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Anisotropy component of electromagnetic force and torque
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Abstract. The paper deals with the problem of surface-integral representation of electromagnetic force/torque for magnetically anisotropic

region. It is pointed out that in some anisotropic regions a component of electromagnetic force/torque appears - the so-called anisotropy

component. The total electromagnetic field force/torque calculated with the help of Maxwell’s and Lorentz’s methods could lead to the

different values for some anisotropic medium (homogeneous, without hysteresis). The coenergy method is used to evaluate total force/torque

too. Analytical calculations of force/torque for isotropic and anisotropic media in electromagnetic field are presented. The condition for

surface integral representation of Lorentz’s either force or torque is formulated.
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1. Introduction

The electromechanical converters are one of the well-known

electrical devices that are used for wide range of purposes [1].

The electromagnetic field distribution decides on force den-

sities and hence enables calculation of total force and torque

[2–4].

The problem of calculation of total forces and torques

for different anisotropic structures of electromechanical con-

verters is the centre of the carried out analysis. The different

methods for total force and torque calculations are explored

due to their efficiency. The virtual work principle is widely

applied and discussed [5–7]. The Maxwell method (surface

integral method) is successfully used and developed [8] for

induction motor torque analysis and for force calculation [9].

Numerical approaches to forces and torques calculations are

important tasks for electromechanical converter analysis. The

local forces that constitute the total (so called integral) quan-

tities (force, torque) are of great interest [10].

Parallel, the theoretical investigations have being carried

out to constitute the background for numerical evaluation

and to give some physical interpretations [11, 12]. The com-

putations of local forces for magnetic regions are carried

out by different methods in [13–17]. The force calculations

are also provided by means of so-called sensitivity approach

[18, 19].

New technologies offer still newer and newer materials for

building electromechanical converters where either anisotrop-

ic materials [20–23] or laminated structure are used [24].

Magnetic anisotropy causes special physical effects on force

and torques [25, 26]. Hence, the magnetic anisotropy should

be considered in a theoretical way.

The paper shows that for anisotropic medium the

Maxwellian surface representation could not be applied [27,

28]. In order to present this problem it is very convenient to

develop the analytical analysis for some models of electro-

mechanical converters which enable the sensitivity analysis

thereof [29, 30] and constitute the benchmark tasks for nu-

merical algorithms [31–33].

The paper approaches to the so-called anisotropy

force/torque component that appears in electromechanical

converters with magnetic anisotropy regions. The paper ex-

tends previous works [28, 32, 33]. There are presented both

force and torque calculations, and the coenergy method is

used for force/torque calculations. The force analysis is car-

ried out for a linear converter model, and the torque analysis

is shown basing on a cylindrical solid induction motor mod-

el. The both models are obviously simplified (in comparison

with technical devices of them) in order to obtain analyti-

cal solution (to omit non numerical errors). The analytical

solutions obtained confirm the theoretical statement, provid-

ed in the paper, and may be treated as benchmark task for

electromechanical converters numerical analyses.

There is a considered electromagnetic field in anisotrop-

ic region for any anisotropy feature e.g. the magnetic re-

luctivity matrix can be either symmetrical or asymmetrical.

However, the asymmetrical reluctivity matrix appears rarely,

the well-known cases. Exemplary, for structure of samarium-

cobalt, neodymium-iron-boron [4], gyromagnetic media [34]

and ferrites [35] the reluctivity matrix is asymmetrical. For

deformable bodies under pressure and so-called active bodies

the reluctivity matrix could be asymmetrical too. Moreover,

some equivalent structures defined for electromechanical con-

verters with permanent magnets lead to the equivalent asym-

metrical reluctivity matrix [36, 37].

The interesting problem is which of the methods is

more suitable for calculating the electromagnetic forces when

anisotropic media appear. The Maxwell’s stress tensor and

Lorentz’s methods are considered. The force and torque are

evaluated with the help of these methods and the results are

compared. The basis constitutes the equation for electromag-

netic field force volume density. That equation is proved bas-

ing on:

– Maxwell equations for electromagnetic field,

– constitutive relations (A.5) and (A.8),

– Lorentz force density formula,

as shown in Appendix.
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There will be pointed out that for certain cases these meth-

ods do not lead to the same result. Additionally, the coener-

gy method is applied for checking the results. The presented

statement is proved mathematically (Appendix). There are de-

veloped two examples that confirm the statement.

2. Electromagnetic field forces

Basing on Maxwell’s equations and Lorentz’s force density

formula
−→
f L = ρ

−→
E +

−→
j ×

−→
B, (1)

where
−→
j is forced current density which satisfies (A.1), ρ is

charge density which satisfies Gauss law,
−→
E denotes electric

field strength,
−→
B means magnetic flux density.

The total force density in electromagnetic field can be

presented (see Appendix) in the form of

−→
f =

−→
f L +

−→
f P +

−→
N +

−→
Q +

−→
M, (2)

where the Poynting component (of electromagnetic field mo-

mentum) equals to

−→
f P =

∂(
−→
D ×

−→
B )

∂t
, (3)

the non-homogeneous force component (it appears in non-

homogeneous region) equals to

−→
N = −

1

2
EuEwgrad(εuw) +

1

2
BuBwgrad(νuw), (4)

where u, v mean co-ordinates.

Subsequently, the hysteresis component (it is caused by

polarization/magnetization of region) is equal to

−→
Q =

1

2
grad(∆PuEu) − Eugrad (∆Pu)

+
1

2
grad(Bu∆Iu) − Bugrad (∆Iu) ,

(5)

and the anisotropy component is given by following relation

−→
M =

1

2
(νvu − νuv)Bvgrad(Bu)−

1

2
(εuv − εvu)Eugrad(Ev),

(6)

where all vectors and material parameters are introduced and

defined in Appendix (it is used vector notation [3, 4]).

The force density
−→
f given by Maxwell stress tensor

(A.12) leads the total force/torque value. For checking the

total force/torque value the coenergy method is applied.

Equation (2) is valid for orthogonal curvilinear co-ordinate

system. It should be emphasized that the operator divu( ) in

Eq. (2) differs from the operator div( ) and is useful for sur-

face representation of total electromagnetic torque as shown

below.

Main theoretical problem presented in this paper is to con-

sider the surface representation of total force/torque by surface

integral of electromagnetic field vector components.

For electromechanical converters for which it can be ne-

glected:

a) electric field in comparison with magnetic field (consider-

ing energy field density),

b) Poynting force (low field frequency) –
−→
f P = 0,

c) non-homogeneous force – no reluctance force/torques

(“smooth” construction, no saturation)
−→
N = 0, and

d) hysteresis component (no hysteresis phenomenon, no per-

manent magnets)
−→
Q = 0,

the method both Lorentz’s and Maxwell’s do not lead to the

same result for magnetically anisotropic region with asym-

metrical reluctivity matrix (u 6= v)

νvu 6= νuv. (7)

The difference between them describes the anisotropy

component of force or torque Eq. (6).

The mathematical proof of this statement bases on Eq. (2).

Namely, basing on the assumptions specified above the

Eq. (2) takes the important for anisotropy regions form as

follows
−→
f =

−→
f L +

−→
M. (8)

According to Eq. (6), the force density is not equal to

Lorentz force density for anisotropic asymmetrical region

Eq. (7). This conclusion for forces densities leads to the same

conclusion for total electromagnetic field force and torque.

However, the statement concerns a rare group of magneti-

cally anisotropic materials but it is important from theoretical

point of view.

3. Electromagnetic field equations

Linear and cylindrical electromechanical converters are con-

sidered for the analysis of electromagnetic force and for torque

analysis, respectively. The electric field displacement is ne-

glected due to the fact that for electromechanical converters

magnetic field, taken into account, is predominant. The lack

of hysteresis phenomena is also assumed.

The Maxwell equation

curl
−→
E = −

−̇→
B (9)

and

curl
−→
H =

−→
j , (10)

are the base for electromagnetic field analysis for considers

electromechanical converters. Constitutive relations for elec-

tromagnetic field vectors for non-hysteresis medium are

Hu = νuvBv, (11)

where νuv are magnetic reluctivity, u, v indicate co-ordinates

of curvilinear system (summation due to twice appearing in-

dices is accepted). For the two considered cases of electro-

mechanical converters only one component of magnetic vec-

tor potential does not vanish, which was denoted as the z-

component i.e.

• for linear converter (Fig. 1, Cartesian co-ordinate: 1-x, 2-y,

3-z,
−→
i x ×

−→
i y =

−→
i z , Lx=Ly=Lz=1)

−→
A =

−→
A z = Az

−→
i z = A

−→
i z, (12a)
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Fig. 1. Linear motor

• for cylindrical converter (Fig.2, cylindrical co-ordinate: 1-r,

2-α, 3-z,
−→
i r ×

−→
i α =

−→
i z , Lr=1, Lα=r, Lz=1)

−→
A =

−→
A z = Az

−→
i z = A

−→
i z. (12b)

a)

b)

Fig. 2. Cylindrically shaped electromechanical converter – a) its cross

section – b)

The magnetic vector potential placement (along z-axis) re-

sults from the shape of magnetomotive force pattern and ad-

equate co-ordinate system orientation. The accuracy of such

assumptions for magnetic vector potential symmetry results

from simplified construction of mechanical converter linear

and cylindrical – Figs. 1, 2.

The magnetic flux density by means of vector magnetic

potential can be presented as follows

−→
B =

−→
i x

∂A

∂y
−
−→
i y

∂A

∂x
, (13a)

−→
B =

−→
i r

r

∂A

∂α
−
−→
i α

∂A

∂r
. (13b)

Equations (11) and (12a, b) can be rewritten in unified form

with the help of numbered Lame coefficients (Table 1) as

follows

−→
B =

−→
i 1

L2L3

∂(AL3)

∂x2

−

−→
i 2

L1L3

∂(AL3)

∂x1

. (14)

Table 1

Lame coefficients for Cartesian and cylindrical co-ordinate systems

Co-ordinate system L1 L2 L3

Cartesian (x1 = x, x2 = y, x3 = z) 1 1 1

Cylindrical (x1 = r, x2 = α, x3 = z) 1 r 1

The presented above notation simplifies the analysis for

cases considered. The magnetic field strength components due

to Eq. (A.5) for nonhysteresis and anisotropic region can be

shown in the form of

H1 = ν11B1 + ν12B2, (15a)

H2 = ν21B1 + ν22B2, (15b)

because the third component of magnetic field strength dis-

appears B3 = 0 due to Eqs. 13a,b.

The Maxwell’s equation for conductive region if electric

displacement current vanishes (low field frequency) takes the

form of

curl(
−→
H ) =

−→
j = γ

−→
E = −γ

−̇→
A, (16a)

and for third component (z-component) it leads to the follow-

ing relationship

1

L1L2

(

∂(L2H2)

∂x1

−
∂(L1H1)

∂x2

)

= −γȦ3 = −γȦ. (16b)

Combining Eqs. (14) and (16b) Eq. for vector magnetic com-

ponent it is obtained

1

L1L2

∂

∂x1

(L2ν21B1 + L2ν22B2)

−
1

L1L2

∂

∂x2

(L1ν11B1 + L1ν12B2) = −γȦ.

(16c)

For homogeneous region magnetic reluctivities are spatially

constant, thus

∂

∂x1

(

ν21

∂A

∂x2

−
L2ν22

L3

∂(AL3)

∂x1

)

−
∂

∂x2

(

ν11

L2

∂A

∂x2

−
ν12

L3

∂(AL3)

∂x1

)

= −L2γȦ,

(17)

where it was taken into account (see Table 1)

∂L3

∂x2

= 0 and L1 = 1, (18)

and finally

ν21

∂2A

∂x1∂x2

− ν22

∂

∂x1

L2

L3

∂(AL3)

∂x1

− ν11

∂

∂x2

∂A

L2∂x2

+ ν12

∂

∂x2

∂(AL3)

L3∂x1

= −L2γȦ.

(19)
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The Eq. (19) leads to relation for the linear converter (Carte-

sian co-ordinate system) as follows

νyy

∂2A

∂x2
− (νxy + νyx)

∂2A

∂x∂y
+ νxx

∂2A

∂y2
= γȦ, (20)

and for the cylindrical converter (cylindrical co-ordinate sys-

tem) in the form of

ναα

r

∂

∂r

(

r
∂A

∂r

)

−
νrα + ναr

r

∂2A

∂r∂α
+

νrr

r2

∂2A

∂α2
= γȦ. (21)

For complex analysis the time-partial derivative of A is

presented as multiplication of the operand iω (i means imagi-

nary unit) and the complex magnetic potential A at the steady

state for time-sinusoidal varying fields as follows

−̇→
A → iω

−→
A, (22)

where ω means field pulsation (this means that the magneto-

motive force for considered converter is monoharmonic). As

a result the magnetic vector potential henceforth has got the

complex form.

Equations (20) and (21) will be solved with the help of

separation method [2–4]. The separated functions for all prob-

lems are collected in Table 2.

Table 2

Separation method chosen for Eqs. (20) and (21)

Co-ordinate system A = A(x1, x2, x3)
the equation

for function

Cartesian

(x1 = x, x2 = y, x3 = z)
A = X(x)Y (y) Y (y) = exp(−iky)

Cylindrical

(x1 = r, x2 = α, x3 = z)
A = R(r)S(α) S(α) = exp(−ipα)

These equations take the forms given below.

• For the linear converter (Cartesian co-ordinate system)

d2X

dx2
+ ik

νxy + νyx

νyy

dX

dx
− a0X = 0. (23)

where

a0 = k2
νxx

νyy

+
iωγ

νyy

, (24)

a1 =
νxy + νyx

2νyy

ki, (25)

λ1,2 = −a1 ±
√

a2

1
+ a0, (26)

with the solutions in the form of (Tables 3, 4)

X(x) = aa exp(λ1x) + ba exp(λ2x). (27)

• For the cylindrical converter (cylindrical co-ordinate sys-

tem)

d2R

dr2
+

(1 − 2c)

r

dR

dr
=

[

νrrp
2

νααr2
+ β2

]

R, (28)

where

c = −pi(νrα + ναr)/2ναα, (29)

β =
√

iωγ/ναα, (30)

pB =
√

c2 + p2νrr/ναα, (31)

the solution is in the form [38, p.362] (Tables 5, 6) given

by means of McDonalds functions

R(βr) = aa(βr)cIpB(βr) + ba(βr)cKpB(βr). (32)

• For the non-conductive region (γ = 0) and isotropic re-

gion i.e. air-gap region it is satisfied for the linear converter

(Cartesian co-ordinate system)

d2X

dx2
− k2X = 0. (33)

with the solutions in the form of

X(x) = aδ exp(kx) + bδ exp(−kx). (34)

• For the cylindrical co-ordinate system

d2R

dr2
+

dR

rdr
=

p2

r2
R, (35)

with the solution in the form

R(r) = aδr
p + bδr

−p. (36)

The solutions presented should be combined with the

boundary conditions.

4. Boundary conditions for electromagnetic field

problems

Four boundary conditions for electromagnetic field vectors

are defined, that enable to calculate the four unknown con-

stants aa, ba, aδ , bδ (Tables 4, 6). The boundary conditions

are physically motivated.

The magnetic field strength disappears at the inner con-

ductive layer surface (x = 0, r = R − a – see Fig. 1 and

Figs. 2a, b)

H2 = ν21B1 + ν22B2 = 0. (37)

For linear and cylindrical converters that conditions result

from the fact that it is assumed that magnetic reluctivity of

rail or rotor core is infinite.

The continuity for normal magnetic flux density compo-

nents (x = a, r = R)

Bδ1 = Ba1 (38)

and for tangential components of magnetic field strength

νoBδ2 = ν22Ba2 + ν21Ba1. (39)

The magnetomotive force constituted by converter cur-

rents leads to the following condition for tangential component

of magnetic field strength at the rail/stator surface (x = a+g,

r = R + g)

νoBδ2 = −
∂Θs

L2∂x2

, (40)

which is derived under the assumption that the magnetic field

strength vanishes in the outer side of winding surface (it is

assumed infinitely magnetic reluctivity for stator frame).
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5. Solutions to electromagnetic field problems

The analysis of electromagnetic field due to the relations pre-

sented above and boundary conditions complete the analytical

solution to field problems. For the both chosen converter mod-

els the unknown constants are calculated. The solutions are

grouped in Tables 3, 5.

5.1. Linear electromechanical converter. Solutions of the

Eqs. (23) and (33) are given in Table 3. The four unknown

constants aa, ba, aδ , bδ can be evaluated by formulating the

boundary conditions and are grouped in Table 4.

The solutions presented in Tables 3 and 4 enable to con-

tinue electromagnetic field and electromagnetic force/torque

analyses, subsequently.

5.2. Cylindrically shaped cylindrical electromechanical

converter. The solutions of Eqs. (28) and (35) are given in

Table 5. The four unknown constants aa, ba, aδ , bδ can be

evaluated by formulating the boundary conditions and they

are grouped in Table 6. The analytical solution to the cylin-

drical motor can be presented in terms of separated function

R(r) and S(α) obtained with the help of variable separation

method.

The accuracy of the obtained solutions of two partial dif-

ferential equations are checked (for conductive and noncon-

ductive region) in the following way. Firstly, the boundary

conditions fulfilments are checked for four defined boundary

conditions (37)–(40). Secondly, the solutions for ordinary dif-

ferential equation for separated functions Z( ) and D( ), that

denote solution for vector magnetic potential separated func-

tion R( ) for conductive region (γ 6=0) and in air-gap (γ = 0),

respectively. LZ (RZ) means value of left-hand (right-hand)

side of ordinary differential Eq. (28) for conductive region.

LD (RD) means value of left-hand (right-hand) sides of ordi-

nary differential Eq. (35) for the air-gap region, respectively.

The accuracy for both ordinary differential equations is pre-

sented in Fig. 3 (for exact solutions LZ/RZ = 1 and LD/RD

= 1 should be satisfied).

Table 3

olution of the differential equations

Region anisotropic carriage (index a) air-gap – (index δ)

Solution X(x) = aa exp(λ1x) + ba exp(λ2x) X(x) = aδ exp(kx) + bδ exp(−kx)

constants aa, ba aδ , bδ

Table 4

The boundary conditions for magnetic field

Boundary condition

(Fig. 1)

Field excited

by stator currents
Constants for solutions

Rail mmf
x = a + g νoBδy = −

∂Θs

∂y

aa = Θsν−1
o {Ueλ1(a+g) − Weλ2(a+g)}−1

ba = −aaS, aδ = aaU , bδ = aaW

S =
νyyλ1 + νyxki

νyyλ2 + νyxki
,

Q = eλ1a − Seλ2a

P =
νyy

kνo

(λ1eλ1a − Sλ2eλ2a) +
iνyx

νo

(eλ1a − Seλ2a),

U =
1

2
(P + Q)e−ka,

W =
1

2
(Q − P )eka

Carriage surface
x = a

Bδx = Bax

νoBδy = νyyBay + νyxBax

Inner layer surface
x = 0 νyyBy + νyxBx = 0

Table 5

Solution of the differential equations

Region anisotropic layer – (index a) air-gap – (index δ)

Solutions (z = βr) R(z) = aazcIpB(z) + bazcKpB(z) R(r) = aδrp + bδr−p

constants aa, ba aδ , bδ
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Table 6

The boundary conditions for magnetic field

Boundary condition (Fig. 2a,b) Field excited by stator currents

Constants for solutions
zcIpB(z) → IpB(z), zcKpB(z) → KpB(z)

(the generalized McDonalds functions)

Stator current mmf
r = R + g = Rg

νoBδα = −
1

Rs

∂Θs

∂α

aa = Θsν−1
o {URp

s − WR−p
s }−1

ba = −aaS, aδ = aaU , bδ = aaW

S =
νααI′pB(βRa) + ναrIpB(βRa)wa

νααK ′

pB
(βRa) + ναrKpB(βRa)wa

wa = ipR−1
a , w = ipR−1

β =
p

iωγ/ναα,

P =
βναα

pνo

(I′pB(βR) − SK ′

pB(βR)) +
ναrQw

pνo

Q = IpB(βR) − SKpB(βR)

U = (PR−p+1 + QR−p)/2

W = (−PRp+1 + QRp)/2

Rotor outer surface
r = R Bδr = Bar , νoBδα = νααBaα + ναrBar

Inner layer surface
r = R − a = Ra

νααBα + ναrBr = 0

Fig. 3. Accuracy for partial differential equations solutions – cylindrical problem (MathcadTM program extract)

6. Force calculation – linear electromechanical

converter

The analysis of electromagnetic field is the background for

electromechanical converter force analysis. The obtained so-

lution for magnetic field vector potential is used for force

calculation. The magnetic anisotropy of media used for con-

verter construction influences on electromagnetic force value.

In some cases appears the difference between forces values

evaluated by means of Maxwell’s and Lorentz’s methods. The

example derived below presents the influence of anisotropy on

total force value. Total force is evaluated by means of coen-

ergy method for checking the accuracy of total force calcula-

tion.

6.1. Linear motor. Linear motors are used in electrical trac-

tion and in robotics technologies. The simplified model and

dimensions of the analysed model are presented in Fig. 1.

The magnetomotive force of rail (that leads to the boundary

condition at x = a + g) is monoharmonic in space and in

time.

After evaluating the magnetic field potential distribution

both the magnetic flux density components and the electro-

magnetic torque components can be evaluated, analytically.

Maxwell stress tensor leads to total electromagnetic force by

means of well-known formula

F = νo

∫

∂V

BxBydS. (41)

The electromagnetic force can be evaluated by Lorentz’s force

density as follows

FL =

∫

V

jzBrdV , (42)

where V is volume of conductive rail (V = alY ).

The difference between these two forces – called

anisotropy force Eq. (6) – is equal to

FM =

∫

V

1

2
(νvu − νuv)Bv

∂Bu

∂x
dV , (43)

hence

FM =
1

2
(νxy − νyx)

∫

V

(

Bx

∂By

∂y
− By

∂Bx

∂y

)

dV . (44)

and disappears if the region is either isotropic or anisotropic

while νxy = νyx.
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Table 7

Exemplary force values for three cases of magnetic anisotropy

The case The magnetic reluctivities
Lorentz force ratio

FL/F [-]

The anisotropy force ratio

FM/F [-]

The total force value

F [N]

A νxy = 0.2ν0 > νyx = 0.1ν0 1.128 −0.128 359

B νxy = 0.1ν0 = νyx = 0.1ν0 1.000 0.000 362.5

C νxy = 0.1ν0 < νyx = 0.2ν0 0.901 0.099 374

Fig. 4. Force F [N] vs. relative speed v/Y [1/s] calculated for anisotropic carriage by C++ program (solid line for Maxwell and coenergy

methods, dots for Lorentz method for the case A of Table 7)

The total force is calculated with the help of coenergy

method as follows

F =
∂WC

∂y

∣

∣

∣

∣

j=const

=

∫

V

(

−→
j

∂
−→
A

∂y
+
−→
B

∂
−→
H

∂y

)

dV . (45)

The coenergy method gives the same result as Maxwell stress

method for all anisotropy cases.

Exemplary, for model of linear motor with data γ =
10 · 106 S/m (rail conductivity), a = 0.08 m (conductive

rail width), l = 0.1 m (width of rail), g = 0.005 m (air-gap

width), Θ = 10000 A (magnetomotive force first harmonic),

k = 2π/Y = 10 m−1 (propagation constant), s = i2π · 5 Hz

(magnetic field pulsation), νxx = νx = νo/2 (x-axis reluc-

tivity), νyy = νy = νo/10 (y-axis reluctivity) and different

anisotropy reluctivities νxy , νyx (Table 7) forces values have

been obtained with the help of the presented magnetic field

analysis. Forces are calculated for chosen model of linear mo-

tor basing on C++ program – Fig. 4.

The table presents results of force calculations for three

chosen cases of reluctivity anisotropy. It can be pointed out

that only for symmetric reluctivity matrix (νxy = νyx) – Ta-

ble 7, the case B, the both Lorentz’s and Maxwell’s methods

give the same results. Moreover, the Table 7 shows that for

magnetic anisotropy at νxy < νyx the total force is greatest

than Lorentz force.

6.2. Cylindrical motor. Cylindrically shaped motors are

used in industry. The rotating cylindrically shaped induction

motors with solid rotor are commonly used in robotics as ac-

tuators – simplified model is presented in Figs. 2a, b. The

exemplary cylindrical induction motor with anisotropic and

cylindrical rotor is considered.

The analytical solution of the cylindrical motor can be

presented in terms of separated function R(r) and S(α) ob-

tained with the help of variable separation method presented.

For monoharmonic magnetomotive force of stator the both

magnetic field distribution and electromagnetic torque are cal-

culated. The data for analysis are presented in Fig. 5.

Fig. 5. Torque calculations for cylindrical converter – Mathcad pro-

gram (for the case A)

For the evaluated magnetic field distribution the electro-

magnetic torque has been calculated. The electromagnetic

torque’s two components are presented: Lorentz TeL and ma-
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terial TeM that together constitute the total electromagnet-

ic torque Te. For cylindrical co-ordinate system (Lr = 1,

Lα = r, Lz = r) for horizontal force component u = α, the

Eq. (2) describes the electromagnetic force density as follows

fα = −
1

Lα

div(−LαHα

−→
B +

−→
i αe), (46)

that leads to the total electromagnetic torque

Te = νo

∫

∂V

rBrBαdS = νor
2l

2π
∫

0

BrBαdα, (47)

where l is converter rotor length, r is the radius of surface

situated in the air-gap.

The Lorentz’s force leads to the torque as follows

TeL =

∫

V

rjzBrdV , (48)

where V is the volume of conductive layer on rotor (which

spreads between radii: R-a and R).

The difference between these two forces – called

anisotropy torque – is equal to

TeM =

∫

V

1

2
(νrα − ναr)Br

∂Bα

r∂α
dV , (49)

hence

TeM =
1

2
(νrα − ναr)

∫

V

(

Br

∂Bα

∂α
− Bα

∂Br

∂α

)

dαdrdz.

(50)

and disappears if the region is either isotropic or anisotropic

while νrα = ναr.

For example, for model of cylindrical motor having data

γ = 56·106 S/m (rotor conductivity), a = 0.07 m (conductive

rotor layer width), R = 0.1 m (rotor outer radius), l = 0.25 m

(rotor length), g = 0.0015 m (air-gap width), Θ1 = 750 A

(magnetomotive force first harmonic), p = 2 (pair pole num-

ber), s = i2π·5 Hz (rotor current pulsation) νrr = νr = νo/30
(radial reluctivity), ναα = να = νo/35 (tangential reluctivity)

and different anisotropy reluctivities νrα, ναr (see Table 8)

torques values have been obtained with the help of the pre-

sented magnetic field analysis (Figs. 5–7).

Table 8 presents results of torque calculations for three

chosen cases of reluctivity anisotropy. It can be pointed out

that only for symmetric reluctivity matrix (νrα = ναr) – Ta-

ble 8 for the case B both Lorentz’s and Maxwell’s methods

give the same results for torque.

The total torque values has been calculated also using

magnetic coenergy Wc as follows

Te =
∂WC

∂α

∣

∣

∣

∣

j=const

=

∫

V

(

−→
j

∂
−→
A

∂α
+
−→
B

∂
−→
H

∂α

)

dV , (51)

in order to confirm the torque value evaluated with the help of

Eq. (2) proved, previously. The both Maxwell and coenergy

methods give the same results.

Exemplary calculation procedure is shown in Fig 6 for

the data of case C in Table 8. Torques calculated by means

of both Maxwell and co-energy methods are equal.

The torque analysis can be also repeated for spherically-

shaped electromechanical converter [32]. The presented ana-

lytical way of analysis could be applied for synchronous mo-

tors [39, 40].

Table 8

Exemplary torque values for three cases of magnetic anisotropy

The case The magnetic reluctivities
Lorent’z torque ratio

TL/Te [-]

The anisotropy torque ratio

TM /Te [-]

The total torque value

Te [Nm]

A νrα = 0.5να > ναr = 0.1να 1.021 −0.021 3.636

B νrα = 0.5να = ναr = 0.5να 1.000 0.000 3.643

C νrα = 0.1να < ναr = 0.5να 0.980 0.020 3.648

Fig. 6. Maxwell’s and co-energy methods comparison – Mathcad program (the case C, Table 8)
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Fig. 7. Torque Te [Nm] vs. speed n [1/s] calculated for anisotropic rotor by C++ program (solid line for Maxwell and coenergy methods,

dots for Lorentz method for the case C of Table 8)

7. Conclusions

The paper presents electromagnetic force and torque analysis

for different magnetic anisotropy of material used for build-

ing electromechanical converter. The force and torque are cal-

culated by means of the Maxwell’s, coenergy and Lorentz’s

methods. The accuracy for force and torque calculations has

been checked by coenergy method.

For example, the analytical electromagnetic field analyses

for linear and cylindrical electromechanical converter models

are provided. For both models of electromechanical converters

the variable separation variable method leads to analytical so-

lutions for electromagnetic field distribution and further force

and torque values.

The mathematical proof for the main Eq. (2), that de-

scribes force density, has been provided basing on vector no-

tation (Appendix).

The statement proved and analyses carried out for linear

and cylindrical electromechanical converters have brought out

to the issues, such as

– it is possible to express the total Lorentz force by means of

surface integral for isotropic and magnetically anisotropic

regions with symmetrical reluctivity matrix

F = FL ⇔ νxy = νyx,

– it is possible to express the total Lorentz torque by means of

surface integral for isotropic and magnetically anisotropic

regions with symmetrical reluctivity matrix

Te = TeL ⇔ νrα = ναr,

– the Lorentz’s and Maxwell’s methods lead to the same re-

sults for regions that are magnetically anisotropic, for nor-

mal anisotropy case, when region is homogenous, there is

no hysteresis phenomenon and no permanent magnets,

– the Lorentz’s and Maxwell’s methods lead to different re-

sults for medium with non-symmetrical reluctivity matrix

Eq. (7),

– the difference between force/torque values for Maxwell’s

and Lorentz’s methods is described by the so-called

anisotropy component that volume density is given by

Eq. (6).

Appendix

Electromagnetic field forces

Electromagnetic field force volume density in curvilin-

ear co-ordinate system can be presented with the help of the

Maxwell equation

curl
−→
H =

−→
j +

∂
−→
D

∂t
, (A.1)

and Lorentz’s force density in the form of
−→
f L = ρ

−→
E +

−→
j ×

−→
B, (A.2)

that constitutes one component of total electromagnetic field

force
−→
f L =

−→
E div

−→
D + (curl

−→
H −

−̇→
D) ×

−→
B. (A.3)

Furthermore,

−→
f L = curl

−→
H ×

−→
B +

−→
Hdiv

−→
B −

∂(
−→
D ×

−→
B )

∂t

+
−→
D × curl

−→
E +

−→
E div

−→
D,

(A.4)

where it was added
−→
H · div

−→
B = 0.

Let us present constitutive relation in the general form of

Hu = νuwBw − ∆Iu, (A.5)

where reluctivities νuw could be asymmetrical, ∆Iu is uth

component of magnetisation vector (it can be defined either

for permanent magnets or for hysteresis region or it denotes

component independent from magnetic flux density).

The first and second components on the right-hand side

of (A.4) can be written in the form of

curl
−→
H ×

−→
B +

−→
Hdiv

−→
B =

−→
i udivu(−→σ µu)

−
−→
∆µ −

−→
N µ −

−→
Qµ −

−→
Mµ,

(A.6a)

where it was denoted (Lu is Lame coefficient for uth co-

ordinate; no summation due to u)

divu (∗) = L−1
|u| div (Lu (∗)) , (A.6b)
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−→σ µu = −Hu

−→
B +

−→
i ueµ, (A.6c)

eµ =
1

2

−→
H
−→
B, (A.6d)

−→
N µ =

1

2
BuBwgrad(νuw), (A.6e)

which is called non-homogenous force component

−→
Qµ =

1

2
grad(Bu∆Iu) − Bugrad (∆Iu) , (A.6f)

which is called hysteresis component (resulting from hystere-

sis phenomenon), and an auxiliary vector defined as follows

−→
Mµ =

1

2
(νvu − νuv)Bvgrad(Bu), (A.6g)

which is called anisotropy component, and an auxiliary vector

defined as follows

−→
∆µ =

1

2
BvHv

−→
i u

∂ ln(L2

v/ |L|)

Lu∂xu

, (A.6h)

for orthogonal curvilinear co-ordinate system u, v, w (L =
LuLvLw multiplication of all Lame coefficients).

The fourth and fifth component on the right-hand side of

(A.4) can be rearranged in the same manner

curl
−→
E ×

−→
D +

−→
E div

−→
D =

−→
i udivu(−→σ εu)

−
−→
∆ε −

−→
N ε −

−→
Qε −

−→
Mε,

(A.7)

where the constitutive relation (dielectric permittvities εuw

could be asymmetrical) is introduced as follows

Du = εuwEw − ∆Pu, (A.8)

where ∆Pu is uth component of electric polarisation vector,

and
−→σ εu = −Eu

−→
D +

−→
i ueε. (A.9a)

eε =
1

2

−→
E
−→
D, (A.9b)

−→
N ε = −

1

2
EuEwgrad(εuw), (A.9c)

−→
Qε =

1

2
grad(∆PuEu) − Eugrad (∆Pu) , (A.9d)

−→
M ε = −

1

2
(εvu − εuv)Evgrad(Eu), (A.9e)

and an auxiliary vector

−→
∆ε =

1

2
DvEv

−→
i u

∂ ln(L2

v/ |L|)

Lu∂xu

. (A.9f)

Hence Eq. (A.4) takes the form of

−→
f L = −

∂(
−→
D ×

−→
B )

∂t
−
−→
i udivu (−→σ u) −

−→
∆ −

−→
N −

−→
Q −

−→
M,

(A.10)

where

−→σ u = −Eu

−→
D − Hu

−→
B +

−→
i ue, (A.11a)

e = eε + eµ =
1

2

−→
E
−→
D +

1

2

−→
H
−→
B, (A.11b)

−→
N =

−→
N ε +

−→
N µ = −

1

2
EuEwgrad(εuw)+

1

2
BuBwgrad(νuw),

(A.11c)

−→
Q =

−→
Qε +

−→
Qµ. (A.11d)

−→
∆ =

(

1

2
DvEv + 1

2
BvHv

)

−→
i u

∂ ln(L2

v/ |L|)

Lu∂xu

, (A.11e)

where anisotropy component is equal to

−→
M =

1

2
(νvu − νuv)Bvgrad(Bu)−

1

2
(εvu − εuv)Evgrad(Eu),

(A.11f)

and introducing Maxwell force density given by Maxwell

stress tensor (given also by coenergy) in the form of

−→
f = −

−→
i udivu (−→σ u) −

−→
∆ , (A.11g)

it can be written

−→
f = −

−→
i udivu (−→σ u) −

−→
∆ =

−→
f L +

−→
f P +

−→
N +

−→
Q +

−→
M,

(A.12)

where Maxwell stress tensor equals to

−→σ u = −Hu

−→
B − Eu

−→
D +

−→
i ue, (A.13)

and Poynting force density (of electromagnetic field momen-

tum [2, 3, 25])

−→
f P =

∂(
−→
D ×

−→
B )

∂t
. (A.14)

The presented above relations take the simpler form for

the case when the magnetic field is dominant.
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