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Abstract. This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular

bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA)

with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The

placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation

applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem.

This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type

of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated

at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution

in the definition of the next candidate.
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1. Introduction to placement problems

Two dimensional packing problem arises in the industry

whenever one must place multiple items inside a container

such that there is no collision between the items, while either

minimizing the size of the container or maximizing the area

occupied by the items. Low material utilization is of particu-

lar interest to mass production industries since small improve-

ments of the layout can result in large savings of material and

considerably reduce production cost.

The global optimization heuristic Simulated Annealing

(SA) has been proposed in the area of combinatorial opti-

mization [1], that is, when the objective function is defined in

a discrete domain. The method is reported to perform well in

the presence of a very high number of variables (even tens of

thousands). The SA heuristic was modified in order to apply

to the optimization of multimodal functions defined on con-

tinuous domain [2]. The choice of the cooling schedule and

of the next candidate distribution are the most important deci-

sions in the definition of a SA algorithm [3]. Corana et al. [2]

proposed a self tuning SA algorithm which step size is con-

figured in order to maintain a number of accepted solutions.

The probability distribution used by Corana et al. [2] is flat.

Ingber [4] proposed to use a Cauchy distribution and a faster

temperature decreasing. The very fast simulated reannealing

proposed by Ingber and Rosen [5] searches for different sensi-

tivities on parameters by processing the first derivatives of the

objective function. The SA algorithm proposed in this work

uses a Gaussian probability distribution with a self- controlled

standard deviation in order to maintain the number of accept-

ed solutions.

The SA has been applied to solve the placement problem

through different strategies: sequence of placement controlled

by discrete parameters [6], and translation of items controlled

by continuous parameters [7]. The SA algorithm from each

application, controlled only one kind of parameter; however

as shown in [8] a generic approach to solve the placement

problem must control simultaneously three different types of

parameters: sequence of placement, rotation and translation

of items.

2. The problem

According to [9], the packing problems are mainly character-

ized by the number of relevant dimensions, the regularity and

irregularity of the shapes of the items and containers and the

problem assignment. Considering assignment, it is possible to

identify two situations: output maximization and input mini-

mization. In the input minimization, the set of containers is

sufficient to accommodate all items, and there is no selection

regarding items. In the case of output maximization, the set

of containers is not sufficient to accommodate all items and

a set of items has to be assigned to a given set of contain-

ers. The typology of cutting and packing problems proposed

in [9] was improved by [10]. According to [10], the problem

studied in this work is classified as two dimensional irreg-

ular single knapsack problem. In this survey, they identified

413 papers containing material relevant to cutting and pack-

ing. Only fourteen papers thereof were classified as dealing

with two dimensional irregular single knapsack problem. This

fact shows that the literature related to this specific kind of

problem remains relatively scarce.
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The problem studied here is the rotational placement of

multiple items inside a unique container with fixed dimen-

sions (problems dealing with fixed container space will be

labeled here as “primal problems”). It can be defined as the

problem of, given a container (a convex or concave polygon)

and a set of n items (convex or concave polygons), deter-

mining the subset of items and transformations (translations

and rotations) to be applied to the respective items. The final

layout must fit inside the container without overlapped items,

and such that the occupied area is maximized.

2.1. Objective function behavior and duality. The place-

ment problem on fixed dimensions containers has a related

dual problem that is the problem of, given a set of items,

find the smallest container where the whole set can be placed

(this problem is often labeled as the cutting stock problem).

As pointed by [10], this dual problem has a much larger cov-

erage in the literature. Examples of studies related to this dual

problem are [11] and [12]. Jakobs [11] studied the orthogo-

nal packing based on a bottom-left strategy to position the

items, the placement sequence is determined using a genet-

ic algorithm. He extended the algorithm to process irregular

items. The main idea is the determination of the embedding

rectangles with minimum area for all items. The rotation of

the items is determined in this local search. Hifi and Hal-

lah [12] proposed a hybrid algorithm to solve the irregular

problem. The hybrid algorithm searches for an optimal order-

ing of the items using a genetic algorithm and identifies the

best packing using a constructive approach, which consists of

sequentially positioning a set of ordered items. Each item is

tested for a set of potential positions defined with respect to

already positioned items. They studied an exclusively trans-

lational problem and considered the items as rectangles for

positioning.

When compared to its dual variant, the placement prob-

lem on fixed dimensions containers has a particularity that

increases the difficult of its approach with traditional opti-

mization techniques, the fact that its objective function (the

non-occupied space) assumes only discrete values, while its

variables (the translations and rotations for each item) are con-

tinuous. Figure 1 illustrates a dual optimization problem with

a single variable (the rotation applied to the leftmost item),

Fig. 1. Objective function behavior on the dual problem

on which the objective is to minimize the width of the con-

tainer f(θ). As one can see, the width varies continuously

with the optimization variable θ.

For the primal problem shown in Fig. 2, the objective

function is the non- occupied space inside the container. As

this space can change only by adding or removing areas of

items, the objective function can assume only a finite set of

values, becoming discontinuous. This particularity of the pri-

mal problem makes it difficult to evaluate the sensibility of

the objective function related to the optimization variables.

Fig. 2. Objective function behavior on the primal problem

2.2. No-fit polygon. The application of meta-heuristics to the

placement problem usually encounters one severe difficulty,

the enormous complexity of the space of feasible solutions.

A technique usually employed to mitigate such difficulty is the

external penalisation. It consists of relaxing constraints on the

original problem and adapt a modification to the cost function

in order to penalize (increase the cost of) non-feasible solu-

tions. While such technique has been applied to the placement

problem with some degree of success, it often leads to invalid

layouts that require post-processing [7].

The non-fit polygon has been recently applied by re-

searchers to ensure the generation of collision-free layouts.

This concept was first introduced by [13]. Given two polygons,

A and B, the no-fit polygon uses a reference point for the

moving polygon. The no-fit polygon is the set of points where

positioning the reference point imply that polygon B collides

with polygon A. The no-fit polygon can be found by tracing

one polygon around the boundary of another. One of the poly-

gons remains fixed in position and the other traverses around

the fixed polygon edges whilst ensuring that the polygons al-

ways touch but never intersect [14]. The no-fit polygon has

been used exclusively in the dual problem [6, 15]. Dowsland

et al. [15] used the no-fit polygon and a bottom-left strategy

as an application of deterministic heuristic. An item is placed

in the boundary of the no-fit polygon according to the bottom-

left strategy. The positioning sequence is defined by a sorting

criteria: decreasing area, decreasing length, decreasing width

and others. They studied an exclusively translational problem.

Gomes and Oliveira [6] used the no-fit polygon concept to

eliminate the overlap in the definition of the initial solution.

SA is used to define which item exchange position and with

which orientation. After exchanging position two items in the
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layout, overlap usually occurs, which is removed by apply-

ing a separation model, i.e., a set of translations is applied

to the overlapping items. Afterwards, the layout is compacted

by a set of translations applied to the placed items, achieving

layouts that are local minima. However, it is possible that the

separation model fails in achieving a feasible layout. In this

case, the proposed algorithm ignores the failed swap operation

and attempts exchanging two different items.

3. Simulated annealing

SA is the probabilistic meta-heuristic adopted in this work.

It has been chosen due to its capacity of “escape” from lo-

cal minima (which are very frequent in this problem). It is

also worth of mention that the process of recrystallization,

the inspiration for SA, is a natural instance of a placement

problem. SA is a hill-climbing local exploration optimization

heuristic, which means it can skip local minima by allowing

the exploration of the space in directions that lead to a lo-

cal increase on the objective function. It sequentially applies

random modifications on the evaluation point of the objective

function. If a modification yields a point of smaller objective

function value, it is automatically kept. Otherwise, the modi-

fication also can be kept with a probability obtained from the

Boltzman distribution

P (∆E) = e−∆E/kT , (1)

where P (∆E) is the probability of the optimization process

to keep a modification that incurs an increase ∆E (ascen-

dent steps) of the objective function. k is a parameter of the

process (analogous to the Stefan-Boltzman constant) and T

is the instantaneous “temperature” of the process. This tem-

perature is defined by a cooling schedule, and it is the main

control parameter of the process. The probability of a given

state decreases with its energy, but as the temperature ris-

es, this decrease (the slope of the curve P (∆E)) diminishes.

Kirkpatrick et al. [1] have applied the SA to a variety of

combinatorial problems, such as the traveling salesman and

computer circuit design problems. In these cases, the para-

meters are taken on discrete values; the next point candidate

xk+1 corresponds to a permutation in the list of cities to be

visited, interchanges of circuit elements, or other discrete op-

eration. The principal complication introduced in going from

the discrete to the continuous application of SA is that the

choice of random steps becomes more subtle. In general, the

optimal magnitude and directions of the steps are not known

in advance. In [16], the next point candidate xk+1 is obtained

by first generating a random direction vector u, with ||u|| = 1,

then multiplying it by a fixed step size ∆r, and summing the

resulting vector to the current candidate point xk

xk+1 = xk + ∆r · u. (2)

In [17], the same next candidate distribution as in [16] is

employed, but it is shown that the selection of ∆r is a critical

choice. An appropriate choice of this parameter is strictly de-

pendent on the objective function F (x), and that bad choices

may lead to a deterioration of the performance of the algo-

rithm. In [17] it is suggested to choose appropriate values by

presampling the objective function. It is suggested to split the

algorithm in two phases: a global phase in which the algo-

rithm globally explores the feasible regions and a local phase

which starts from the best point observed in the global phase

(which, hopefully, is close enough to the global optimum) and

employs the same SA algorithm but with a much lower value

for the step size ∆r, which reduces the algorithm to a local

exploration of the region around the best point observed in

the global phase. The first phase should return a rough ap-

proximation of the global optimum, while in the second phase

the approximation is refined. In [18] the importance of an ap-

propriate choice for the step size ∆r is further discussed, but

instead of choosing it by presampling the objective function,

the step size is adaptively updated according to the distance

from the global optimum value (or an estimate of it), and it

is defined as

∆rk = β · (F (xk) − F ∗)g1, (3)

where β > 0 and g1 > 0 are constants. For the cases in which

the global optimum value F ∗ is not know, it is suggested to

employ an estimate F̂ of it. It is also proposed to generate

the next candidate point according to a distribution which is

not uniform over the hypersphere with radius equal to the step

size ∆rk . It is suggested to take into account the last point

xh, h < k, generated by the algorithm and different from xk.

If F (xh) < F (xk) the distribution favors the direction xh−xk

with respect to the other directions, while if F (xh) > F (xk)
the opposite direction is favored.

The directions in [16, 17] are randomly sampled from the

uniform distribution over the unit (n−1) dimensional sphere,

and the step size if the same in each direction. In this way the

feasible region is explored in an isotropic way and it is as-

sumed that the objective function behaves in the same way in

every direction. But this is not often the case. By decreasing

the step size ∆rk , the probability of accepting the new candi-

date point is increased. But, in order to bring this probability

to a reasonable value, one may be obliged to considerably re-

duce the step size, especially in an ill conditioning situation.

In this way each iteration of the algorithm can only perform

painfully small steps, even in directions along which the func-

tion varies very slowly and larger steps would allow a faster

approach to the global optimum. All this suggests that the step

sizes to define the next candidate point xk+1 should not be

all equal for all the directions, but different directions should

have different step sizes, i.e. the space should be searched in

an anisotropic way. In particular, the support of the next can-

didate point should reflect as much as possible the shape of

the objective function in the region currently explored. In [5]

the concept of anisotropic search through the feasible region

is introduced. At each iteration k a single variable of xk is

modified in order to obtain a new candidate point xk+1, and

iterations are subdivided in cycles of n iterations during which

each variable is modified. More formally, let i ∈ {0, ..., n−1}
be such that

i = h · n + i, (4)

for some nonnegative integer h. Then xk+1 is obtained from

xk by changing only the i-th variable of xk, i.e.
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xk+1 = xk + u · ∆ri · ei, (5)

where u is a uniform random number in [−1, 1], and ∆ri

is the maximum allowed step size along the direction ei of

the i-th axis. The anisotropy is obtained by choosing different

values vj for all the n directions ej , j = 1, ..., n. The values

vj are not kept fixed for Ns cycles of variables (i.e. for n ·Ns

iterations), where Ns is some positive integer. After the Ns

cycles the values are updated. In particular, if the fraction of

accepted moves in the direction ej with respect to the total

number Ns of moves generated in the same direction is below

0 : 4, then the step size ∆rj along ej is decreased (too large

steps along ej have been performed thus causing most steps to

be rejected); if the fraction is above 0 : 6 then ∆rj is increased

(too small steps have been performed in the direction ej thus

causing most steps to be accepted); if the fraction is between

0 : 4 and 0 : 6 the step size is left unchanged. In this way, if

F slowly varies with respect to changes in the j-th variable,

the step size ∆rj becomes large, while if F quickly varies

with respect to changes in the j-th variable, the step size be-

comes small. In this way some anisotropy is introduced in the

search through the feasible region. The procedure described

above may not be the best possible to keep into account the

different behavior of the objective function along different di-

rections. Indeed, a cycle of variables returns a point inside an

axis aligned hyperrectangle with center in the current point at

the beginning of the cycle, while in some situations, in order

to resemble the level curves of F , we should sample points

from an ellipsoid which is not axis aligned.

In [4] the so called ASA has been developed and dis-

cussed. In the ASA algorithm the temperature is not only

employed in the acceptance function, Eq. (1), but also in the

densities gk of the distribution of the next candidate point

xk+1. A possible choice is the Gaussian distribution as fol-

lowing:

gk (∆r, sk) =
1√

2πsk
· e−

‖∆r‖
2s

k , (6)

where ∆r is the maximum step size from the current point

xk and sk is the standard deviation. Therefore, the new candi-

date point xk+1 is obtained by sampling a vector u from the

density, and then by setting

xk+1 = xk + u · ∆r. (7)

An alternative is the so called Cauchy distribution [5]

whose density is defined as follows

gk (∆r, sk) =
sk(

‖∆r‖2
+ s2

k

) . (8)

The Cauchy distribution has a fatter tail with respect to

Eq. (6). This means that if one employs the same temperature,

the Cauchy distribution will more likely generate a smaller

deviation, thus favoring a local exploration of the feasible re-

gion but penalizing the global exploration. Whenever doing

a multi-dimensional search in the course of a real-world non-

linear physical problem, inevitably on must deal with different

sensitivities of the parameters in the search [4]. If the objec-

tive function is very sensitive to changes in the i-th parameter,

then the value sk should decrease quickly, thus allowing the

algorithm to perform small steps in the i-th direction; if the

objective function is not very sensitive to changes in the i-

th variable, then the value sk should decrease slowly, thus

allowing large steps in the i-th direction. According to the al-

ready mentioned concept of local adaptivity, the decrease of

the temperature is not a priori fixed but is adaptively revised.

The revision takes place periodically through the so called

reannealing operation. The revision is done by computing ob-

jective function derivatives.

4. The proposed algorithm

This work uses the no-fit polygon in order to efficiently gen-

erate overlap-free layouts. As the no-fit polygon is related

with the interference between two polygons, this requires an

approach of sequential placements of the items, where each

placement takes in consideration the area obstructed by the

items already placed. Also, evidently for a rotational place-

ment problem, the rotation of both the item to be placed and

the obstacles must be known in order to calculate the collision-

free area.

As such, the item placement is controlled by three different

parameters: its position in the placement sequence, its rota-

tion and finally its translation [8, 19]. The placement sequence

is a combinatorial parameter, as described by Kirkpatrick et

al. [1]. The rotation and translation are continuous parameters

belonging to the interval [0, 1[. While the rotation parameter

represents straightforwardly the final rotation of the item, the

translation is necessarily more complex, as the item must be

placed inside a region (the collision-free region) which is not

determinated at the time when the parameters are generated.

The translation parameter corresponds to an uniform mapping

of the perimeter of the collision-free region to the interval

[0; 1[. When the collisionfree region is determined for a giv-

en item (by removing all no-fit polygons), a point is selected

on its perimeter using the translation parameter to place the

item [20]. The translation parameter uniquely determines on

which point of the no-fit polygon where the item will be trans-

lated to. As such, the solution is an hybrid discrete/continuous

object composed of the following elements:

• Discrete:

Order of placement: A permutation of the item index-

es (s0; s1, ..., sn). This permutation dictates the order of

placements.

• Continuous:

– Rotations: A sequence (θ0, θ1, ..., θn) of rotations to

be applied to each item.

– Translations: A sequence (t0; t1, ..., tn) of numbers

in [0; 1[. Each one of this numbers is converted to

a placement point at the perimeter of the collision-

free region for its respective item.

Those parameters are the product of the SA algorithm de-

scribed above. Notice that they always produce a feasible so-

lution. When for a given item the collision-free area is empty,

it is simply not placed on the container.
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4.1. Crystallization heuristic. Rejected solutions do not

contribute to the progress of the optimization process. There-

fore, the distribution of the step size for each individual para-

meter is adapted in order to increase the number of accepted

solutions. This is accomplished by the adoption of a feed-

back on the SA. The next candidate point is generated by the

following equation:

xk+1 = xk +
1

cj

ci∑

1

u · ∆r · ei, (9)

where u is a uniform random number in [−1; 1], ∆r is the

maximum allowed step size along the direction ei of the i-th

axis, and ci is the crystallization factor associated to the i-th

parameter. The maximum step size ∆r remains always con-

stant, and the probability distribution is adjusted to increase

the number of accepted solutions. The crystallization factor

controls the standard deviation of the Gaussian probabili-

ty distribution. This is similar to the algorithm proposed by

Corana et al. [2] where the maximum step size ∆ri of each

parameter was adjusted in order to increase the number of

accepted solutions.

When at a given iteration the modification applied to a pa-

rameter leads to a rejected solution, the probability distribu-

tion (crystallization factor) for that specific parameter is mod-

ified in order to have its standard deviation reduced (resulting

in a lower modification amplitude). When the modification

leads to an accepted solution, the distribution (crystallization

factor) for that parameter is modified to increase its standard

deviation (resulting in a larger modification amplitude).

As can be seen from above, the higher the crystallization

factor for a given parameter, the smaller the modifications this

parameter will receive during the SA. It is said that the item

is crystallized.

The crystallization factors are initialized with value 1.

When a solution generated by a modification on a parameter

is rejected, its related crystallization parameter is increased by

one. When the solution is accepted, the correspondent crys-

tallization parameter is reset to its original value.

4.2. The modifed SA algorithm. The proposed SA algo-

rithm is shown in Fig. 3. The main modification is shown

in the inner loop, where it is chosen to swap two items in

the placement sequence (discrete parameters) or to modify

the rotation or translation of an item (continuous parame-

ters).

The objective function F (x) to be minimized is the space

wasted inside the container with an adjustment to reduce its

discrete behavior (see Subsec. 2.1). For every non-fitted shape,

a fixed-depth binary search is performed in order to determi-

nate the largest scale-factor that, applied to it, would allow its

placement inside the container with its current rotation [20].

Then, the area of the shape with the largest obtained scale-

factor is used to modify the wasted space. As such, the heuris-

tic can be sensible to differences between solutions that have

the same set of fitted shapes, but with different possibilities

of fitting a new shape.

Fig. 3. The proposed SA algorithm, where n is the total number of

cyclic continuous parameters

5. Results

As presented in the introduction, the literature related to the

kind of problem studied here is scarce [10]. The majority

of the benchmarks proposed in the literature have an open

container (one dimension is not fixed) and allow only transla-

tions with few admissible orientations (0◦, 90◦ and 180◦). As

a consequence, there is no appropriate benchmark in the liter-

ature for the kind of problem studied in this research. Firstly,

some results showing the features of the proposed algorithm

are presented. Secondly, some benchmarks proposed in the

literature were adapted to be processed by the proposed al-

gorithm. The advantage of studying puzzle like problems, is

that the global minimum is known in advance.

5.1. Proposed problem instances. All problem instances

studied here have a solution where all items can befitted on

the containers. On all problems, the container area is less

than 10% larger than the total items area. A simple geometric

cooling with α =0:95 was adopted. The binary search was

executed with fixed depth equal four (leading to 16 possible

scale levels).
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The behavior of the optimization process is illustrated

through objective function histograms of the search while the

temperature diminishes. For a given temperature, a gray-level

histogram of the distribution of the objective function at that

temperature is plotted. They are combined in a sequence of

histograms (horizontal bars) and temperature (dots) versus it-

erations. A darker horizontal bar on the histogram, indicates

a higher frequency of occurrence of a particular level of en-

ergy at a given temperature (see Fig. 4).

Fig. 4. Cost-function histograms for the four-items puzzle

As can be seen on the Fig. 4, as the cooling schedule pro-

gresses, the temperature lowers, leading the system to lower

energy states. The transition between states is not smooth.

The example in Fig. 4 has two clear “phases”, what often cor-

responds to a macro-organization. Another interesting effect

can be noticed on the Fig. 4. As the temperature decreases,

the number of accepted solutions per iteration decreases (as

more solutions are rejected), which leads to an effective slow-

er cooling. It is not necessary to show the number of rejected

solutions as the local stop condition is satisfied when a max-

imum number of accepted solutions or a maximum number

of iterations is reached.

The problem shown in Fig. 5a) is a fairly simple puzzle

with four non-convex non-congruent items. Figure 4 shows

the objective function histograms for the solution found in

Fig. 5a). Based in the objective function histograms, one can

observe that there exists two phases. The final solution was

found in average after 415:046 iterations. The convergence

ratio to the global minimum was 87:1%.

a) b)

Fig. 5. a) Final solution of a small puzzle with four items; b) final

solution of a tangram puzzle with seven items

The problem shown in Fig. 5b) is the placement of sev-

en convex non- congruent items. Figure 6 shows the objective

function histograms. On this nesting problem, the SA encoun-

ters a phase transition when the two greater triangles settle at

their final position. The final solution was found in average

after 1:958:401 iterations. The convergence ratio to the global

minimum was 64:2%. When compared to previous implemen-

tations [15–17], the proposed SA algorithm with crystalliza-

tion factor showed an improved convergence ratio.

Fig. 6. Cost-function histograms for the tangram puzzle

5.2. Benchmarks adapted from the literature. All prob-

lems instances studied here were solved by [6]. They have an

open container in the sense that one dimension is not fixed

and allow only translations with few admissible orientations.

To allow a possibility of comparison, the rotation heuristic

was turned off and the container dimensions were considered

exactly equal to the ones obtained by Gomes and Oliveira. All

results obtained in [15] could be reproduced by the present

heuristic. Each problem was run only two times, and the final

configuration was reached.

The Albano is an instance problem with 24 items, it is

a garment problem with two admissible orientations: 0◦ and

180◦. The result shown in Fig. 7a) was produced by Gomes

and Oliveira. The proposed algorithm found a different layout

as shown in Fig. 7b). Figure 8 shows the associated objective

function histograms. One can observe that the SA encounters

a phase transition when the two larger items are placed.

a)

b)

Fig. 7. a) Result obtained by Gomes and Oliveira after Ref. [6] for

the instance problem named as Albano, b) Result obtained by the

proposed algorithm

278 Bull. Pol. Ac.: Tech. 57(3) 2009



Placement over containers with fixed dimensions solved with adaptive neighborhood simulated annealing

Fig. 8. Cost-function histograms for the instance problem shown in

Fig. 7 (Albano)

The Fu is an instance problem with 12 items, it is an arti-

ficial problem with three admissible orientations: 0◦, 90◦ and

180◦. The result shown in Fig. 9a) was produced by Gomes

and Oliveira. The proposed algorithm found different layouts

as shown in Fig. 9b) and c). Figure 10 shows the associat-

ed objective function histograms. One can observe that the

solution is found in a later stage and possible local minima

can be seen at the darker lines. The Shapes0 is an instance

problem with 43 items, it is an artificial problem with three

admissible orientations: 0◦, 90◦ and 180◦. The result shown in

Fig. 11a) was produced by Gomes and Oliveira. The proposed

algorithm found different layouts as shown in Fig. 11b).

a) b)

c)

Fig. 9. a) Result obtained by Gomes and Oliveira after Ref. [6] for

the instance problem named as Fu. b) and c) Results obtained by the

proposed algorithm

Fig. 10. Cost-function histograms for the instance problem shown in

Fig. 9 (Fu)

a)

b)

Fig. 11. a) Result obtained by Gomes and Oliveira after Ref. [6] for

the instance problem named as Fu. b) and c) Results obtained by the

proposed algorithm

6. Conclusions

This work proposed a new SA algorithm with adaptive neigh-

borhood, where the sensibility of each continuous parameter

is evaluated at each iteration increasing the number of ac-

cepted solutions. We have applied this new algorithm to other

type of problems with success: robot path planning and curve

fitting. However, the placement problem is by far the most

complex problem solved using the proposed algorithm. The

placement of an item is controlled by the following SA para-

meters: rotation, translation and sequence of placement. The
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cost function has discrete characteristics.We proposed some

problems that are puzzles, the advantage of studying such

problems is that the global minimum is known in advance.

There are no benchmarks proposed in the literature for this

kind of problem, then we adapted some problems from the lit-

erature (mainly by allowing only translations) and the results

has been reproduced.
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