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Abstract. In the paper we investigate four single processor scheduling problems, which deal with the process of the negotiation between a

producer and a customer about delivery time of final products. This process is modeled by a due window, which is a generalization of well

known classical due date and describes a time interval, in which a job should be finished. Due window assignment is a new approach, which

has been investigated in the scientific literature for a few years. In this paper we consider various models of due window assignment. To

solve the formulated problems we have to find such a schedule of jobs and such an assignment of due windows to each job, which minimizes

a given criterion dependent on the maximum or total earliness and tardiness of jobs and due window parameters. One of the main results is

the mirror image of the solutions of the considered problems and other problems presented in the scientific literature. The wide survey of

the literature is also given.
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1. Introduction

The paper deals with scheduling problems which model the

process of negotiation between the producer and the customer

about the delivery time of the final products. The producer ob-

jective usually is to have the latest time of products delivering,

while the customer tries to have them as soon as possible. The

compromise of this negotiation is a time period in which the

products should be completed by producer and available to be

taken by customer. In scheduling problems this situation can

be modeled by a due window, which describes a time inter-

val, in which a job should be finished. This kind of scheduling

problems has recently attracted considerable attention of the

researchers.

The due window model examined in this paper is a gen-

eralization of the due date (see e.g. [1]) assignment model

considered in scheduling problems. The extensive surveys of

the results obtained for the due date assignment problems can

be found in the papers of the following researchers: Cheng

and Gupta [2], Chengbin, Gordon and Proth [3,4]. For ex-

ample, survey [3] includes results concerning general models

in which earliness and tardiness are arbitrary non-decreasing

functions (considered among others by: Mosheiov and Fed-

ergruen [5,6], Cai, Lun and Chan [7]). Scheduling problems

with due windows have been introduced by Anger, Lee and

Martin-Vega [8]. The recent list of publications concerning

scheduling problems with fixed or assignable due windows

includes the papers of the following authors: Cheng [9], Lee

[10], Kramer and Lee [11], Weng and Ventura [12–14], Liman

and Ramaswamy [15], Mosheiov and Lann [16, 17], Koula-

mas [18], Azizoglu and Webster [19], Wu and Wang [20],

Linn, Yen and Zhang [21], Yeung, Oguz and Cheng [22],

Yoo and Martin-Vega [23], Chen and Lee [24], Biskup and

Feldmann [25], and Wodecki [26]. The due window assign-

ment in scheduling problems with a general sum-type cri-

terion (the most interesting for us) have been considered in

the following papers by: Janiak and Marek [27, 28], Kramer

and Lee [29], and Liman, Panwalker and Thongmee [30, 31].

In the papers [30] and [29] the authors focused on the op-

timal, common for all the jobs, due window assignment in

some single and parallel processors scheduling problems, re-

spectively. In their model it is assumed that the size of the

due window is given in advance. The model of due window

considered in [29, 30] have been extended in [27, 28, 31].

This extension concerns the size of due window, which is

as well as the location of due window a decision vari-

able. Mosheiov and Sarig [32] and Yeung, Oguz and Cheng

[33] considered problems with additional flow time penalty.

Only Mosheiov [34], Janiak and Marek [35, 36] have dis-

cussed single and parallel processors scheduling problems

with due window assignment and a general minmax-type cri-

terion.

To be more precise in this paper we consider four schedul-

ing problems, in which different models of due window as-

signment appear. To the best of our knowledge, the mentioned

models have not been investigated in the scientific literature.

For the considered problems, we should find a schedule of

jobs, due windows and their locations such that their criterion

values are minimized, which depend on the following weight-

ed parts: the maximum or total earliness and tardiness of jobs

and due window parameters.
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The remaining part of the paper is organized as follows. In

the next section, we give a precise formulation of two consid-

ered problems. Additionally, we define some auxiliary prob-

lems, which were solved in the scientific literature. Finally, we

prove the mirror image property of the optimal solutions of the

considered problems and the auxiliary problems. In Section

3 the remaining problems are considered. Due to the derived

properties of the solutions we constructed polynomial-time

exact algorithms. Some conclusions are given in Section 4.

2. Model with due windows depended on

processing times

In the section we consider two problems, in which there is

given the set J = {1, . . . , n} of n independent and non-

preemptive jobs to be scheduled on a single processor. The

processor can process only one job at the moment. We as-

sume that the processor executes the jobs without idle times.

For each job its processing time pj is given and due windows

are defined as follows
〈

d′j = pj + q1; d
′′

j = pj + q2

〉

, where

q1 and q2 (q1 ≤ q2) denote common due window parameters.

The only difference between the problems under considera-

tion, denoted, respectively, by P1 and P2, is a criterion.

Problems P1 and P2 are to find a schedule π (a permu-

tation of jobs) and such values of the parameters q1 and q2,

which minimize the following criteria, respectively:

f1(π, q1, q2)=max

(

α max
j∈J

Ej , β(q2 − q1), γ max
j∈J

Tj

)

, (1)

f2(π, q1, q2)=
∑

j∈J

(αEj + β(q2 − q1) + γTj) , (2)

where: Ej = max(d′j − Cj , 0) is the earliness of the job j,

Tj = max(0, Cj − d′′j ) is the tardiness of the job j, Cj is the

completion moment of the job j, and α, β and γ are positive

weights.

Using the three-field classification [37], problems P1 and

P2 can be described, respectively, as follows:

1
∣

∣

〈

d′j = pj + q1; d
′′

j = pj + q2

〉∣

∣

max (α max Ej , β (q2 − q1) , γ maxTj)

and
1
∣

∣

〈

d′j = pj + q1; d
′′

j = pj + q2

〉∣

∣

∑

(αEj + β(q2 − q1) + γTj).

2.1. Auxiliary problems. At first we consider two auxiliary

scheduling problems denoted by P′

1 and P′

2, which help us to

find the optimal solutions of P1 and P2, respectively. In the

three-field classification the problems P′

1 and P′

2 are given,

respectively, as follows:

1
∣

∣

〈

d′j = k1; d
′′

j = k2

〉∣

∣

max(α maxEj , β(k2 − k1)j , γ max Tj),

1
∣

∣

〈

d′j = k1; d
′′

j = k2

〉∣

∣

∑

(αEj + β (k2 − k1) + γTj),

where k1 and k2 (k1 ≤ k2) denote common due window

parameters.

In [24] the following O(n) optimal algorithm for P′

1 is

presented.

Optimal algorithm A(P′

1)

Step 1: Schedule the job with the largest processing time on

the first position. The remaining jobs are scheduled in an ar-

bitrary order.

Step 2: For the schedule π obtained in Step 1 calculate:

k∗

1(π) =

βγ
n
∑

j=1

pj + α (β + γ) pπ(1)

αβ + αγ + βγ
,

and

k∗

2(π) =

γ (α + β)
n
∑

j=1

pj + αβpπ(1)

αβ + αγ + βγ
,

where pπ(j) denotes the processing time of the job placed on

the position j in the schedule π.

Stop: The obtained schedule π and the values of parameters

k∗

1 , k∗

2 are the optimal solution of P′

1.

In [22] the following O(n log n) optimal algorithm for P′

2

is presented.

Optimal algorithm A(P′

2)

Step 1: For j = 1, . . . , n calculate position weight wj =
min(α(j − 1), nβ, γ(n − j + 1)). If wj = α(j − 1), then let

us say j is an early position. If wj = nβ, then let us say j is

a window position. If wj = γ(n − j + 1), then let us say j is

a tardy position.

Step 2: Renumber the jobs according to the non-increasing

order of their processing times, i. e., p1 ≥ p2 ≥ . . . ≥ pn.

Step 3: Schedule the successive jobs on positions according

to the non-decreasing order of their weights, i. e., an unsched-

uled job with the largest processing time should be assigned

to the free position with the smallest weight.

Step 4: The value of the parameter k∗

1 is equal to the sum of

the processing times of the jobs scheduled on the early posi-

tions and the value of the parameter k∗

2 is equal to the sum

of the processing times of the jobs scheduled on early and

window positions.

Stop: The obtained schedule π and the values of parameters

k∗

1 , k∗

2 are the optimal solution of P′

2.

2.2. Mirror image of optimal solutions of the considered

problems. In this subsection, we will use the following no-

tation. The upper indexes q and k will indicate the values of

parameters of the problems P1, P2 and P′

1, P′

2, respectively.

At first we consider Theorem 1, which helps us to find the

optimal solutions of P1 and P2, from the optimal solutions of

P′

1 and P′

2, respectively.

Theorem 1. If αq = γk, βq = βk and γq = αk , then the

optimal schedule of the problem P1 (P2) or P′

1 (P′

2) can be ob-

tained from an optimal schedule of the other problem P′

1 (P′

2)

or P1 (P2)) by reversing the order of the jobs on the proces-

sor, and determining the appropriate due window parameters

from the following equations:
n
∑

j=1

pj = q1 + k2 = q2 + k1.

Moreover, the optimal criterion values for both problems are

equal.
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mirror
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0

solution of P  (P  )1 2solution of P ' (P  ')1 2

Fig. 1. Mirror image of solutions of P1 (P2) and P′

1 (P′

2)

Proof. Assume πrev denotes a schedule, in which the jobs are

executed in the reversed order on the processor respect to the

schedule π. It is easy to see that the makespan value (Cmax)

for both schedules is the same and equal to Cmax =
n
∑

j=1

pj .

From the reversing execution of the jobs in the schedule π it

follows that for the schedule πrev we have:

Sj(π
rev) = Cmax − Sj(π) − pj for j = 1, . . . , n, (3)

where Sj is the starting moment of the job j.

To prove the theorem, at first we need to show that:

f ′

1(π, k1, k2)

= max

(

αk max
j∈J

Ek
j (π), βk(k2 − k1), γ

k max
j∈J

T k
j (π)

)

= max

(

αq max
j∈J

E
q
j (πrev), βq(q2 − q1)γ

q max
j∈J

T
q
j (πrev)

)

= f1(π
rev, q1, q2),

(4)

and

f ′

2(π, k1, k2) =
∑

j∈J

(

αkEk
j (π) + βk(k2 − k1) + γkT k

j (π)
)

=
∑

j∈J

(

αqE
q
j (πrev) + βq(q2 − q1) + γqT

q
j (πrev)

)

= f2(π
rev, q1, q2).

(5)

According to the expressions (3) and Cmax =
n
∑

j=1

pj =

q1 + k2 = q2 + k1 we can formulate the following equations:

E
q
j (πrev) = max

(

d′
q

j − Cj(π
rev), 0

)

= max (pj + q1 − Sj(π
rev) − pj , 0) = max (q1 − Sj(π

rev), 0)

= max (Cmax − k2 − Cmax + Sj(π) + pj , 0)

= max (Cj(π) − k2, 0) = max
(

Cj(π) − d′′
k

j , 0
)

= T k
j (π),

T
q
j (πrev) = max

(

0, Cj(π
rev) − d′′

q

j

)

= max (0, Sj(π
rev) + pj − pj − q2) = max (0, Sj(π

rev) − q2)

= max (0, Cmax − Sj(π) − pj − Cmax + k1)

= max (0, k1 − Cj(π)) = max
(

0, d′
k

j − Cj(π)
)

= Ek
j (π),

q2 − q1 = Cmax − k1 − (Cmax − k2) = k2 − k1.

Since αq = γk, βq = βk and γq = αk, then the above

equations imply that the Eqs. (4) and (5) are satisfied. Some

example is given in Fig. 1.

Let us pass to proving, that if (π∗, k∗

1 , k∗

2) is the optimal

solution to P′

1 (P′

2), then the corresponding solution (π∗rev,

q∗1 , q∗2) to P1 (P2) is also optimal, and vice versa.

Assume that (π∗, k∗

1 , k∗

2) is the optimal solution to P′

1 (P′

2)

and the Eq. (4) ((5)) is satisfied and the solution (π∗rev, q∗1 , q∗2)
is not the optimal one to P1 (P2). Then, there exists a solu-

tion (π′, q′1, q′2) such that f1(π
′, q′1, q

′

2) < f1(π
∗rev, q∗1 , q∗1)

(f2(π
′, q′1, q

′

2) < f2(π
∗rev, q∗1 , q∗1)). Observe that (π′, q′1, q

′

2)

is a solution reversed with respect to some solu-

tion (π′rev
, k′

1, k
′

2) to P′

1 (P′

2). Then, according to (4)

((5)), we must have f ′

1(π
′rev, k′

1, k
′

2) = f1(π
′, q′1, q

′

2) <

f ′

1(π
∗rev, q∗1 , q∗2) = f ′

1(π
∗, k∗

1 , k∗

2) (f ′

2(π
′rev, k′

1, k
′

2) =
f2(π

′, q′1, q
′

2) < f ′

2(π
∗rev, q∗1 , q∗2) = f ′

2(π
∗, k∗

1 , k∗

2)), which

contradicts the optimality of (π∗, k∗

1 , k∗

2).

Similar result can be obtained if we assume that (π∗rev,

q∗1 , q∗2 ) is the optimal solution to P1 (P2) and the solution (π∗,

k∗

1 , k∗

2) is not the optimal one to P′

1 (P′

2).

Notice that Theorem 1 extends the result obtained in the

paper [38] by Kahlbacher, which concerned similarity be-

tween CON and SLK models of the due date assignment (see

surveys [8] and [9]).

It follows from Theorem 1 that to solve optimally the

problem P1 (P2) as first we have to solve the problem

1
∣

∣

〈

d′j = k1; d
′′

j = k2

〉∣

∣max(γ maxEj , β(q2 − q1)j , α max Tj)
(

1
∣

∣

〈

d′j = k1; d
′′

j = k2

〉∣

∣

∑

(γEj + β (q2 − q1) + αTj)
)

by

the algorithm A(P′

1) (A(P′

2)). For the obtained schedule of

jobs we reverse their processing order on the processor. Next,

according to Theorem 1 we calculate the values of the para-

meters q∗1 = Cmax − k∗

2 and q∗2 = Cmax − k∗

1 .

3. Mixed models of due windows

In this section we consider the remaining (two) prob-

lems. For the first one, denoted by P3, due windows

are defined as follows
〈

d′j = k; d′′j = pj + q
〉

, where k

and q (k ≤ q) denote common due window parame-

ters. For the second problem, denoted by P4, due win-

dows are defined as follows
〈

d′j = pj + q; d′′j = k
〉

(pmax +
q ≤ k, where pmax = max

j∈J
pj). Notice that the pre-

sented condition guarantees the existence of the due win-

dow for each job. Both problems consist of finding sched-

ules π on a single processor and such values of the pa-
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rameters k and q, which minimize the following crite-

rion:

g(π, k, q) = max

(

α max
j∈J

Ej , β |q − k| , γ max
j∈J

Tj

)

, (6)

where |x| denotes the absolute value of x.

Using the three-field classification [10], problems

P3 and P4 can be described, respectively, as follows:

1
∣

∣〈d′j = k; d′′j = pj + q〉
∣

∣max(αEmax, β(q − k), γTmax),

1
∣

∣〈d′j = pj + q; d′′j = k〉
∣

∣max(αEmax, β(k − q), γTmax).

3.1. Optimal solution of P3. Before we start with search-

ing the optimal solution of P3, at first we consider the fol-

lowing lemma, in which for a given π we assume that:

Cmin(π) = min
j∈J

Cj(π) and Smax(π) = max
j∈J

Sj(π).

Lemma 1. For a given schedule π of P3, the optimal values of

the parameters k∗(π) and q∗(π) satisfy the following inequal-

ities: k∗(π) ≥ Cmin(π) and q∗(π) ≤ Smax(π), respectively.

Proof. Assume that π is a schedule in P3, where the inequali-

ties k∗(π) ≥ Cmin(π) and q∗(π) ≤ Smax(π) are not satisfied.

There are two cases, which should be considered, namely:

1◦. for a given schedule π and the value of k (k ≤ q), the

optimal value of k∗(π) is equal to k′(π) = Cmin(π) − ε,

2◦. for a given schedule π and the value of q (k ≤ q), the op-

timal value of q∗(π) is equal to q′(π) = Smax(π) + ε, where

ε is some positive value, (ε > 0).

Ad 1◦. Let g (π, k′(π), q) and g (π, k′′(π), q) denote the val-

ues of the criterion (6) obtained for the values of the parame-

ters: k′

1(π) = Cmin(π)− ε and k′′

1 (π) = Cmin(π), respective-

ly. We have:

g(π, k′(π), q) = max

(

α max
j∈J

Ej , β |q − k′(π)| , γ max
j∈J

Tj

)

= max

(

α max
j∈J

Ej , β(q − k′(π)), γ max
j∈J

Tj

)

=max

(

α max(k′(π)−Cmin(π), 0), β(q−k′(π)), γ max
j∈J

Tj

)

= max

(

0, β(q − Cmin(π) + ε), γ max
j∈J

Tj

)

≥

(

0, β(q − Cmin(π)), γ max
j∈J

Tj

)

= g(π, k′′(π), q).

Ad 2◦. Similar results (to 1◦) can be obtained for

g(π, k, q′(π)) and g(π, k, q′′(π)), where the values of the pa-

rameters q′(π) and q′′(π) are equal to q′(π) = Smax(π) + ε

and q′′(π) = Smax(π), respectively.

These results contradict the assumptions that k′ and q′ are

optimal. Thus, it follows from above, that the optimal values

of parameters k∗(π) and q∗(π) should satisfy the following

inequalities: k∗(π) ≥ Cmin(π) and q∗(π) ≤ Smax(π).

It follows from Lemma 1, that for any feasible π the cri-

terion value (6) is equal to:

g(π, k∗(π), q∗(π)) =

= max

(

α max
j∈J

Ej , β |q∗(π) − k∗(π)| , γ max
j∈J

Tj

)

= max

(

α max
j∈J

(max(d′j − Cj(π), 0)),

β(q∗(π) − k∗(π)), γ max
j∈J

(max(0, Cj(π) − d′′j ))

)

=max(α(k∗(π)−Cmin(π)), β(q∗(π)−k∗(π)),

γ(Smax(π) − q∗(π))) .

(7)

In the following we prove two lemmas for the minimiza-

tion of the following general function h : ℜ3 → ℜ (notice

that (7) is a special case of this function):

h (u, v, w) = max (A1u, A2v, A3w) , (8)

subject to:

u + v + w = A, (9)

where u, w and v are some nonnegative variables, A is given

a nonnegative constant and A1, A2 and A3 are given non-

negative weights.

Lemma 2. If A1u = A2v = A3w, then the value of the

function (8) is minimal.

Proof. Let h′ denote the value of the function (8) obtained

for the following values of the variables u′, v′, w′, for which

A1u
′ = A2v

′ = A3w
′.

Assume now that the value of at least one variable u,

w or v, let us say u, is smaller than value u′. It follows

from the constraint (9) that in this case the value of at least

one from the remaining variable, let us say v, has to be

greater than value v′. It means that the function (8) can be

estimated by: h (u, v, w) = max (A1u, A2v, A3w) > h′ =
max (A1u

′, A2v
′, A3w

′), which ends the proof.

Lemma 3. The optimal values of the variables u∗, w∗ or v∗,

which minimize the function (8) are as follows:

u∗ =
A2A3A

A1A2 + A1A3 + A2A3
,

v∗ =
A1A3A

A1A2 + A1A3 + A2A3
,

w∗ =
A1A2A

A1A2 + A1A3 + A2A3
.

Proof. Based on Lemma 2 and the constraint (9), to find the

values of u∗, v∗, w∗ we have to solve the following system

of equations:










A1u
∗ = A2v

∗

A2v
∗ = A3w

∗

u∗ + v∗ + w∗ = A.

Some optimal solution properties for P3, which concern

the optimal schedule of jobs and the optimal values of k∗(π)
and q∗(π), are given below.
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Let Cπ(j) and pπ(j) denote, respectively, the completion

moment and the processing time of the job placed at the po-

sition j in the schedule π.

Property 1. For a given schedule π of jobs in P3, the optimal

values of the parameters k∗ and q∗ are equal to

k∗(π) =

βγ
n−1
∑

j=1

pπ(j) + α (β + γ) pπ(1)

αβ + αγ + βγ

and

q∗(π) =

γ (α + β)
n−1
∑

j=1

pπ(j) + αβpπ(1)

αβ + αγ + βγ
.

Proof. Based on Lemma 3 and the expression (7), we have:
(

u∗ =
A2A3A

A1A2 + A1A3 + A2A3

)

⇒

(

k∗(π) − Cmin(π)

=
βγ

αβ + αγ + βγ
(Smax(π) − Cmin(π))

)

,

thus

k∗(π) =
βγ

αβ + αγ + βγ
(Smax(π) − Cmin(π)) + Cmin(π).

Based on Lemma 3 and the expression (7), we have also
(

v∗ =
A1A3A

A1A2 + A1A3 + A2A3

)

⇒

(

q∗(π) − k∗(π)

=
αγ

αβ + αγ + βγ
(Smax(π) − Cmin(π))

)

,

therefore

q∗(π) = k∗(π) +
αγ

αβ + αγ + βγ
(Smax(π) − Cmin(π))

=
αγ + βγ

αβ + αγ + βγ
(Smax(π) − Cmin(π)) + Cmin(π).

For the equations Cmin(π) = pπ(1) and Smax(π) =
n−1
∑

j=1

pπ(j)

we obtain values of the parameters k∗(π) and q∗(π).

Property 2. There exists an optimal solution of P3, in which

two jobs with the largest processing times are executed on the

first and the last positions. Moreover, it does not matter if the

job with the largest processing time is performed on the first

position or on the last one.

Proof. It follows from Lemmas 2 and 3 and the expression

(7) that for a given π and the optimal values k∗(π) and q∗(π)
the criterion (6) is equal to:

g(π, k∗(π), q∗(π)) =
αβγ

αβ + αγ + βγ
(Smax(π) − Cmin(π))

=
αβγ

αβ + αγ + βγ





n−1
∑

j=1

pπ(j)−pπ(l)





=
αβγ

αβ + αγ + βγ





n
∑

j=1

pj − pπ(l) − pπ(n)



 .

It follows from the above expression that the criterion val-

ue (6) is minimal, if two jobs with the largest processing times

are executed on the first position and on the last one.

The optimal algorithm solving P3 can be realised in O(n)
time, since the values of the parameters k∗ and q∗ depend

only on the values of the processing times of the jobs which

are executed on the first and the last positions of π∗, i.e., the

jobs with the largest processing times and the remaining jobs

can be scheduled in π∗ in an arbitrary order.

3.2. Optimal solution of P4. Before we start with searching

the optimal solution of P4, at first we consider the following

lemmas, in which we assume that Smin = min
j∈J

Sj(π) = 0.

Lemma 4. For a given schedule π of P4, the optimal values of

the parameters q∗(π) and k∗(π) satisfy the following inequal-

ities: q∗(π) ≥ Smin(π) and k∗(π) ≤ Cmax(π), respectively.

Proof. It is similar to the proof of Lemma 1.

It follows from Lemma 4, that for any feasible π the cri-

terion value (6) is equal to:

g(π, k∗(π), q∗(π))

= max

(

α max
j∈J

Ej , β |q∗(π) − k∗(π)| , γ max
j∈J

Tj

)

= max

(

α max
j∈J

(max (pj + q∗(π) − Cj(π), 0)) ,

β (k∗(π) − q∗(π)) , γ max
j∈J

(max (0, Cj(π) − k∗(π)))

)

= max (αq∗(π), β (k∗(π) − q∗(π)) , γ (Cmax − k∗(π))) .
(10)

Some optimal solution properties for P4, which concern

the optimal schedule of jobs and the optimal values of k∗ and

q∗ are given below.

Property 3. For a given schedule π of jobs in P4, the optimal

values of the parameters q∗ and k∗ are equal to:

if

pmax ≤

αγ
n
∑

j=1

pj

αβ + αγ + βγ

then

q∗ =

βγ
n
∑

j=1

pj

αβ + αγ + βγ

and

k∗ =

(αγ + βγ)
n
∑

j=1

pj

αβ + αγ + βγ
,

otherwise

q∗ =

γ

(

n
∑

j=1

pj − pmax

)

α + β
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and

k∗ =

γ
n
∑

j=1

pj + αpmax

α + γ
,

respectively.

Proof. It follows from Lemmas 2 and 3 and the expression

(10), that:

g (π, k∗(π), q∗(π)) = αq∗(π) = β (k∗(π) − q∗(π))

= γ (Cmax − k∗(π)) =
αβγCmax

αβ + αγ + βγ
,

and we can calculate the expressions for the parameters q∗(π)
and k∗(π). However, it may appear that the parameters q∗(π)
and k∗(π) calculated in such a way do not satisfy our as-

sumption that pmax + q ≤ k, i.e. it may turn out that

pmax > k∗(π) − q∗(π). Taking into consideration the above

situations, we have:

g (π, k∗(π), q∗(π)) = β(k∗(π) − q∗(π))

= max

(

βpmax,
αβγCmax

αβ + αγ + βγ

)

= β max









pmax,

αγ
n
∑

j=1

pj

αβ + αγ + βγ









.

(11)

If pmax ≤

αγ
n
∑

j=1

pj

αβ + αγ + βγ
, then based on Lemma 3 and

the expression (10), we have
(

u∗ =
A2A3A

A1A2 + A1A3 + A2A3

)

⇒

(

q∗ =
βγCmax

αβ + αγ + βγ

)

,

therefore

q∗ =

βγ
n
∑

j=1

pj

αβ + αγ + βγ
,

moreover it follows from the expression (11) that

k∗ = q∗ +

αγ
n
∑

j=1

pj

αβ + αγ + βγ
=

(αγ + βγ)
n
∑

j=1

pj

αβ + αγ + βγ
.

If pmax >

αγ
n
∑

j=1

pj

αβ + αγ + βγ
, then the minimal size of due

window is equal to pmax and it follows from (11) that the

minimal value of the criterion (6) is equal to βpmax. This

value of the criterion exists for many pairs of values of the

parameters k and q (where pmax + q ≤ k). It follows from

the expression (10), that one of these pairs is the solution of

the following system of the equations:
{

αq = γ (Cmax − k)

k − q = pmax.

Notice that values of the parameters k∗ and q∗ computed

above do not depend on a schedule π of jobs.

The optimal algorithm solving P4 can be realised in O(n)
time, since the values of the parameters k∗ and q∗ depend on-

ly on the sum of all the job-processing times and an arbitrary

job order is an optimal one π∗.

It is worth to stress that although the models of due win-

dows of P3 and P4 are symmetric, however the solutions of

P3 and P4 are not symmetric, e.g. for P4 π∗ is an arbitrary

one, but for P3 two jobs with the largest processing times are

scheduled on the first and last positions in π∗.

4. Conclusions

We considered four new problems of scheduling jobs on

a single processor where a due window should be assigned

to each job. In the considered problems we minimized the

criterion, which consisted of the following parts: the max-

imum or total earliness and tardiness and the due window

parameters. For the problems with the due window mod-

el
〈

d′j = pj + q1; d
′′

j = pj + q2

〉

the most important result is

Theorem 1 in which we established the mirror image of so-

lutions of the considered problems and the problems known

from the scientific literature. Due to this theorem we can op-

timally solve the considered problems. In the future we are

going to generalize Theorem 1 to solve the case with parallel

processors.

For the problems with the due window models
〈

d′j = k; d′′j = pj + q
〉

and
〈

d′j = pj + q; d′′j = k
〉

we proved

the optimal solutions properties which concerned only

minmax-type criterion. In the future we are going to widen

our consideration to solve cases with the sum-type criterion.
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