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Application of Duhamel’s theorem in the thermal field analysis

of a DC cable with two layers of insulation
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Abstract. In the paper we presented an asymptotic method of determination of the transient thermal field in a three-zone cable (i.e. in a

core and in two layers of insulation). A basis of our method was decomposition of the system. We considered separately the region of the

core, which we modelled by a concentrated element of the first order. In turn, we treated the two-zone region of insulation as the system

of distributed parameters. In the analysis we applied Duhamel’s theorem and the method of separation of variables. Eigenvalues of the

boundary-initial problem and coefficients of eigenfunctions we determined numerically. In the result we obtained spatial-temporal heat-up

curves of the investigated cable. Our results we presented in a graphic form.
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1. Introduction

Nowadays transmission DC systems become more and more

important. They have many advantages [1] (among others

power losses and voltage drop in DC systems are smaller

comparing with analogous AC systems) . In the Future sub-

sequent increase of application of DC leads and cables is ex-

pected. Technological development will enable manufacture

of conducting polymers and small size modules converting

high voltage DC into a low one [2, 3]. For obvious reasons

thermal processes dynamics has significant influence on the

life time of current lines. Therefore the transient thermal field

analysis in transmission DC systems has a great importance.

The paper refers to the recent publication [4]. In [4] the

asymptotic method of analysis of the transient thermal field

in a cable with single insulation layer was presented. The

basis of considerations was decomposition of the system. In

the present article the range of applications of the mentioned

method was considerably extended. Namely, an additional

(third) region of the cable was considered. This way a model

of the system with two layers of insulation was developed.

Cables of this type are characterized by better electrical and

mechanical durability. In the consequences they are more re-

sistant to external factors.

A cross section of the investigated cable is shown in Fig. 1

(without preserving proportions between the radii of partic-

ular layers). The internal region is a copper core (index 1).

The middle zone is rubber insulation (index 2). The external

coat consists of polyvinyl chloride PVC (index 3). The stated

problem relies on determination of the spatial-temporal distri-

bution of a temperature in the described cross section. Basic

advantage of the proposed solution is the analytical form of

results. They base on the system decomposition on a conduct-

ing and non-conducting part. Duhamel’s theorem [5, 6] and

the method of variables separation [7, 8] are applied in the

analysis. However step characteristics of the system are not

orthogonal functions in the rings of insulation. That is the

basic mathematical difficulty which did not appear in [4]. For

this reason some arguments of determined distributions are

computed numerically.

Fig. 1. Cross-section of the model of a cable with two layers of

insulation

A bundle structure of the core significantly mitigate an

eventual skin-effect for the AC flow. Lack of additional con-

ducting elements excludes inducing eddy currents in the cable

lamination. For this reasons the presented analysis can be re-

ferred to an AC current of the equivalent rms value.

2. Cable decomposition on the conducting and

non-conducting part. The boundary-initial

problem of the thermal field in insulations

The density of a direct current is the same in the whole cross

section of a core. Besides its thermal conductivity is signifi-

cantly larger than conductivity of insulating layers (in case of

a copper, rubber and PVC over two thousand times). In the

results it can be assumed, that after switch on of the pow-
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er supply the core is heating uniformly in its whole volume.

It means that the selected conducting sub-region can be ap-

proximated by a concentrated inert element of the first order.

Its step response is well known [9]

T1 (r, t) = T1 (t) = Ta + νll

(

1 − e−
t

τc

)

for t > 0 and 0 ≤ r ≤ R1,
(1)

where: T1 (r, t) – temperature distribution in the core, r
– radial coordinate, t – time, Ta – ambient temperature,

νll = Tll − Ta, Tll – sustained admissible temperature of

middle insulation, τc – time constant of the core.

A time constant of the core was determined similarly like

in [10], but with a greater error. It results from the mini-

mization of a measure of the temperature discontinuity on

two boundaries r = R1 and r = R2 (in [10] only one

boundary was discussed). Other estimations of τc were given

in [4].

The second selected sub-region is the concentric system

of rings: insulation (R1 ≤ r ≤ R2) and coat (R2 ≤ r ≤ R3),

where Ri – radii: internal (i = 1) and exterior (i = 2) of the

middle insulation and cable (i = 3). Heat flows from the core

to ambient through the layers of insulation. In the considered

sub-system spatial temperature changes cannot be neglected

because of cooling. It leads to the model of distributed para-

meters. It is described by the boundary-initial problem, which

is formulated with respect to thermal increases

vi(r, t) = Ti(r, t) − Ta, (2)

where: Ti (r, t) – spatial-temporal distributions of a tempera-

ture, i = 2 (for insulation), i = 3 (for the coat). Temperature

increases in the two-ring system are described by the equation

of heat conduction [5, 11–13]

∂2vi (r, t)

∂r2
+

1

r

∂vi (r, t)

∂r
− 1

χi

∂vi (r, t)

∂t
= 0,

for Ri−1 ≤ r ≤ Ri, t > 0 and i = 2, 3,

(3a)

where: χi = λi/(ciδi) – diffusivity, λi – thermal conductivi-

ty, ci – specific heat, δi – mass density, (i = 2 for insulation,

i = 3 for the coat).

Before the power supply switch on the system was at the

ambient temperature. Hence from (2) follow initial conditions

vi (r, 0) = 0 for Ri−1 ≤ r ≤ Ri and i = 2, 3. (3b)

Because the core and insulation adhere tight to each other,

on the boundary circle (r = R1) increases have to be con-

tinuous. Taking advantage of (2) and (1) the first boundary

condition was obtained

v2 (R1, t) = νll

(

1 − e−
t

τc

)

for t > 0. (3c)

The outer surface of a cable is giving out the heat by

convection and radiation. Hence follows the second boundary

condition [14, 15]

∂v3 (r, t)

∂r
|r=R3

= − ε

λ3

v3 (R3, t) for t > 0, (3d)

where ε denotes the total heat transfer coefficient.

Insulation and the coat of a cable are closely adherent

to each other. Continuity conditions of the temperature in-

crease and heat flux on the boundary of regions are then

satisfied

v2 (R2, t) = v3 (R2, t) , (3e)

λ2

∂v2 (r, t)

∂r
|r=R2

= λ3

∂v3 (r, t)

∂r
|r=R2

, (3f)

for t ≥ 0. In order to solve the above boundary-

initial problem (3a-f) Duhamel’s theorem was utilised

[5, 6]. It is particularly convenient for zero ini-

tial conditions (3b). Besides boundary conditions (3c,d)

do not depend on spatial coordinates. In the result

of that Duhamel’s theorem simplifies to the following

form

vi (r, t) =
1

νll

∂

∂t

t
∫

0

hi (r, ζ) v2 (R1, t − ζ) dζ

for Ri−1 ≤ r ≤ Ri, t > 0 and i = 2, 3,

(4)

where: hi (r, t) – step responses of the rings for excita-

tion νll1(t) given on the boundary r = R1 with zero ini-

tial conditions (i = 2 for insulation, i = 3 for the coat),

1(t) – unit step function, ζ – dummy variable of integra-

tion. The right side of relation (4) was divided by amplifi-

cation νll. It was taken into account in step characteristics

hi (r, t).

3. Step characteristics of non-conducting

regions

3.1. Boundary-initial problem of step responses and their

functions. It follows from (4) that condition for determina-

tion of the exponential response for excitation (3c) is knowl-

edge of the fundamental solution (in this case step charac-

teristics hi (r, t) for i = 2, 3). They are described by the

boundary-initial problem almost identical to (3a-f). Namely,

in relations (3a,b,d,e,f) it is sufficient to exchange νi (r, t) by

hi (r, t) (for i = 2 or i = 3), what is denoted by the symbol

vi (r, t) → hi (r, t). Only the right side of (3c) changes in

a significant way

h2 (R1, t) = νll for t > 0. (5)

Step responses were determined by superposition of states

[11, 14]

hi (r, t) = his (r) + hit (r, t) , (6)

where: i = 2 or i = 3, his (r) – stationary compo-

nent
(

lim
t→∞

hi (r, t) = his(r)
)

, hit (r, t) – transient compo-

nent
(

lim
t→∞

hit (r, t) = 0
)

.

A boundary problem for the stationary component was ob-

tained by exchange of functions vi (r, t) → his (r) in (3a,d,e,f)

and h2 (R1, t) → h2s (R1) in (5). In the result of that partial

derivatives will change to the ordinary ones with respect to

r, but become zero with respect to t. Then by virtue of the

formula for the product derivative notation of the left side (3a)

(for i = 2, 3) was shortened. After double integration of the

sides of the changed Eq. (3a) (with i = 2, 3) and constants
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determination from modified conditions (3d,e,f), (5) it was

finally obtained

h2s (r) = νll









1 +
1

λ2

R3ε
+

λ2

λ3

ln
R3

R2

+ ln
R2

R1

ln
R1

r









for R1 ≤ r ≤ R2,

(7a)

h3s (r) = νll









1

λ3

R3ε
+ ln

R3

R2

+
λ3

λ2

ln
R2

R1

(

ln
R3

r
+

λ3

R3ε

)









for R2 ≤ r ≤ R3.
(7b)

In turn, the boundary-initial problem for transient com-

ponents follows from (6). The problem of a step response

and stationary component was utilized, as well. Finally it is

sufficient to exchange in (3a,d,e,f) vi (r, t) → hit (r, t) (for

i = 2, 3). Only initial conditions (3b) will change

hit (r, 0) = −his (r)

for Ri−1 ≤ r ≤ Ri and i = 2, 3,
(8a)

and the boundary one (5)

h2t (R1, t) = 0 for t > 0. (8b)

The modified partial differential equations type (3a) were

solved by the separation of variables [7, 8, 11]. It leads to

determination of eigenfunctions: Bessel’s (J0 (z)) and Neu-

mann’s (Y0 (z)) of zero order with respect to the radial coor-

dinate and exponential with respect to the time. In addition in

the region of a coating the number of constants was reduced

taking advantage of Hankel’s condition (3d) (after exchange

v3 (r, t) → h3t (r, t)). Finally based on (6) we obtained

h2 (r, t) = h2s (r)

+

∞
∑

n=1

[

PnJ0

(

αn

r

R1

)

+ VnY0

(

αn

r

R1

)]

e
−χ2α2

n
t

R2
1

for R1 ≤ r ≤ R2, t > 0,
(9a)

h3 (r, t) = h3s(r) +

∞
∑

n=1

ΓnZ0

(

βn

r

R1

)

e
−χ3β2

n
t

R2
1

for R2 ≤ r ≤ R3 and t > 0,

(9b)

where

Zk

(

βn

r

R1

)

df
=Jk

(

βn

r

R1

) [

Y0

(

βn

R3

R1

)

− ηβnY1

(

βn

R3

R1

)]

−Yk

(

βn

r

R1

) [

J0

(

βn

R3

R1

)

− ηβnJ1

(

βn

R3

R1

)]

for k = 0 or k = 1,

(9c)

(αn, βn) – eigenvalues of the boundary-initial problem of the

step response for transient components respectively for i = 2

or i = 3 (i.e. constants of separation in particular zones

multiplied by R1), η = λ3/(R1ε) – dimensionless constant,

(Pn, Vn, Γn) – coefficients of the functions described the field

in insulation (Pn, Vn) and in the outer coat of a cable (Γn),
(h2s(r), h3s(r)) – stationary components of the step response

given by formulas (7a,b).

The coefficients Pn, Vn, Γn and eigenvalues αn, βn ap-

pearing in (9a,b) have to be determined, as well.

3.2. Coefficients of functions of the step responses. In-

equality to zero of the coefficients Pn, Vn, Γn is sufficient

for the existence of transient components hit(r, t) in distri-

butions (9a,b). In order to determine the existence condition

of hit(r, t) (9a,b) was substituted to (3e,f) (after exchange

vi(r, t) → hi(r, t) for i = 2, 3) and boundary condition (8b)

was utilized. This way a homogeneous system of three equa-

tions with respect to Pn, Vn, Γn was obtained. This system

has non-trivial solutions (i.e. Pn 6= 0, Vn 6= 0, Γn 6= 0), when

its main determinant is equal to zero

∆(αn, βn) = βnZ1

(

βn

R2

R1

) (

Y0 (αn) J0

(

αn

R2

R1

)

− J0 (αn)Y0

(

αn

R2

R1

))

+
λ2

λ3

αnZ0

(

βn

R2

R1

) (

J0 (αn) Y1

(

αn

R2

R1

)

−Y0 (αn)J1

(

αn

R2

R1

))

= 0,

(10)

where Zk

(

βn
R2

R1

)

is computed from (9c) introducing r = R2

for k = 0 or k = 1.

Condition (10) is the equation of eigenvalues. It is satis-

fied by the two series of solutions: αn, βn. For this reason the

sequences

{

PnJ0

(

αn

r

R1

)

+ VnY0

(

αn

r

R1

)}

in the range

〈R1, R2〉 and

{

Z0

(

βn

r

R1

)}

in the range 〈R2, R3〉 do not

form orthogonal systems of functions with the weight r. The

coefficients Pn, Vn, Γn cannot be determined in a classic

way on the basis of properties of generalized Fourier-Bessel

series [7]. For that reason the summation of series (9a,b) was

limited to a finite number L of terms.

In order to determine coefficients Γn the transient com-

ponent of relation (9b) was substituted to (8a) for i = 3 with

r ∈ 〈R2, R3〉
L

∑

n=1

ΓnZ0

(

βn

r

R1

)

= −h3s (r) . (11)

It follows from the above, that

L
∑

n=1

Γn

[

Z0

(

βn

r

R1

)

, rZ0

(

βk

r

R1

)]

= −
[

h3s (r) , rZ0

(

βk

r

R1

)]

,

(12a)
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where the following scalar products [7, 8] were introduced

with the weight r in the interval 〈R2, R3〉

Ωnk =

[

Z0

(

βn

r

R1

)

, rZ0

(

βk

r

R1

)]

=

R3
∫

R2

rZ0

(

βn

r

R1

)

Z0

(

βk

r

R1

)

dr

=



































































R1R2

βnZ1

�
βn

R2

R1

�
Z0

�
βk

R2

R1

�
−βkZ0

�
βn

R2

R1

�
Z1

�
βk

R2

R1

�
β2

k
−β2

n

for n 6= k,

1

2
R2

3

{

[

Z0

(

βk

R3

R1

)]2

+

[

Z1

(

βk

R3

R1

)]2
}

− 1

2
R2

2

{

[

Z0

(

βk

R2

R1

)]2

+

[

Z1

(

βk

R2

R1

)]2
}

for n = k,

(12b)

Λk = −
[

h3s (r) , rZ0

(

βk

r

R1

)]

= −
R3
∫

R2

rh3s (r) Z0

(

βk

r

R1

)

dr

=
−vll

λ3

εR3

+ ln
R3

R2

+
λ3

λ2

ln
R2

R1

[

λ3R1

εβk

Z1

(

βk

R3

R1

)

+
R2

1

β2

k

(

Z0

(

βk

R2

R1

)

− Z0

(

βk

R3

R1

))

− R2R1

βk

Z1

(

βk

R2

R1

) (

ln
R3

R2

+
λ3

εR3

)]

.

(12c)

Then coefficients Γn can be determined from the follow-

ing system of equations

L
∑

n=1

ΩnkΓn = Λk for k = 1, 2, 3, ...L. (13)

In turn, to determine coefficients Pn, Vn the transient com-

ponent of relation (9a) was substituted to (8a) for i = 2 with

r ∈ 〈R1, R2〉. Then a set of scalar products with the weight

r in the given interval was formed



















































L
∑

n=1

[

PnJ0

(

αn

r

R1

)

+ VnY0

(

αn

r

R1

)

, rJ0

(

αk

r

R1

)]

= −
[

h2s (r) , rJ0

(

αk

r

R1

)]

,

L
∑

n=1

[

PnJ0

(

αn

r

R1

)

+ VnY0

(

αn

r

R1

)

, rY0

(

αk

r

R1

)]

= −
[

h2s (r) , rY0

(

αk

r

R1

)]

.

(14)

In order to simplify notation (14) the following denota-

tions were introduced

Φnk =

R2
∫

R1

rJ0

(

αn

r

R1

)

J0

(

αk

r

R1

)

dr

=







































































R1R2

αnJ1

�
αn

R2

R1

�
J0

�
αk

R2

R1

�
−αkJ1

�
αk

R2

R1

�
J0

�
αn

R2

R1

�
α2

n−α2

k

−R2

1

αnJ1 (αn)J0 (αk) − αkJ1 (αk)J0 (αn)

α2
n − α2

k

for n 6= k

1

2
R2

2

[

J2

0

(

αk

R2

R1

)

+ J2

1

(

αk

R2

R1

)]

− 1

2
R2

1

[

J2

0
(αk) + J2

1
(αk)

]

for n = k,
(15a)

Ψnk =

R2
∫

R1

rY0

(

αn

r

R1

)

J0

(

αk

r

R1

)

dr

=























































R1R2

αnJ0

�
αk

R2

R1

�
Y1

�
αn

R2

R1

�
−αkJ1

�
αk

R2

R1

�
Y0

�
αn

R2

R1

�
α2

n−α2

k

−R2

1

αnY1 (αn)J0 (αk) − αkJ1 (αk)Y0 (αn)

α2
n − α2

k

for n 6= k

G
2,1
2,4

�
αk

R2

R1
, 1

2

���� 1

2
,− 1

2

0,0,−1,− 1

2

�
R2

2
−G

2,1
2,4

�
αk, 1

2

���� 1

2
,− 1

2

0,0,−1,− 1

2

�
R2

1

2
√

π

for n = k,

(15b)

Gm,n
p,q

(

x, r

∣

∣

∣

∣

a1, ... ,ap

b1, ... ,bq

)

– G Meijer’s function [16, 17],

Wk = −
R2
∫

R1

rh2s (r) J0

(

αk

r

R1

)

dr

= −vll

R1R2

αk

J1

(

αk

R2

R1

)

+ vll

R2

1

αk

J1(αk)

− vll

λ2

εR3

+
λ2

λ3

ln
R3

R2

+ ln
R2

R1
(

R1R2

αk

ln
R1

R2

J1

(

αk

R2

R1

)

−R2

1

α2

k

J0

(

αk

R2

R1

)

+
R2

1

αk

J0(αk)

)

.

(15c)

Scalar products in the bottom line of (14) were computed

in the same way. In the result (14) transforms into the sys-

tem of 2L independent equations, from which Pn, Vn can be

determined


















L
∑

n=1

[PnΦnk + VnΨnk] = Wk for k = 1, 2, 3, ...L,

L
∑

n=1

[PnOnk + VnUnk] = Qk for k = 1, 2, 3, ...L.

(16)
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Scalar products Onk, Unk, Qk occurring in the bottom

line of the system (16) are determined by similar relations

as (15a), (15b), (15c), adequately. Namely, in order to obtain

Unk and Qk it is necessary to exchange Jk(...) by Yk(...) in

(15a) and (15c) with preserve of the same arguments and or-

ders of cylindrical functions. To obtain Onk it is necessary to

exchange in (15b) for n 6= k function Jk(...) by Yk(...) and

vice versa for unchanged arguments and orders of the func-

tions. The scalar product Onk for n = k is of the identical

form as (15b) for n = k.

In computations of (12b,c), (15a,b,c) there were utilized:

– integrals of cylindrical functions given in [16],

– relation following from formula (16),

– integration method by the change of a variable and by parts,

– Meijer’s functions G (15b) for n = k, which are defined

by means of curvilinear integrals [16, 17].

The systems of linear Eqs. (13) and (16) enable to deter-

mine investigated coefficients Pn, Vn, Γn of the functions of

characteristics. However prior knowledge of eigenvalues αn,

βn of the step responses is required.

3.3. Eigenvalues of the step responses. Two series of eigen-

values αn, βn cannot be determined from one Eq. (10) (i.e.

from the existence condition of transient components). In con-

nection with that, (10) was supplemented by the continuity

condition of the step characteristics on the boundary of re-

gions (i.e. (3e) after exchange vi(r, t) → hi(r, t)). Conjunc-

tion (10) and modified (3e) is a basis of the author’s algorithm

for determination of eigenvalues. Their consecutive pairs are

computed in the following after each other blocks (Fig. 2).

First a starting range of the investigated α1, β1 is determined.

For this purpose a rough measure of discontinuity of the step

characteristics on the circle r = R2 is minimised. In i-th

iteration the mentioned measure is expressed as

wi(β1i) = Max
t

|h3(R2, t, β1i) − h2(R2, t, α1i)| , (17)

where index i sufficiently increases a value of β1i. Whereas

α1i depends on β1i by virtue of Eq. (10). The right end of

the investigated sector is found, when the value of (17) stops

to decrease (left end is zero). Then eigenvalues α1, β1 are de-

termined. They are found by reduction of the starting sector.

For this purpose elements of the method of golden cut were

utilised [18]. Computed this way points β′
1
, β′′

1
of a cut are

substituted to equation of eigenvalues (10). After its solution

one obtains α′
1
, α′′

1
. These are the first terms of proper series.

Then two functions were defined

f1 (t, β′
1
) = h3 (R2, t, β

′
1
) − h2 (R2, t, α

′
1
) , (18a)

f2 (t, β′′
1
) = h3 (R2, t, β

′′
1
) − h2 (R2, t, α

′′
1
) . (18b)

On this stage the characteristics h2, h3 take into account

the steady component and the first term of a transient com-

ponent. Functions (18a,b) change signs with the time passing

by and they describe temperature differences on the bound-

ary of regions for r = R2. In the continuation the sums of

modules of the global maximum and minimum of functions

(18a,b) are formed with respect to time (which informs a sub-

script t)

g (β′
1
) =

∣

∣

∣Max
t

f1 (t, β′
1
)
∣

∣

∣ +
∣

∣

∣Min
t

f1 (t, β′
1
)
∣

∣

∣ , (19a)

g (β′′
1
) =

∣

∣

∣Max
t

f2 (t, β′′
1
)
∣

∣

∣ +
∣

∣

∣Min
t

f2 (t, β′′
1
)
∣

∣

∣ . (19b)

Fig. 2. Block diagram of algorithm for determination of eigenvalues

Formulas (19a,b) can be interpreted as a sum of the biggest

deviations of functions (18a,b) with respect to the level ze-

ro (for which ideal continuity of the field for r = R2 is

fulfilled). Hence the continuity condition of step characteris-

tics for r = R2 is fulfilled with maximal accuracy for the

minimum of function g. In accordance with the method of

golden cut [18], the minimum is searched in the reduced in-

terval, respectively. The operation is controlled by inequality

g(β′
1
) ≤ g(β′′

1
) (Fig. 2). When a width of the interval reaches

value less than µ, the first pair of eigenvalues is determined.

If condition Max
t

{|f1(t, β
′
1
)|} ≤ γ is satisfied, then the algo-

rithm is terminated. Otherwise investigation of the next pair

of eigenvalues begins. Executed operations are almost analog-

ical as the one described in the above. The most important

difference relies on taking into account of consecutive terms

in relations (9a,b) (i.e. more accurate description of transient

components). Obviously prior determined eigenvalues are the

left ends of the next starting intervals.
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4. Thermal field of non-conducting regions

Taking into account formula (2), the ambient temperature

should be added to distributions (9a,b)

Hi(r, t) = Ta + hi(r, t) for Ri−1 ≤ r ≤ Ri,

t > 0 and i = 2, 3.
(20)

Then in relations (3c), (9a,b) variables were changed

(t → t− ζ, t → ζ). Such a modified (3c), (9a,b) were substi-

tuted to (4). After integration with respect to ζ, differentiation

with respect to t, arrangement and consideration of (2), in-

vestigated distributions of the temperature in the system were

determined

T2 (r, t) = Ta + h2s (r)
(

1 − e−
t

τc

)

+

L
∑

n=1

R2

1

(R2

1
− χ2α2

nτc)
[

PnJ0

(

αn

r

R1

)

+ VnY0

(

αn

r

R1

)] (

e
−χ2α2

n
t

R2
1 − e−

t
τc

)

for R1 ≤ r ≤ R2, t > 0,
(21a)

T3 (r, t) = Ta + h3s (r)
(

1 − e−
t

τc

)

+

L
∑

n=1

R2

1
ΓnZ0

(

βn

r

R1

)

(R2

1
− χ3β2

nτc)
(

e
−χ3β2

n
t

R2
1 − e−

t
τc

)

for R2 ≤ r ≤ R3, t > 0.

(21b)

It is easy to notice, that relations (21a,b) for t → ∞ de-

scribe a stationary distribution of the temperature Ti (r, t) =
Ta +his(r) (for i = 2 or i = 3). From another passage to the

limit it follows that for τc → 0 formulas (21a,b) are identical

with (20) (also for i = 2, 3).

5. Computational examples

On the basis of the presented method a computer program

was developed in the Mathematica 6.0 environment [19]. The

program computes: eigenvalues of the step responses, coef-

ficients of the field functions, spatial-temporal distributions

of the temperature (20), (21a,b) and visualises the results.

The application was run on the laptop type computer Hewlet

Packard ZE 5165 with a Pentium IV/2GHz processor.

The following data were assumed:

R2 = 0.0155 m; c2 = 1382 J/(kgK);

δ2 = 1200 kg/m3; λ2 = 0.163 W/(mK);

R3 = 0.0173 m; c3 = 1740 J/(kgK);

δ3 = 1350 kg/m3; λ3 = 0.17 W/(mK);

R1 = 0.0117 m; τc = 2150 s;

Tll = 70◦C; Ta = 25◦C;

ε = 12.86 W/(m2K); ι =
(√

5 − 1
)

/2;

µ = 10−5; νll = 45◦C;

γ = 0.05◦C.

(22)

Results were presented in a graphic form. In Fig. 3 step

characteristics (20) (for i = 2, 3) and the investigated temper-

ature profiles (21a,b) at the selected points of a cable were

drown. In turn in Fig. 4a,b deviation τc influence on heat-up

curves of middle circles: internal insulation (r/R1 = 1.162)
and the coating (r/R1 = 1.402) were presented.

Fig. 3. Step characteristics (20) for i = 2, 3 and heat-up

curves (21a,b) of the cable at the selected points of the cross-

section: A [0 ≤ (r/R1) ≤ 1] – core; B [(r/R1) = 1.162] – mid-

dle of internal insulation; C [(r/R1) = 1.325] – boundary of in-

sulation and a coating; D [(r/R1) = 1.402] – centre of a coating;

E [(r/R1) = 1.479] – cable surface

Fig. 4. Influence of a change of the core time constant on heat-up

curves (21a,b) middle layers of insulation and the coating of a cable:

A [(r/R1) = 1.162]; A [(r/R1) = 1.402]
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Verification of the developed method was carried, as well.

For this purpose obtained results were compared with com-

putations by means of a finite element method (FE) [20]. The

cross section from Fig. 1 was approximated by rectangular

axial-symmetrical elements of a different size. Required da-

ta were taken from the set (22). They were supplemented by

parameters of copper: c1 = 400 J/(kgK); δ1 = 8700 kg/m3;

λ1 = 360 W/(mK); ρ = 1.94 · 10−8Ωm. The above symbols

denote successively: specific heat, density, thermal conduc-

tivity and average resistivity in the range < Ta, Tll >. The

coefficient of strand packing is equal (Sr/Sm) = 0.7, where

Sr and Sm = πR2

1
mean its real and model cross section,

respectively. In Appendix the steady state current rating is

determined (for the given admissible sustained temperature).

By means of (A6) and (22) the current load Ill = 666.47 A

was computed.

Verification was carried out taking advantage of the pro-

gram NISA III/Heat Transfer [21]. In the result relative dif-

ferences of heat-up curves

100%
[TFE(r, t) − TD(r, t)]

TFE(r, t)
(23)

at the selected points of a cable are presented in Fig. 5. In

formula (23) TD(r, t) means spatial-temporal distribution of

the temperature obtained on the basis of Duhamel’s theorem.

The logarithmic scale was applied on the abscissa axis in Fig.

5 for more convenient observations (23) at the beginning of

a transient state.

Fig. 5. Relative differences of heat-up curves determined by the fi-

nite element method (FE) and Duhamel’s one (D) at the selected

points of a cable: A [(r/R1) = 1.081]; B [(r/R1) = 1.162] – cen-

tre of internal insulation; C [(r/R1) = 1.244]; D [(r/R1) = 1.325]
– boundary of insulation and the coating; E [(r/R1) = 1.402] –

centre of the coating; F [(r/R1) = 1.479] – cable surface

6. Final remarks

From the considerations carried out result the following re-

marks:

A) The presented method considerably simplifies the tran-

sient thermal field analysis of a cable (Fig. 1). Because it

was proved, that the three-zone system can be substituted by

a two-zone one. In the result only two series of eigenvalues

are determined instead of three, what significantly simplifies

the algorithm of their computation.

B) The obtained results have a good physical interpreta-

tion. It follows from Fig. 3, that in both layers of insulation

(1 < (r/R1) < (R3/R1)) together with increase of the ra-

dial co-ordinate the value and velocity of rising of heat-up

curves decreases. Physical reason of the above effect is grow-

ing distance of the point of observations from the heat source

(a core). At the same time the distance from the cooled surface

R3/R1 is reduced.

The heat-up curves of insulation increase considerably

more slowly than their step characteristics (Fig. 3). Then de-

spite very good propagation of heat in copper, condition (3c)

cannot be substituted by a step increase of the temperature.

C) Inaccuracy in determination of the time constant τc of

a core has some importance. As it follows from Fig. 4a,b,

its underestimation increases the velocity of rising of heat-up

curves and this way it reduces duration of the transient in

relation to the accurate profile. In turn overestimation of τc

causes opposite effects. Then deviation of τc deteriorates an

accuracy of the presented method.

D) Relative differences (23) of heat-up curves computed

by the method of finite elements (FE) and Duhamel’s one (D)

are the biggest in internal insulation (Fig. 5, curves a,b). The

maximum is circa 5.1% and it is obtained after ca 600 s. In

another points differences are smaller. The developed method

should be admitted as verified.

Appendix

In the first turn the model was considered, in which a to-

tal filling of the cross section Sm = πR2

1
by a copper core

was assumed. The current rating is a such value of the cur-

rent, which causes heat-up of the warmest points of insulation

(r = R1) to the admissible sustained temperature Tll. In the

steady state the temperature decrease Tll − Ta can be con-

nected with a generated power I2

mρλ/Sm by thermal Ohm’s

law

Tll − Ta = (Rh2 + Rh3 + Ra)I2

mρ
λ

πR2

1

, (A1)

where:

λ – length of a cable section,

Rh2 =
1

2πλ2λ
ln

R2

R1

– thermal resistance of insulation, (A2)

Rh3 =
1

2πλ3λ
ln

R3

R2

– thermal resistance of a coat, (A3)

Ra =
1

2πR3ελ
– thermal resistance of air. (A4)

In reality the cross section of a core (Sr) is smaller than

Sm = πR2

1
. Thermal effects will be the same, if the current

density in a real system and in the modelled one is the same

Ill =
Sr

πR2

1

Im. (A5)
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After substitution of (A2)–(A4) to (A1) Im was deter-

mined. After taking advantage of (A5) it was finally obtained

Ill =
Sr

R1

√

2λ2λ3εR3 (Tll − Ta)

ρ [λ3εR3 ln (R2/R1) + λ2εR3 ln (R3/R2) + λ2λ3]
.

(A6)

With the aid of the above formula a value of the current

was computed, which was needed for verification of the earlier

presented method.
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