mode G
(b)
c,d the expansion (1) resolves into

only one term representing the field E
(b)
⊥

of all three beams

b = i, t, r, with the scalar modes attributed to each polar-

ization component of these beams. Two sets of such beams

will be considered in this Section within the paraxial approx-

imation – elegant Hermite-Gaussian (EHG) beams and ele-

gant Laguerre-Gaussian (ELG) beams [12, 13, 19, 20], as the

grounds on which the vector modes of the interface can be

build. They specify solutions to the problem in the two co-

ordinate systems: Cartesian OXY Z of rectangular symmetry

and cylindrical Or⊥ψZ of cylindrical symmetry. It appears

that the elegant beams with their possible non-paraxial exten-

sions are particularly suitable in description of beam fields at

the interface provided that they are defined at the interface

plane X − Y instead, as usual, in the beam transverse plane

x− y (see Fig. 1) [1].

Let us consider normal incidence of paraxial beams first.

In this case the two planes X − Y and x − y coincide. In

the Cartesian coordinates the Fock (paraxial) wave equation

reads{
ik(b)∂Z +

1

2
(∂2

X + ∂2
Y )

}
G(EH)

m,n (X,Y, Z ′) = 0, (2)

with the elegant solution in the form of the EHG beam mode

G
(EH)
m,n specified by the X and Y indices given by two inte-

gers m and n, respectively, their order N (EH) = m+ n and

the beam waist placement in the plane Z = Zw [1, 20]:

G(EH)
m,n (X,Y, Z ′) = (ww)m+n∂m

X∂
n
Y G

(EH)
0,0 (X,Y, Z ′). (3)

G
(EH)
0,0 (X,Y, Z ′) =

= (ww/v(Z
′))

2
exp

(
−(1/2)(X2 + Y 2)/v2(Z ′)

)
,

(4a)

where, zD = kw2
w is the diffraction length or Rayleigh range,

ww and v(Z ′) = ww(1 + iZ ′/zD)1/2 are the waist and com-

plex radii of the fundamental Gaussian mode G(EH), respec-

tively. The Gaussian mode is assumed in this work as sym-

metric with circular cross-section, i.e. with the same waist

radii wwX = wwY = ww in X and Y directions, in the plane

Z ′ = 0. For elliptic cross-section of the beam modifications

are straightforward. The EHG functions G
(EH)
m,n are expressed

by the Hermite polynomials Hm(x) of order m:

G(EH)
m,n (X,Y, Z ′) = (−ww)m+n

Hm(2−1/2X/v(Z ′))Hn(2−1/2Y/v(Z ′))G
(EH)
0,0 (X,Y, Z ′).

(5)

The amplitude of the EHG beam is determined here by

the condition G(EH)(0, 0, 0) = 1.

Similar definitions can be applied in the complex co-

ordinates specific to systems of cylindrical symmetry: ς =
2−1/2(X+ iY ) and its complex conjugate ς . Then the parax-

ial wave equation reads [1, 20]:
{
ik(b)∂Z + ∂ς∂ς

}
G

(EL)
p,l (ς, ς, Z ′) = 0, (6)

with the elegant solution given in a form of ELG modes:

G
(EL)
p,l (ς, ς, Z ′) = (ww)2p+l∂p

ς ∂
p+l
ς G

(EL)
0,0 (ς, ς, Z ′), (7)

G
(E,L)
0,0 (ς, ς, Z ′) = (ww/v(Z

′))
2
exp

(
−ςςv−2(Z ′)

)
, (8a)

of the radial p and azimuthal l indices contributing to the

beam order N (EL) = 2p + l. Note that the fundamental

Gaussian G
(EH)
0,0 (X,Y, Z ′) is equal to G

(EL)
0,0 (ς, ς, Z ′) for

X = 2−1/2(ς + ς) and Y = −i2−1/2(ς − ς). The ELG

modes are expressed by the associated Laguerre polynomi-

als Ll
p(x):

G
(EL)
p,l (ς, ς, Z ′) = (−1)p+l(ς⊥/v)

l(v/ww)−(2p+l)

×p!Ll
p(ς

2
⊥
/v2)G

(EL)
0,0 (ς, ς, Z ′) exp(ilψ),

(9)

where ς = ς⊥ exp(iψ). The azimuthal index or winding num-

ber l is any integer number associated with the Z compo-

nent of the orbital angular momentum carried by the ELG

beam. When l 6= 0 it is equal to a topological charge of

an optical vortex of the LG beam. The radial index or node

number p is a nonnegative integer, which determines a ra-

dially symmetric beam structure with, besides the funda-

mental Gaussian case, zero on-axis intensity. Note that al-

so the closed form non-paraxial extension of the paraxial

formalism for the elegant beams was published very recent-

ly [21].

For oblique incidence the above definitions of the paraxial

elegant beams are exactly valid after the replacement of the

“interface” coordinates X , Y and Z by the coordinates x, y
and z belonging to the beam frame (cf. Fig. 1). However, such

the replacement does not lead to the definition of the beam

modes at the interface, for which the condition – for one inci-

dent mode only one reflected mode and one transmitted mode

of the same type are excited in each field component – should

be exactly fulfilled. In other words, the common definitions

(given in the beam frame Oxyz) of the elegant beams do

not fit, in the case of oblique incidence, to the action of the

interface on these beams (as described later in the X and Y
coordinates).

The functional form of the beam modes for oblique inci-

dence is determined here by the form of the transmission and

reflection matrices given in the next two Sections. The funda-

mental Gaussian beam fields are defined, as usual, in the beam

coordinate frames Oxyz′ and Oξξz′, where z′ = Z ′/cos θ(i)

and ξ = 2−1/2(x+ iy):

G
(EH)
0,0 (X,Y, Z ′) =

= (ww/v(z
′))

2
exp

(
−(1/2)(x2 + y2)/v2(z′)

)
,

(4b)

G
(EL)
0,0 (ς, ς, Z ′) =

= (ww/v(z
′)/v(z′))

2
exp

(
−ξξv−2(z′)

)
.

(8b)

In these equations the interface coordinates X and Z ′, and

consequently also ς and ς , are obtained from the beam coor-

dinates x and z′, by their rotation about Y axis through the

incident angle θ(i) 6= 0, which also affects ξ and ξ. In ef-

fect, for example, the beam circular cross-section commonly

defined in the beam transverse plane z′ = const. resolves in
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Eqs. (4b) and (8b) into the beam elliptic cross-section in the

interface plane Z ′ = const. and vice versa. The fundamental

Gaussians (4b) and (8b) serve now for the determination of

the higher-order mode fields G
(EH)
m,n and G

(EL)
p,l at the inter-

face by using Eqs. (3) and (7) of the same form as for the

normal incidence.

Moreover, all these beam fields acquire at the plane

Z ′ = const. the additional phase shift Φ(X) = k(i)X sin θ(i)

as the result of the tilted beam phase fronts with respect to

the interface plane:

G(EH)
m,n (X,Y, Z ′) → G(EH)

m,n (X,Y, Z ′) exp(ik(i)X sin θ(i)),
(10)

G
(EL)
p,l (ς, ς, Z ′) →

→ G
(EL)
p,l (ς, ς, Z ′) exp(ik(i)2−1/2(ς + ς) sin θ(i)).

(11)

Therefore, in the paraxial range and for m = 0 = n or

p = 0 = l (no differentiation), the normal modes such de-

fined are just the common fundamental Gaussians. The higher-

order normal modes defined here by Eqs. (3) and (7) differ for

oblique incidence, however, from the common elegant modes,

as defined e.g. in [13, 20]. The difference consists of the re-

placement in those definitions of the beam frame derivatives

∂x and ∂y or ∂ξ and ∂ξ in the plane z′ = const. by the inter-

face frame derivatives ∂X and ∂Y or ∂ς and ∂ς in the plane

Z ′ = const.
The beam fields such defined obey the Helmholtz (re-

duced wave) equation in the coordinates X , Y and Z , instead

of the paraxial one in the coordinates x, y and z, and they

should be in general understood as the non-paraxial beam

fields. They will be called here as the projected elegant –

PEHG and PELG – beams consistently with their definitions

given above for oblique incidence. More specifically, all the

beams considered in this analysis, normal or oblique to the

interface, are treated as non-paraxial – note that in all nu-

merical simulations a cross-sectional radius of the beams will

be taken as corresponding to kww = 2π, that is below the

paraxial limit.

Therefore, the beam fields considered here satisfy in gen-

eral the full set of Maxwell equations for an arbitrary value of

Z , together with the field continuity relations at the interface

plane Z = 0. However, all analytical field expressions defined

by the definitions (3), (7), (10) and (1) are necessary and are

given here only in a single plane – the interface plane. Next,

starting from the field distribution obtained by the use of these

equations in the interface plane, one can rebuild the normal

mode field distribution in the vicinity of the interface plane

for Z 6= 0, on the grounds of a full set of Maxwell equations.

But evaluation of the beam field outside the interface plane

is not necessary in this analysis and remains out of the scope

of this paper.

3. Beam-interface relations

in rectangular coordinates

Let us start from the Fresnel transmission and reflection co-

efficients tp, rp and ts, rs for a single plane wave of an ar-

bitrary polarization parameter χ̃
(i)
(p,s) = Ẽ

(i)
p /Ẽ

(i)
s specified

by its p and s polarization components Ẽ
(i)
p and Ẽ

(i)
s , re-

spectively. The plane wave is incident on the interface under

the incidence angle ϑ(i). In the linear TM/TE polarization

basis e(X,Y ) = [eX , eY ] these coefficients defined in the in-

terface plane X − Y yield diagonal elements of the Fresnel

transmission and reflection matrices t
(p,s)

and r
(p,s)

: ηtp, rp

for TM beam component and ts, rs for TE beam compo-

nent, respectively, where η = cosϑ(t)
/
/cosϑ(i). Further it

is stipulated that rp = rs = 1 for critical incidence of to-

tal internal reflection (TIR). Then, the continuity relations of

tangent field components in the interface plane are given by

t
(p,s)

= 1 + σ r
(p,s)

, where 1 is a unit matrix and σ stand

for diagonal Pauli matrix of σXX = −1 = −σY Y . Note that

the Fresnel matrices do not depend of the azimuthal angle

ϕ and are defined in one, usually taken as a main, incidence

plane [14].

However, 3D beams are composed of infinite number of

plane waves and each plane wave is distinguished by two an-

gles of incidence – a polar angle ϑ and an azimuthal angle

ϕ, where the latter defines a local incidence plane attribut-

ed to this plane wave [14]. The matrices t
(p,s)

and r
(p,s)

are

then should be replaced by the matrices t
(X,Y )

and r
(−X,Y )

,

which relate spectral components Ẽ
(b)

(X,Y ) = [Ẽ
(b)
X , Ẽ

(b)
Y ]T ,

b = i, t and Ẽ
(r)

(−X,Y ) = [−Ẽ
(r)
X , Ẽ

(r)
Y ]T of the beam fields

at the interface [16]:

Ẽ
(t)

(X,Y ) = t
(X,Y )

Ẽ
(i)

(X,Y ),

Ẽ
(r)

(−X,Y ) = r
(−X,Y )

Ẽ
(i)

(X,Y ),

(12)

t
(X,Y )

= t
(p,s)

+ tCX

[
0 1

1 0

]
sin 2ϕ+

+ 2tCX

[
−1 0

0 1

]
sin2 ϕ,

(13)

r
(−X,Y )

= r
(p,s)

+ rCX

[
0 1

−1 0

]
sin 2ϕ−

− 2rCX

[
1 0

0 1

]
sin2 ϕ,

(14)

tCX =
1

2
(ηtp − ts) = −

1

2
(rp + rs) = −rCX , (15)

where tCX and rCX are the XPC coefficients. Their role in

the XPC interactions will appear evident further. The matrices

t
(X,Y )

and r
(−X,Y )

fulfil there the field continuity relation

t
(X,Y )

= 1 + σ r
(−X,Y )

at the interface and are dependent

this time not only on the incidence angle ϑ(i) but also on

the azimuthal angle ϕ = arctan(kY /kX). Note that because

cos 2ϕ = (k2
X − k2

Y )k−2
⊥

and sin 2ϕ = 2kXkY k
−2
⊥

, where

k = [k
⊥
, k

(b)
Z ]T , k

⊥
= [kX , kY ]T and k

(t)
Z = ηk

(i)
Z = ηk

(r)
Z ,
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the matrices (13)–(14) are equivalent to those given in a dif-

ferent form by in [1], where it was also shown that the ma-

trices (13)–(14) become diagonal by introduction the “linear”

polarization parameter χ̃
(i)
(X,Y ) = Ẽ

(i)
X /Ẽ

(i)
Y of the incident

beam [1]. Then the TM and TE generalized 3D-counterparts

tTM , rTM , tTE and rTE of the Fresnel coefficients [15] can

be extracted form these matrices (see Appendix I).

Although these matrices are exact, the subsequent terms

in their decomposition can be interpreted as the zero-order

(Fresnel), first-order and second-order (with respect to kY

or ϕ) contributions to beam transmission and reflection. On-

ly the first-order terms are created by the XPC effect at the

interface and only these terms are dependent – through the

polarization parameter χ̃
(i)
(X,Y ) – on a polarization state of the

incident beam field. Certainly, besides the azimuthal angle ϕ
the matrices (13)–(14) depend also, through the Fresnel coef-

ficients, on the polar angle ϑ(i). Exactly in the incidence plane

(ϕ = 0) the first-order and second-order terms in Eqs. (13)–

(14) disappear and only the zero-order term, determined by

rules of geometrical optics, remains. In this plane the gen-

eralised matrices (13)–(14) resolve plainly into the Fresnel

or g-o matrices. As the Fresnel matrices are diagonal in the

Cartesian coordinates the g-o approach to the problem disre-

gards the XPC effects in the beam-interface interactions.

The transmission and reflection matrices (13)–(14) show

distinct symmetry with respect to the incidence (Y = 0) and

transverse (X = 0) planes and their action is particularly spe-

cific in the case of incident beams possessing the same type of

symmetry. Within this class of beams the EHG/PEHG beams

of TM or TE linear polarization are of particular importance.

In the spectral domain their definition (3)–(4) yields for nor-

mal incidence:

G̃(EH)
m,n (kX , kY , Z

′) =

= (iww)m+nkm
Xk

n
Y G̃

(EH)
0,0 (kX , kY , Z

′),
(16)

where G̃
(EH)
0,0 = 2π exp

[
−(1/2)k2

⊥
v2

]
and G̃

(EH)
m,n mean

a 2D Fourier transform of G
(EH)
m,n . Let us first consider normal

incidence of the beam Ẽ
(i)

= [ãX , ãY ]
T
G̃

(EH)
m,n of the EHG

mode shape and of arbitrary polarization χ̃
(i)
(X,Y ) = ãX/ãY

specified by the beam components ãX and ãY , in gener-

al complex and dependent on kX and kY in the case of

non-uniform polarization. We assume that the impact of the

second-order term in the decomposition (13)–(14) is negli-

gibly small, as previous numerical simulations confirm this

assumption [1]. Then, within this first-order approximation

and using the substitution sin 2ϕ = 2kXkY k
−2
⊥

, Eqs. (12)–

(16) yield the transmitted and reflected beam fields of the

form [1]:


Ẽ

(t)
X

Ẽ
(t)
Y


 ∼=



ηtpãX

tsãY


 G̃(EH)

m,n −

− 2tCX(k⊥ww)−2

[
ãY

ãX

]
G̃

(EH)
m′,n+1,

(17)




−Ẽ

(r)
X

Ẽ
(r)
Y



 ∼=




rpãX

rsãY



 G̃(EH)
m,n −

− 2rCX(k⊥ww)−2

[
ãY

−ãX

]
G̃

(EH)
m′,n+1.

(18)

It appears that the beams behave differently depending on

their incidence angle [22].

For normal incidence m′ = m + 1. Both indices in the

beam component of the same polarization as that of the inci-

dent beam remain unchanged (m→ m and n→ n). However,

the beam component of the opposite (orthogonal) polarization

shows clearly the action of the XPC effect [1, 15]. Both in-

dices in this component are increased by one (m→ m+1 and

n→ n+1) and thus the incident beam order N (HG) = m+n
is increased there by 2 (N (HG) → N (HG) + 2). Therefore,

for incidence of EHG beams of a single TM or TE polariza-

tion component, the reflected beams are composed also of the

EHG beams in the two TM and TE polarization components,

with their indices exactly specified. The relations (17)–(18)

are given in the spectral domain. The beam field distribution

in the direct domain is obtained by the standard 2D Fourier

transform of these relations.

For oblique incidence m′ = m. The beam field defini-

tion (3) for EHG beam acquires the additional phase shift (10)

what implies the spectral shift in the definition (16):

G̃(EH)
m,n (kX , kY , Z

′) →

→ G̃(EH)
m,n (kX − k sin θ(i)), kY , Z

′).
(19)

Moreover, the range of the azimuthal angle ϕ for sig-

nificant spectrum amplitude contribution becomes so nar-

row [22] that this case is more appropriately described by

applying the next step: sin 2ϕ ∼= 2 sinϕ = 2kY /k⊥ in the

first-order approximation sin2 ϕ ∼= 0 to the exact expres-

sions (13)–(14) of the transmission and reflection matrices

(cf. Eq. (16) in [18]). By this additional approximation and

with the replacement (19) the decomposition (17)–(18) still

remains valid provided that now m′ = m. Therefore, the PE-

HG beams under oblique incidence behave differently than

the EHG beams under normal incidence. The beam modes

are still of the incident beam shape for the same polariza-

tion component of the reflected beam. However, for the op-

posite field component only Y index is increased by one. In

this beam component the mode indices (m,n) show trans-

formation (m → m and n → n + 1) and the incident

beam order N (HG) = m + n is increased only by one

(N (HG) → N (HG) + 1).

The EHG/PEHG beam field intensity spatial distribution

at the interface is precisely confirmed in Figs. 2 and 3, where

the first and the second rows pertain the beam field distrib-

ution in the configuration and spectral domains, respectively.

Although the field decomposition (17)–(18) is only of the first-

order, Figs. 2 and 3 indicate that this decomposition is still

very accurate even for the beam waist radius of the order of

one wavelength. For normal incidence of the EHG beam (cf.

Fig. 2) the opposite polarization component of the reflected
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beam acquires the new X and Y mode indices increased by 1

with respect to the incident beam mode. For oblique incidence

of the PEHG beam (cf. Fig. 3), the X index change gradually

diminishes with increasing incidence angle and a longitudinal

spatial displacement of the whole field structure appears in-

stead [18]. However, the issue of beam displacements is not

discussed in this paper, although it may be essential in other

applications of near field optics [23]. Note that due to the mir-

ror symmetry in X and Y coordinates the deformations of the

PEHG beams are not large and it is possible to describe them

quantitatively also in the configuration domain, as outlined

in Appendix 1. Note also that the (constant) spectral shift in

Eq. (19) are removed from Figs. 2 and 3.

Fig. 2. Intensity transverse distribution of the EHG beam components evaluated in the interface plane; counterparts of the Figs. (a)–(c) in

the configuration domain are depicted in the Figs. (d)–(f) in the spectral domain, respectively. The case of normal incidence (θ(i) = 0◦) of

the collimated (Zw = 0) beam is displayed at the interface for: (a) the incident beam of the EHG3,3 pattern and of TE polarization, (b) the

reflected beam TE component of the EHG3,3 pattern, (c) the reflected beam TM component of the EHG4,4 pattern (colour online)

Fig. 3. Intensity transverse distribution of the EHG beam components evaluated in the interface plane; counterparts of the figures (a)–(c)

in the spectral domain are depicted in the Figs. (d)–(f) in the spectral domain, respectively. The case of critical incidence (θ(i) = 45◦) of

the beam collimated (Zw = 0) is displayed at the interface for: (a) the incident beam of the EHG3,3 pattern and of TE polarization, (b) the

reflected beam TE component of the EHG3,3 pattern, (c) the reflected beam TM component of the EHG3,4 pattern (colour online)
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4. Beam-interface relations

in cylindrical coordinates

The EHG/PEHG beams are normal modes only within the

first-order field approximation with respect to the azimuthal

angle ϕ. The question therefore arises whether there are oth-

er beams with different shape and polarization, which can

be considered as normal modes with their fields determined

exactly. The answer is positive - the beams symmetric with

respect to cylindrical coordinates of circular polarization are

such good candidates in this case [1].

Therefore, let us now rewrite the expressions given previ-

ously for the EHG/PEHG beams through the straightforward

unitary transformation in the circular CR/CL polarization ba-

sis e(R,L), where the circular polarization means here the “in-

terface” circular polarization defined in this plane. Thus, for

oblique incidence, circular polarization commonly defined in

the beam cross-section resolves into elliptic polarization in the

interface plane and vice versa. Then the beam field vectors:

Ẽ
(b)

(R,L) = [Ẽ
(b)
R , Ẽ

(b)
L ]T =

= 2−1/2
[
Ẽ

(b)
X − iẼ

(b)
Y , Ẽ

(b)
X + iẼ

(b)
Y

]T

,

(20)

Ẽ
(r)

(L,R) = [Ẽ
(r)
L , Ẽ

(r)
R ]T =

= −2−1/2
[
Ẽ

(r)
X − iẼ

(r)
Y , Ẽ

(r)
X + iẼ

(r)
Y

]T

,

(21)

b = i, t are interrelated at the interface by new transmission

t
(R,L)

and reflection r
(L,R)

matrices [1, 18]:

Ẽ
(t)

(R,L) = t
(R,L)

Ẽ
(i)

(R,L),

Ẽ
(r)

(L,R) = r
(L,R)

Ẽ
(i)

(R,L),

(22)

t
(R,L)

= t
C

+ t
CX

= tC

[
1 0

0 1

]
+

+ tCX

[
0 exp(−2iϕ)

exp(+2iϕ) 0

]
,

(23)

r
(L,R)

= r
C

+ r
CX

= rC

[
1 0

0 1

]
+

+ rCX

[
0 exp(−2iϕ)

exp(+2iϕ) 0

]
,

(24)

tC =
1

2
(ηtp + ts), rC =

1

2
(rp − rs) = 1 − tC , (25)

with the “circular” g-o coefficients tC and rC . The XPC coef-

ficients tCX and rCX are defined earlier by Eq. (15). The field

continuity relations at the interface now read t
C

= 1−r
C

and

t
(R,L)

= 1−r
(L,R)

in the incidence plane (ϕ = 0) and in arbi-

trary (ϕ = const.) local plane, respectively. By introduction

the “circular” polarization parameter χ̃
(i)
(R,L) = Ẽ

(i)
R /Ẽ

(i)
L of

the incident beam, the matrices (23)–(24) become diagonal.

Then the CR and CL generalized 3D-counterparts tCR, rCR,

tCL and rCL of the Fresnel coefficients can be extracted form

these matrices (see Appendix 1).

For any polar angle ϑ(i) and azimuthal angle ϕ the ma-

trices t
(R,L)

and r
(L,R)

resolve into the diagonal matrices

t
C

and r
C

determining the “direct” beam component of the

same polarization as that of the incident beam and into the

XPC antidiagonal matrices t
CX

and r
CX

determining the

opposite beam component. Under beam transmission and re-

flection the related to them matrix elements tCX exp(±2iϕ)
and rCX exp(±2iϕ) create, in the opposite beam components,

additional vortices of the topological charge equal to ±2. Po-

sitions of the excited vortices are determined by zeroes of the

beam field and thus on zeroes of tCX and rCX . For normal

incidence both types of vortices, these nested in the incident

beam and these excited at the interface are placed in the centre

of the coordinate system kXww = 0 = kY ww, that is exactly

in the point where the spectrum of the incident higher-order

(|l| ≥ 1) is zero (see Eq. (28). Note that tCX = −rCX = 0
at this point. For oblique incidence, however, the spectrum

centre acquires additional phase shift 2−1/2k(i) sin θ(i) and

the exited vortex is displaced additionally by the opposite

spectral shift −2−1//2k(i) sin θ(i) to the position where again

tCX = −rCX = 0. For critical incidence, for example, the

displacement of the excited vortex induces the change from

the point where tCX = −rCX = −1 to the point where

tCX = −rCX = 0.

In the problem discussed here in the plane kX − kY no

plane in general exists where the problem resolves into the

standard Fresnel transmission or reflection and where the XPC

effects disappears. In spite of this the matrices (23)–(24) can

be also rewritten, similarly to the decomposition (13)–(14),

into the zero-, first- and second- order terms with respect

to ϕ:

t
(R,L)

=

[
tC tCX

tCX tC

]
+ itCX

[
0 −1

1 0

]
sin 2ϕ−

− 2tCX

[
0 1

1 0

]
sin2 ϕ,

(26)

r
(L,R)

=

[
rC rCX

rCX rC

]
+ irCX

[
0 −1

1 0

]
sin 2ϕ−

− 2rCX

[
0 1

1 0

]
sin2 ϕ.

(27)

It is evident that the first g-o term in the CR/CL decomposi-

tion (26)–(27) takes over the role of the Fresnel matrices t
(p,s)

and r
(p,s)

in the TM/TE decomposition (13)–(14). The two

next terms in Eqs. (26)–(27) are just the XPC modifications

to this g-o contribution. There are significant differences be-

tween the decomposition (13)–(14) in the TM/TE basis and

the decomposition (26)–(27) in the CR/CL basis. Here the

first-order terms show the additional phase shift by π/2 and

the second-order (antidiagonal) term is caused by the XPC

effect, contrary to the case of the TM/TE case. Moreover, the
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zero-order (g-o) matrices in the decomposition (26)–(27) are

not diagonal. The XPC effects directly enter into the g-o beam

field specification and excite the nonzero field distribution in

the opposite beam component. However, this XPC contribu-

tion still does not change the beam winding number and thus

does not excite new vortex.

As the g-o terms do not depend on ϕ, the g-o term usu-

ally dominates over the weaker higher-order terms for small

values of ϕ. It is only one exception – normal incidence of

the beams, where tCX = 0 = rCX and the g-o matrices in

Eqs. (26)–(27) become diagonal and independent of the XPC

effect. That implies that, for normal incidence, optical vor-

tices are undistorted and clearly visible in both, spectral and

configuration, domains. Still it is evident that, for any beam

incidence, only the first-order and second-order XPC terms in

the decomposition (26)–(27) describe the vortex creation at

the interface.

Potential of the relations (23)–(27) can be tested by the

analysis of the ELG/PELG beams at the interface. The de-

finition (7) is equivalent to the algebraic expression in the

spectral domain:

G̃
(EL)
p,l (κ, κ, Z ′) = (iww)2p+lκp+lκp G̃

(EL)
0,0 (κ, κ, Z ′), (28)

where κ = 21/2(kX + ikY ) = κ⊥ exp(iϕ), κ means com-

plex conjugate of κ, κ2
⊥

= κκ, G̃
(EL)
p,l and G̃

(EL)
0,0 =

2π exp(−κ2
⊥
v2) are the Fourier transformed ELG/PELG and

Gaussian beams, respectively. For incidence of the beam field

Ẽ
(i)

= [aR, aL]T G̃
(EL)
p.l of the mode G̃

(EL)
p,l and of arbitrary

polarization χ̃
(i)
(R,L) = ãR/ãL, specified by the in general non-

uniform and complex beam components ãR and ãR, the rela-

tions (23)–(24) yield:



Ẽ

(t)
R

Ẽ
(t)
L


= tC



ãR

ãL


 G̃(EL)

p,l + tCX



ãLG̃

(EL)
p+1,l−2

ãRG̃
(EL)
p−1,l+2


, (29)




Ẽ

(r)
L

Ẽ
(r)
R



=rC




ãR

ãL



 G̃(EL)
p,l + rCX




ãL G̃

(EL)
p+1,l−2

ãR G̃
(EL)
p−1,l+2



, (30)

where Eq. (28) and the identity κp+lκp = κ2p+l
⊥

exp(ilϕ)
were applied [1].

If the incident ELG beam has only one component of, say,

CR (CL) circular polarization, the interface action yields also

the ELG beam but with two orthogonal components. The first

component has the same CR (CL) polarization as the incident

beam is excited by the g-o terms in Eqs. (23)–(24) and the

second component, with the opposite CL (CR) polarization,

is excited by the XPC terms in these equations. Contrary to

the first component, which preserves indexes of the incident

beam (p → p and l → l), in the second, opposite compo-

nent the radial index is changed by one (p → p ∓ 1) and

the azimuthal index is changed by 2 (l → l ± 2). So the or-

der N (EL) = 2p + l of all ELG beam components remains

unchanged (N (EL) → N (EL)).

For oblique incidence the beam field definition (7) ac-

quires the additional phase shift (1) what implies the sym-

metric in the ς − ς plane spectral shift in the definition (28):

G̃
(EL)
p,l (κ, κ, Z ′) →

→ G̃
(EL)
p,l (κ− 2−1/2k sin θ(i), κ− 2−1/2k sin θ(i), Z ′).

(31)

The excitation problem appears now different and is affected

by the narrow azimuthal range of the beam spectrum where

the relations (26)–(27) are more appropriate. A position of

the vortex excited by the XPC effect is shifted in this case by

−2−1/2k(i) sin θ(i) and could be visible only when the beam

spectrum range is sufficiently wide to be larger that this spec-

tral shift. Still the relations of the global topological charge of

the beams remain the same as for normal incidence. In con-

trast to the EHG/PEHG beam decomposition (26)–(27), the

ELG/PELG decompositions (29)–(30) are exact. All terms,

including the first-order and second-order terms, are account-

ed for in this decomposition. It is also highly symmetric. In

spite of the obvious difference between C and CX coefficients

the relations (29)–(30) differentiate between CR and CL po-

larization of the incident beam only by the changes of the

indices p and l in the XPC term. Note the (constant) spectral

shift (31) removed and the replacement CR ⇋ CL set above

the Brewster angle in Figs. 4–7.

The case of the normally incident CL polarized ELG2,4

beam collimated at the interface (z = 0 = Zw) is shown in

Fig. 4. The field phase distributions in the configuration and

spectral domains are shown for the incident beam and for two

orthogonal components of the reflected beam. All the phase

distributions are circularly symmetric in the interface plane

with the vortex singularity placed exactly in the centre of the

figure. The beam phase change along a closed loop about

this point equal to 4 × 2π for the incident beam and for the

CR component of the reflected beam. However, it equals to

2×2π for the CL component of the reflected beam, as exactly

predicted by Eq. (30). Excitation efficiency of this opposite

beam component amounts about one order in beam intensity

less than that for the direct component of the (CR) polariza-

tion. Results of numerical simulations shown in Fig. 4 for

beam reflection are entirely consistent with those for beam

transmission given in [1].

The case of critical incidence of the CL polarized ELG2,4

beam collimated at the interface is shown in Fig. 5 through the

beam field intensity and phase distribution only in the spec-

tral domain this time. As for the PEHG beams the symmetry

specific to normal incidence is broken by (i) narrow, with re-

spect to the paraxial limit, beam radii (ii) the oblique phase

fronts of the beams in the interface plane, (iii) asymmetry of

the Fresnel coefficients with respect to ϑ(i) and by (iv) nar-

row, with respect to the beam phase shift, azimuthal range of

the incident beam spectrum. For the reasons (i) and (ii) even

the incident beam intensity shows deviations from the ellip-

tic symmetry (cf. Fig. 5a) in the spectral domain. For (iii)

the reflected beam spectra in both polarization components

are almost annihilated for rays of ϑ(i) less that the critical
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angle θ
(i)
c (cf. Fig. 5b and Fig. 5c). Moreover, for (iv) the

first-order and the second-order contributions to the reflected

field are still dominated by the zero-order, g-o terms in the

field decomposition (29)–(30), in spite of the fact that rC = 0

exactly at ϑ(i) = θ
(i)
c . These effects lead to severe deforma-

tions in beam amplitude and phase vivid in the configuration

domain. The beam field is so badly deformed that any concise

geometrical interpretation of what it really shows would be

rather difficult.

Fig. 4. Phase transverse distribution of the ELG beam components evaluated in the interface plane; counterparts of the Figs. (a)-(c) in the

configuration domain are depicted in the Figs. (d)-(f) in the spectral domain, respectively. The case of normal incidence of the collimated

beam is displayed for: (a) the incident beam of the ELG2,4 pattern and of CL polarization, (b) the reflected beam CR component of the

ELG2,4 pattern, (c) the reflected beam CL component of the ELG3,2 pattern (colour online)

Fig. 5. Transverse field distribution of the PELG beam spectral components evaluated in the interface plane. The case of critical incidence

of the collimated beam is displayed for: intensity (a) and phase (d) of the incident beam of the PELG2,4 pattern and of CL polarization,

intensity (b) and phase (e) of the reflected beam CL component of the PELG2,4 pattern, intensity (c) and phase (f) of the reflected beam

CR component of the PELG3,2 pattern (colour online)
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However, even in this case, the field distribution is still

quite clear in the spectral domain because the symmetry of

the beam phase structure, known from the case of normal

incidence, survives here to a large extent. The on-axis vor-

tex of the topological charge equal to 4 is placed exactly

in the central ray position of the beam (for ϑ = θ
(i)
c or

kXww = k(i)ww sin θ(i)) for the incident beam (cf. Fig. 5d),

as well as for the reflected beam components of the direct CL

polarization (cf. Fig. 5e). Moreover, the vortex of same type

can be spotted in the spectrum of the opposite (CR) compo-

nent (cf. Fig. 5f). Still the global topological charge of the

excited vortices equals to 2 as expected, because the second,

off-axis vortex of the opposite charge equal to −2 is also ex-

cited at kXww = 0 (cf. Fig. 5f). The spectral position of this

additional vortex is displaced by −k(i)ww sin θ(i) to the point

kXww = 0, that is where rCX = 0. A trace of this vortex

is weak and difficult to observe in points where the spectral

intensity is low for not sufficiently narrow beams. Note that

in all figures the beam spectrum is shown as displaced by

−k(i)ww sin θ(i) to have kXww = 0 at the beam spectrum

centre.

Numerical results presented in Fig. 5 not only confirm

predictions of Eqs. (19)–(30) but also directly explain the

mechanism of vortex creation or annihilation caused by the

XPC effect at the interface. The change by 2 of the topo-

logical charge in the opposite beam component, as predicted

by Eqs (19)–(30), results from creation of the additional, off-

axis in general, vortex of the topological charge equal to plus

or minus 2. The topological charge of this additional vortex

adds to or subtracts from the topological charge of the vortex

which mimics that of the incident beam. That suggests that

the angular momentum conservation principle [24–26], valid

for normal incidence of the ELG beams [1], may also remain

valid for PELG beams under oblique incidence.

The process depends directly on the relative sign of the

phase rotation, indicated by the signs of the azimuthal index

l, with respect to the sign of rotation of the field vector, dis-

tinguished by the beam CR or CL polarization (cf. Fig. 6).

The process depends also on the beam waist position or, al-

ternatively, on the beam propagation. Figure 7 displays, for

different positions of the beam waist centre above the inter-

face, helical rotations of the reflected beam phase structure

about its vortex singularities. The beam phase structure ro-

tates about the field phase singularities with the vortex cen-

tres remained robust with no displacements of their spectral

positions.

Fig. 6. Optical vortex excitation and splitting induced by the XPC effect for the incident beam of the ELG2,4 shape. Phase distribution of the

reflected beam at the interface (a) for CL polarization of the incident beam and CR polarization of the reflected beam component with the

total topological charge equal to 4 − 2, (b) for CR polarization of the incident beam and CL polarization of the reflected beam component

with the total topological charge equal to 4+2. Dependence of the vortex excitation and splitting phenomena on incident beam polarization

is shown by differences between Figs. (a) and (b). All other data are the same as for Fig. 5 (colour online)

Fig. 7. Vortex phase evolution of the reflected CR polarized beam of the ELG3,2 shape shown in the spectral domain in the interface plane

for different incident beam waist positions placed at: z/zD =: (a) −1.0, (b) −0.5, (c) −0.125. The case of z/zD = 0.0 is shown in Fig. 5f

and 6a. All other data are the same as for Fig. 5 (colour online)
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Fig. 8. Transverse distribution of the common elegant LG beam spectral components evaluated in the interface plane. The case of critical

incidence of the elliptic beam is displayed for: intensity (a) and phase (d) of the incident beam of the common ELG2,4 pattern and of CL

polarization, intensity (b) and phase (e) of the reflected beam CL component pattern, intensity (c) and phase (f) of the reflected beam CR

component pattern. All other data are the same as for Fig. 5, where the reflection was presented for the projected elegant beam PELG2,4

(colour online)

Still, the issue to what extend the patterns of the commonly

defined elegant beams, i.e. those of the elegant beams defined

in their transverse x − y (waist) planes, follow the projected

elegant beam patterns, i.e. those of the elegant beams defined

in the interface X −Y plane, remains open. In principle, this

issue can be elucidated by determination of the expansion co-

efficients of the beam field representation (1). However, some

view of the problem can be also directly obtained by compar-

ison of the common and projected beam patterns simulated

numerically. For EHG and PEHG beams the differences do

not seem to be qualitative (cf. Fig. 2 in [18]), contrary to the

case of the elliptic ELG and PELG beam reflection, as it is

evident from their critical incidence presented in Fig. 8.

For oblique incidence of the common ELG beam an av-

erage spectral intensity of the reflected beam is displaced

transversally from the beam centre position in the ±Y di-

rection depending on the sense (CR or CL) of beam polariza-

tion. At the same time the displacement of the excited by the

XPC effect vortex position is degenerated much with respect

to the case of the pure PELG beam incidence presented in

Fig. 5. Moreover, some trace of the vortex splitting can also

be found in the second reflected beam component. Therefore,

in the case of the standard ELG beam incidence, the spectral

vortex splitting is attributed to both orthogonal beam compo-

nents of CR and CL polarization. All of that indicates that

the standard ELG beam should be represented by more than

one element of the expansion (1) and that, contrary to the

projected elegant beams, the common elegant beams cannot

be considered as normal modes of the interface in the case of

beam oblique incidence.

Figures 4–8 visualise the main result of the paper – the de-

scription of the vortex excitation phenomenon at the interface

in its spectral aspects. The figures show explicitly its depen-

dence on beam incidence and indicate positions of the excited

vortices precisely at points obtained entirely by the theoretical

analysis presented. The process depends on the range of beam

spectrum and become efficient when this range covers points

of vortex centre positions, that is in cases of narrow non-

paraxial beams. It always happens for normal incidence. For

oblique incidence it depends on the balance between beam in-

cidence and beam width – when the incidence angle becomes

larger, the beam width should become smaller. Characteristic

features of the beam transmission, especially those depen-

dent on beam incidence angle and spectrum range, have been

also examined in [22] for arbitrary values of the polar inci-

dence angle. It seems that the phenomena of vortex excitation

and splitting are characteristic for interactions of non-paraxial

beams with the interface. Their origin is the XPC effect at the

interface.

5. Summary and conclusions

Main aspects of the beam-interface interactions have been

analysed theoretically and numerically on the grounds on the

rigorous vector theory of beam fields at the interface [1]. For

normal incidence the elegant HG and LG beams are consid-

ered with their possible extension into the non-paraxial range.

For oblique incidence the common elegant beams are replaced

by their projections PHG and LHG beams suitable for the

beam field analysis in terms of a vector normal mode expan-
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sion at the interface. All theoretical expressions given here

are quite general and in addition all of them are exact in the

circular polarization basis projected upon the interface plane.

They cover all cases of internal and external reflection and

refraction, with normal and oblique incidence and possibly

with direct extension to the case of grazing incidence [27].

In the analysis special care has been paid for phenomena of

coupling existed between the beam field polarization and the

beam field distribution in its amplitude and phase, as origi-

nated by the cross-polarization coupling at the interface [1,

15–18].

It was shown that the Fresnel transmission/reflection co-

efficients should be replaced by their generalisations appro-

priate for 3D beams of finite cross-sections. All, the g-o or

zero-order, first-order and second-order, contributions to the

beam field are governed by new coefficients - tC , rC of the

g-o type (25) and tCX , rCX of the XPC type (15). They are

composed of sums and differences of the common p and s
Fresnel coefficients and satisfy only two scalar field continuity

relations at the interface: tC − 1 = −rC and tCX = −rCX ,

in opposition to four scalar relations necessary for the Fresnel

coefficients. The definitions of the coefficients tC , rC , tCX

and rCX as well as the transmission/reflection matrices are

quite general. They are valid not only for the dielectric inter-

face but also for any planar multilayered structure, which is

homogeneous and isotropic in any X − Y plane [28].

The XPC effects exist as the non-g-o contribution to the

beam field. As far as a single central ray of the beam is con-

sidered, rCX = 0 = tCX and the XPC effects disappear for

normal incidence. For critical incidence rCX = 1 = −tCX

and the g-o effects disappear in this case. The XPC effects

lead to creation of higher-order or lower-order modes in the

opposite – to the polarization state of the incident beam – field

component and can be explicitly described by changes of the

beam mode indices. Meanwhile in the rectangular coordinates

these changes can be described analytically only within the

first-order approximation to the field, the same analysis ap-

plied in the cylindrical coordinates appears analytically exact

with no approximations needed. Still, in any case, the approx-

imations inherent to the g-o optics [29] were omitted within

this analysis.

Two sets of elegant higher-order beams, with specified

further modifications, have been considered as normal modes

at the interface: EHG beams of linear polarization and ELG

beams with circular polarization. As the interface couples po-

larization and spatial (in amplitude and phase) structures of

the beams, normal modes have been treated as scalar modes

dressed by linear polarization for EHG modes and circular po-

larization for ELG modes. Both of them have been analysed

for their normal incidence; for oblique incidence their PE-

HG and PELG projections on the interface plane have been

considered instead. Only the cases of normal and critical inci-

dence of non-paraxial beams are analysed numerically, other,

paraxial cases were discussed elsewhere [18, 22].

In general, the elegant beams acquire changes in both their

mode indices. However, for oblique incidence of the PEHG

beam, the longitudinal index change gradually diminishes with

increasing the incidence angle and is replaced by the net longi-

tudinal spatial displacement of the whole field structure [18].

On the other hand, the ELG/PELG beams show different be-

haviour indicating vortex excitation in the first place. For

oblique incidence the analysis reveals also vortex splitting,

where a topological charge of the new vortex is opposite in

sign to the charge of the vortex driven by the incident beam.

To the author’s knowledge it is the first theoretical derivation

and its numerical verification of optical vortex splitting at the

interface.

Spectral positions of these new vortices are displaced in

the plane kY = 0 from the incident vortex placement at

kX = k sin θ(i) to the new position at kX = 0 where the

beam field is zero, due to zeroes of the XPC coefficients

tCX = −rCX = 0 at this point. Therefore, meanwhile the

propagation direction of the vortex nested in the incident beam

coincides with the beam axis, the propagation direction of the

excited vortex appears normal to the interface. The vortex ex-

citation is efficient for non-paraxial beams where the range of

beam spectra covers spectral positions of the excited vortices.

The topological charge of the excited vortices equals ±2. For

both, CL and CR, polarization states of the incident LG beam,

changes of spin angular momentum related to the opposite po-

larization of the excited beam component are compensated by

changes of orbital angular momentum related to the vortices

embedded in this component.

The beam field spectral distribution in amplitude and

phase is here rigorously treated analytically and numerical-

ly for normal and oblique beam incidence. The numerical

method applied in the numerical simulations is based on di-

rect integration of Maxwell equations [18] and was addition-

ally verified by independent simulations [22], for a change

based directly on the equations derived in [1]. In this pa-

per only the case of beam reflection has been numerically

analysed. Numerical treatment of beam transmission, comple-

mentary to what is already available in [1], was also reported

in [22]. The simulations entirely confirmed analytical predic-

tions. Moreover, they also show that at the interface plane

the field distributions of the PEHG and PELG modes defined

here and of the commonly defined elegant modes [13] co-

incide qualitatively well when their beam waist centres are

placed in the interface plane. Certainly, they coincide exactly

for normal incidence.

Appendix 1

Generalised coefficients of transmission and reflection

By introduction of complex parameters of beam polariza-

tion the transmission and reflection matrices can be represent-

ed in their diagonal form, with diagonal elements given by the

generalized transmission and reflection coefficients [1], spe-

cific to any planar layered structure. Their form is particularly

suitable in deriving the extended Stokes reciprocity relations

for beam vector modes at such the structures [28]. Definitions

of these coefficients are listed below. Their relations to the

diagonal transmission and reflection matrices were described

in an electronic extended version of this paper [30].
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By introduction the complex parameter χ̃
(i)
(X,Y ) =

Ẽ
(i)
X /Ẽ

(i)
Y in the TM/TE matrix decomposition (13)–(14), one

obtains:

ηtTM = ηtp + ∆TM , tTE = ts + ∆TE , (A1)

rTM = rp − ∆TM , rTE = rs + ∆TE , (A2)

∆TM = 2tCXsϕ

[
χ̃

(i)
(X,Y )

−1cϕ − sϕ

]
,

∆TE = 2tCXsϕ

[
χ̃

(i)
(X,Y )

+1cϕ + sϕ

]
,

(A3)

where tCX =
1

2
(ηtp − ts) = −rCX , sϕ ≡ sinϕ and

cϕ ≡ cosϕ. Per analogy, by the introduction the new, “cir-

cular” complex parameter χ̃
(i)
(R,L) = Ẽ

(i)
R /Ẽ

(i)
L in the CR/CL

matrix decomposition (23)–(24), one can also obtain the new

“circular” coefficients:

tCR = tC + ∆CR, tCL = tC + ∆CL, (A4)

rCR = rC − ∆CR, rCL = rC − ∆CL, (A5)

∆CR = tCX χ̃
(i)
(R,L)

−1 exp(−2iϕ),

∆CL = tCX χ̃
(i)
(R,L)

+1 exp(+2iϕ),

(A6)

where tC =
1

2
(ηtp + ts) = 1 − rC .

In opposition to the standard Fresnel coefficients ηtp, ts,

rp, rs the new, generalised coefficients ηtTM , tTE , rTM and

rTE of the linear type as well as tCR, tCL, rCR and rCL of

the circular type depend not only on the polar angle θ but

also on the azimuthal angle ϕ. Although the generalized co-

efficients ηtTM , tTE , rTM and rTE resolve into the Fresnel

coefficients ηtp, ts, rp, rs for ϕ = 0, these Fresnel coefficients

should be replaced by their 3D generalisations (A1)–(A3) for

ϕ 6= 0. Similarly, in the “circular” basis the matrices t
(R,L)

and r
(L,R)

become symmetric only for ϕ = 0 (cf. Eqs. (26)–

(27)):

t
(R,L)

=

[
tC tCX

tCX tC

]
, (A7)

r
(L,R)

=

[
rC rCX

rCX rC

]
, (A8)

otherwise (A4)–(A6) apply. This dependence on ϕ of the

generalized coefficients influences significantly over the 3D

field distribution of the reflected and transmitted beams. Still,

through logarithmic differentiation of these coefficients one

can described, for example, various nonspecular phenomena

of beam transmission and reflection [4, 14–16].

Appendix 2

A note on the beam shifts

A role of beam propagation and their interaction with

the interface in signal enhancement techniques has been dis-

cussed recently in the context of experiments in classical and

quantum optics [31]. The same concerns recent measurements

within near field optics [23] and those involving surface plas-

mon resonances [32] or microcavities [33]. In that type of

measurements the role of longitudinal and transverse beam

shifts, like the lateral, angular, focal and composite beam dis-

placements, evaluated in three dimensions [14–16], seem al-

ready essential. Note that the definitions of these displace-

ments have been generalized from their counterparts derived

within 2D geometries [34, 35], where, however, such 3D phe-

nomena like XPC effects, I-F shifts, vortex excitations or

beams of the LG type cannot be treated at all.

The problem of beam-field angular-momentum conser-

vation at the interface has been also recently under inter-

esting discussion, although without avoiding some contro-

versies [36, 37]. The analyses based on geometrical optics

have been carried out, within which the conservation of

angular momentum at the interface was derived. The re-

sults were interpreted in terms of beam shifts of the first-

order and compared with their evaluation presented previ-

ously within different approaches in [14] and [38]. How-

ever differences between results of various approaches to

the problem of the beam shifts are dependent on the ra-

tio of the beam radius to the field wavelength and be-

come more vivid close to the paraxial limit, i.e. around

kww
∼= 20π or less. As this issue was not raised in that

discussion, it seems that the question of differences be-

tween different definitions of the beam shifts still remains

open.

Moreover, averaging of the field intensity, in evaluation

for example of the first-order shifts of a beam gravity centre

of the beam [39], disregards its phase distribution and smears

out local properties of its amplitude. In any case, for oblique

incidence of narrow beams with helical structure, especially

for critical incidence of TIR, the field amplitude and phase

spatial distribution of the beam is so strongly deformed [9]

that the direct application of the spatial shift analysis seems

to be too approximate in this case. Therefore, notions of the

beam spatial shifts, approximations of the g-o type or averag-

ing procedures in the beam field evaluation are absent in the

analysis presented in this paper.

In spite of that, the non-specular displacements like HG

and IF shifts still might serve well as the additional geometri-

cal interpretation of the HG beam field distribution obtained

otherwise by a more accurate method [18]. It seems that these

displacements can also be used in the treatment of the LG

beams, for example with the help of diagonal relations be-

tween the HG and LG beams [24, 25]. Definitions of these dis-

placements, or more precisely the longitudinal and transverse

beam translations, angular deviations and coordinate scaling

[14–16], are evaluated up to the second-order level, do not

need any field averaging in their evaluation, avoid simplifica-

tions commonly encountered in energy-flux methods [39] and

are free from adiabatic approximations inherent to g-o analy-

ses [29]. They are valid for beam refraction and reflection

under arbitrary incidence at any planar, layered structure [28]

and may yield good although approximate interpretation of

the paraxial beam field distributions at the interface.
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