
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 57, No. 1, 2009

The Knapsack-Lightening problem and its application

to scheduling HRT tasks

J.R. NAWROCKI∗, W. COMPLAK, J. BŁAŻEWICZ, S. KOPCZYŃSKA, and M. MAĆKOWIAK

Institute of Computing Sci., Poznan University of Technology, 60-965 Poznan, Poland

Abstract. In hard real-time systems timeliness is as important as functional correctness. Such systems contain so called hard real-time tasks
(HRT tasks) which must be finished by a given deadline. One of the methods of scheduling of HRT tasks is periodic loading introduced by
Schweitzer, Dror, and Trudeau. The paper presents an extension to that method which allows for deterministic utilization of cache memory
in hard real-time systems. It is based on a new version of the Knapsack problem named Knapsack-Lightening. In the paper the Knapsack-
Lightening problem is defined, its complexity is analyzed, and an exact algorithm along with two heuristics are presented. Moreover the
application of the Knapsack-Lightening problem to scheduling HRT tasks is described.

Key words: algorithms, computational complexity, knapsack problem, greedy algorithms, branch and bound scheduling, real-time systems,
cache memory, periodic loading.

1. Introduction

Assume you are in charge of an expedition consisting of
a number of people with knapsacks. Your expedition ap-
proaches an old suspension bridge over a precipice. It is rather
in a bad condition. To minimize risk of collapsing the bridge,
the knapsacks will have to be carried over one by one. Still
you are not sure it will be enough. Some knapsacks are real-
ly heavy. Then a few local inhabitants appear and they make
a proposal: You can leave some goods of your knapsacks on
one side of the bridge and – if you pay – they will carry them
over to the other side. What is original, the local inhabitants
want you to pay not by weight of the products they will carry
over, but by product type. For instance, all the water you have
in all the knapsacks they are ready to transport just for $2
(they are very clever: they know there is a spring on the other
side of the bridge, so they will not have to carry it over at
all). Other product types are bread, meat etc. A part of the
deal is that you are not allowed to move products between the
knapsacks.

You are going to accept the offer. But your budget is lim-
ited, so you have to make a wise selection of product types
to be transported by the local inhabitants. You know weight
of each knapsack and contents of each product type in each
knapsack (e.g. in kilograms). To minimize risk of collaps-
ing the bridge you are going to minimize maximum knapsack
weight.

To describe the problem more formally the following sym-
bols will be used (len s denotes length of sequence s):

p: Price list (sequence of integers greater than 0); p(t)
is price to be paid to the local inhabitants for trans-
portation of products of type t (t = 1, 2, .., len p).

M: Money (an integer greater than 0); maximum
amount of money that can be spent on the trans-
port operation.

d: Decision sequence (sequence of numbers 0 or 1);
there is a decision about each item from the price
list p (i.e. len d = len p) and d(t) = 1 means that
products of type t will be carried over by the local
inhabitants.

D(n): Set of all possible decision sequences of length n
(for instance D(2)= {[00], [01], [10], [11]).

w: Weight (sequence of integers greater than 0); w(k)
is weight of knapsack k (k = 1, 2, .., len w).

c: Contents (a matrix of integers not less than 0);
rows correspond to knapsacks and columns to prod-
uct types; knapsack k contains c(k, t) kilograms of
product of type t (t = 1, 2, .., len p; k = 1, 2 ..,
len w).

Let H (H stands for Heaviest) be a function assigning to
each decision sequence d weight of the heaviest knapsack, i.e.
domain of H is D(len p) and its values are from N. H can
be defined as follows:

H(d) = max k∈{1,...,lenw}

{

w(k) −
∑

t∈{1,...,lenp}c(k, t)
}

.

(1)
The Knapsacks Lightening problem (KL) can be stated in

the following way. Given money M , price list p, knapsacks
initial weights w, and contents matrix c:

minimizeH(d)overd ∈ D(lenp), (2)

subject to
∑

t∈{1,...,lenp}p(t) · d(t) ≤ M. (3)

Solution to the Knapsacks Lightening problem will be de-
noted as zKL.

∗e-mail: Jerzy.Nawrocki@put.poznan.pl

71

J.R. Nawrocki, W. Complak, J. Błażewicz, S. Kopczyńska, and M. Maćkowiak

The aim of the paper is to investigate the Knapsacks
Lightening problem. In Sec. 2 it is shown that Knapsacks
Lightening is strongly NP-hard. A polynomial transforma-
tion is described from the Max-Min Knapsack problem [1, 2]
to Knapsacks Lightening. The transformation indicates that
Knapsacks Lightening is, in some sense, a generalization of
the Max-Min Knapsack problem. Two greedy heuristics are
presented in Sec. 3. One of them is used by an exact algo-
rithm discussed in Sec. 4 (it is based on the branch-and-bound
strategy). In Sec. 5 computational experiments are described
that aimed at evaluation of the proposed greedy heuristics.
In those experiments we used the exact algorithm presented
in Sec. 4. Section 6 presents application of the Knapsacks
Lightening problem to scheduling of hard real-time tasks for
computers with cache memory.

2. Complexity of Knapsacks lightening

Complexity of the Knapsacks Lightening problem is described
by Theorem 1.

Theorem 1. The Knapsacks Lightening problem is strongly
NP-hard.

Proof. A polynomial transformation from the Max-Min Knap-
sack problem (which is known to be strongly NP-hard [1, 2])
to Knapsacks Lightening will be shown. The former will be
denoted as MMK, the latter as KL.

Decision version of KL, KL-D, contains all the parame-
ters listed in the previous section and additional parameter h
which is an integer not less than zero. The question is if there
exists d ∈D(len p) such that

H(d) ≤ h

and (3) holds.
The decision version of MMK, MMK-D, has the follow-

ing input [1, 2]: knapsack capacity C, sequence of item sizes
s (each size s(i) is an integer greater than 0), number of us-
age scenarios U (U is greater than 0), value matrix v(u, i)
describing value of item i in usage scenario u (v(u, i) > 0
for i = 1, ..., lens; u = 1, ..., U) and an integer l greater
than 0. Let x be a selection sequence (len x = lens). Each
x(i) ∈ {0, 1} and x(i) = 1 means that item i is to be packed
to the knapsack. Let also X(n) denote set of all selection
sequences of length n. Moreover, let L (L for Lowest) be
a function assigning to each selection sequence x the lowest
knapsack value over all the scenarios, i.e.

L(x) = min u∈{1,...,U}

{

∑

i∈{1,...,lens} v(u, i) · x(i)
}

. (4)

In MMK-D the question is if there exists x ∈ X(len s)
such that

L(x) ≥ l, (5)

and
∑

(i∈{1,...,len] s} s(i) · x(i) ≤ C. (6)

One can solve MMK-D by transforming it to KL-D in the
following way:

M := C

p(t) := s(t) for t = 1, ..., lens (product types of KL
correspond to items in MMK);

w(k) := V , where

V = maxu∈{1,...,U} {
∑

i∈{1,...,lens}v(u, i)} for
k = 1, ..., U (KL knapsacks correspond to usage
scenarios of MMK and all the knapsacks in KL
have the same initial weight equal to maximum
possible value of the knapsack in MMK);

c(k, t) := v(k, t) for k = 1, ..., U ; t = 1, ..., lens (contents
of product type t in knapsack k equals value
item t in scenario k);

h := V – l.
That transformation is polynomial and parameters M , p,

w, c, h are bounded by the polynomial of the MMK-D prob-
lem size.

Now it will be shown that

∃d∈D(len p)H(d) ≤ h∧
∑

t∈{1,...,len p}p(t) · d(t) ≤ M, (7)

if and only if

∃x∈X(len s)L(x) ≥ l ∧
∑

i∈{1,...,len s}s(i) · x(i) ≤ C. (8)

Assume
x(i) = d(i). (9)

From the transformation it follows that

len p = len s ∧ len w = U ∧ w(k) = V ∧ c(k, t) = v(k, t).

Thus, (1) can be rewritten to the following form:

H(d) = max k∈{1,...,U}{V −
∑

t∈{1,...,len s}v(k, t) · d(t)},

where d ∈ D(len p).
Since V does not depend on k and maxk { − f(k)} =

−mink {f(k)} one obtains:

H(d) = V − min k∈{1,...,U}{
∑

t∈{1,...,len s}v(k, t) · d(t)},

where d ∈ D(len p).
According to the transformation len p = len s, so

D(len p) = X(len s). Therefore

H(d) = V − L(d). (10)

Since h = V − l, M = C, p(t) = s(t), (9), and (10),
condition (7) is equivalent to (8). Thus, MMK-D and KL-D
are equivalent under the presented transformation. This ends
the proof.

3. Greedy heuristics

Since the considered problem is strongly NP-hard, thus it is
justified to design fast heuristic algorithms. First, a “work-
bench” will be presented which can be used by different
greedy heuristics. Then, the heuristics will be discussed.

3.1. Knapsacks lightening workbench. Assume PROD-
UCT TYPE(M, w, p, c) returns product type t that is to be
removed from the knapsacks. PRODUCT TYPE is a common
interface to different greedy heuristics such as MostEffective
or GreatestImpact that are described in the next subsections:

72 Bull. Pol. Ac.: Tech. 57(1) 2009

The Knapsack-Lightening problem and its application to scheduling HRT tasks

PRODUCT TYPE(M, w, p, c) = MostEffective(M, w, p, c),
PRODUCT TYPE(M, w, p, c) = GreatestImpact(M, w, p, c).

Then elaborating a decision can be described using Ada
language:

Let RemoveProducts describe knapsack weights after re-
moving products according to decision d. More precisely,
RemoveProducts(w, c, d) = w′ if and only if

∀k∈{1,...,lenw}w
′(k) = w(k) −

∑

t∈{1,...,lenp}c(k, t) · d(t).

Assume that Heaviest(w) = k if and only if k is the heav-
iest knapsack (i.e. weight w(k) is maximum). That function
is undefined when w is an empty sequence.

Weight of the heaviest knapsack under decision suggested
by DECISION(M, w, p, c) can be computed as follows:

w′ = RemoveProducts(w, c, DECISION(M, w, p, c)

Result(M, w, p, c) = w′(Heaviest(w′)).

3.2. The MostEffective heuristic. Efficiency of an item from
the point of view of knapsack k is defined as c(k, t)/p(t)
(that resembles traditional understanding of the concept – see
e.g. [1]).

Function MostEffective returns the most effective (and fea-
sible with regard to budget M) product type. More precisely,
MostEffective(M, w, p, c) = t∗ means that product type t∗ is
a solution to the following problem:

maximizec(Heaviest(w), t)/p(t) overt = 1, ..., len p, (11)

subject to p(t) ≤ M. (12)

If there is no feasible solution to (11)–(12), then MostEf-
fective returns the NONE value.

Let zME denote weight of the heaviest knapsack for the
MostEffective heuristic, i.e. zME = Result(M, w, p, c) assum-
ing that PRODUCT TYPE(M, w, p, c) = MostEffective(M, w,
p, c).

Theorem 2. Ratio zME/zKL can be arbitrarily large.

Proof. Assume there are two knapsacks and two product
types. Let’s assume also the contents of each knapsack k is
as presented in Table 1 (N is a parameter and N > 2).

Table 1
Contents of two knapsacks with two product types

c(k, t) t = 1 t = 2

k = 1 2 N

k = 2 0 N

Assume p(1) = 1 and p(2) = N . Let M = N . The
heaviest knapsack is knapsack number 1. Efficiency of the
first type is c(1, 1)/p(1) = 2, and for the second type it is
c(1, 2)/p(2) = 1. Thus MostEffective will choose product
type 1, and there will be not enough money to transport prod-
uct type 2. That results in zME = N . The optimal solution is
to choose product type 2. Then zKL = 2. Thus, for N → ∞
also zME/zKL → ∞.

3.3. The GreatestImpact heuristic. Let MaxWeight(w, c, t)
return maximum knapsack weight after removing prod-
ucts of type t from all the knapsacks. More formally,
MaxWeight(w, c, t) = m if and only if

∀k∈{1,...,len w}w(k) − c(k, t) ≤ m

and
∃k∈{1,...,len w}w(k) − c(k, t) = m.

Function GreatestImpact returns product type that has
greatest impact on the knapsack maximum weight. More pre-
cisely, GreatestImpact(M, w, p, c) = t∗ means that product
type t∗ is a solution to the following problem:

minimize MaxWeight(w, c, t) over t = 1, ..., len p (13)

subject to p(t) ≤ M. (14)

If there is no feasible solution to (11)–(12), then Greates-
tImpact returns the NONE value.

Bull. Pol. Ac.: Tech. 57(1) 2009 73

J.R. Nawrocki, W. Complak, J. Błażewicz, S. Kopczyńska, and M. Maćkowiak

Let zGI denote weight of the heaviest knapsack for the
GreatestImpact heuristic, i.e. zGI = Result(M, w, p, c) as-
suming that PRODUCT TYPE(M, w, p, c) = GreatestImpact
(M, w, p, c).

Theorem 3. Ratio zGI/zKL can be arbitrarily large.

Proof. Assume there are two knapsacks, and four product
types. Let’s assume also the contents of each knapsack k is
as presented in Table 2 (N is a parameter and N > 2).

Table 2
Contents of two knapsacks with four product types

c(k, t) t = 1 t = 2 t = 3 t = 4

k = 1 1 1 0 N

k = 2 1 1 N 0

Assume p(1) = p(2) = 1 and p(3) = p(4) = N . Let
M = 2N . GreatestImpact will choose product type 1, 2 and
one of 3, 4. That results in zGI = N . The optimum solu-
tion is to choose products 3 and 4. Then zKL = 2. Thus, for
N → ∞ also zGI/zKL → ∞.

4. Exact algorithm

An exact algorithm can serve two purposes: it can be used
to solve small problem instances, and to evaluate precision
of various heuristics. In this section we describe a branch-
and-bound algorithm and evaluate its efficiency (in sense of
execution time).

Lower bound is acquired as minimal value of results ob-
tained by the GreatestImpact and MostEffective heuristic al-
gorithms for a given problem instance.

Upper bound is based on, what we call, LP-separate relax-

ation. It is a combination of two relaxations: the well-known
LP-relaxation (see e.g. [1]) and separate relaxation. The for-
mer replaces {0, 1} decision sets with < 0, 1 > intervals.
Separate relaxation breaks the initial problem up into a set
of single-knapsack lightening problems, which can easily be
transformed to the classical knapsack problem. To define LP-
separate relaxation of KL more formally assume

D′(m, n) = {d′(k, t) : ∀k∈{1,...,m}∀t∈{1,...,n}0 ≤ d′(k, t) ≤ 1}.

Let d′ ∈ D′(len w, len p). Then function H(d) defined
by (1) can be redefined in the following way:

H ′(d′) = max k∈{1,...,len w}{w(k)

−
∑

t∈{1,...,len p}c(k, t) · d′(k, t)}.
(15)

A relaxed version of KL can be stated as follows:

minimize H ′(d′) (16)

subject to ∀k∈{1,...,len w}

∑

t∈{1,...,len p}p(t) · d′(k, t) ≤ M

d′ ∈ D′(len w, len p).
(17)

Problem (4.2), (4.3) is equivalent to the following one:

maximize
∑

t∈{1,...,len p}ck(t) · dk(t), (18)

subject to
∑

t∈{1,...,len p}p(t) · dk(t) ≤ M

0 ≤ dk(t) ≤ 1,
(19)

where ck(t) = c(k, t), dk(t) = d′(k, t). That problem can be
easily solved using the split concept [1].

5. Experimental evaluation of greedy heuristics

In this section the experimental evaluation of two greedy
heuristic algorithms proposed in Sec. 3 is presented. The ex-
act branch-and-bound algorithm presented in Sec. 4 was used
as a base to estimate average and maximal relative error of
both heuristic algorithms.

The computational experiment was performed for 3 val-
ues of proportion of M/

∑

p(t) equal to 30%, 60% and 90%
respectively. In the first part of the experiment the response
time of exact algorithm was measured. Figure 1 summarizes
results of this phase. It is easy to notice the exponential time
complexity of the algorithm – in practice execution time for
instance of over 25 product types becomes unacceptable.

Fig. 1. Exact algorithm execution time vs. number of products for 3
different proportions of M/

P
p(t)

Another important and fortunate factor is that the response
time depends heavily on the value of proportion M/

∑

p(t)
(the smaller the value of the proportion the faster we get the
answer). It is a fortunate situation since usually the size of
cache memory is significantly (over 4 times) smaller than the
sum of the sizes of all elements.

5.1. Precision. In the next step of the computational experi-
ment the accuracy of both heuristic algorithms was evaluated.
The test suite comprised overall 15,600 test cases.

The input data was randomized 200 times for a given num-
ber of products (1 to 26) and proportion of M/

∑

p(t) in the
following way:

• first, the prices of all products were randomized in the
range < 1, 100 >,

• then the budget was computed as the product of sum of
the prices of all products and the current proportion of
M/

∑

p(t),
• next, the contents of all knapsacks was randomized in the

range < 0, 100 >,
• finally, the weights of knapsacks were computed as the sum

of all products in the knapsack.

74 Bull. Pol. Ac.: Tech. 57(1) 2009

The Knapsack-Lightening problem and its application to scheduling HRT tasks

Figures 2 and 3 depict average error of heuristic algo-
rithms for all tested proportions of M/

∑

p(t) respectively.
Presented results allow to draw a general conclusion that for
number of products greater than approximately 5 it is better
to use MostEffective heuristic algorithm because it provides
results closer to an optimal value than the ones obtained by
its counterpart. Once again a fortunate situation occurs – for
small values of M/

∑

p(t) proportion MostEffective is sig-
nificantly more accurate than GreatestImpact.

Fig. 2. Average error of heuristic algorithm GreatestImpact com-
pared to Branch-and-Bound result for all proportions of M/

P
p(t)

vs. number of products

Fig. 3. Average error of heuristic MostEffective compared to Branch-
and-Bound result for all proportions of M/

P
p(t) vs. number of prod-

ucts

Unfortunately, the average relative error increases with in-
creasing number of products.

A similar dependence can be observed while comparing
maximum relative error of Most Effective and GreatestImpact
heuristic algorithms (Figs. 4 and 5).

Fig. 4. Maximum error of heuristic algorithm GreatestImpact com-
pared to Branch-and-Bound result for all proportions of M/

P
p(t) vs.

number of products

Fig. 5. Maximum error of heuristic algorithm MostEffective com-
pared to Branch-and-Bound result for all proportions of M/

P
p(t)

vs. number of products

5.2. Execution time. The last step of the computational ex-
periment comprised comparison of performance of MostEf-
fective and GreatestImpact algorithms. The results of this
comparison (Figs. 6 and 7) prove polynomial time complexity
of both algorithms. Unfortunately, more accurate one – Most-
Effective is slower and its time complexity increases faster
with increasing number of products than it is in its counter-
part situation.

Fig. 6. Execution time of heuristic algorithm GreatestImpact for all
proportions of M/

P
p(t) vs. number of products

Fig. 7. Execution time of heuristic algorithm MostEffective for all
proportions of M/

P
p(t) vs. number of products

All tests were performed using AMD Athlon 64 3.8+ GHz
CPU testbed equipped with 512 MB of RAM and using Turbo
Delphi 10.0.

The general conjuncture after analysis of the results of all
tests is to use a combination of exact algorithm for small in-
stances of the problem (number of products less than 15) and
MostEffective algorithm for larger instances.

Bull. Pol. Ac.: Tech. 57(1) 2009 75

J.R. Nawrocki, W. Complak, J. Błażewicz, S. Kopczyńska, and M. Maćkowiak

6. Knapsacks lightening and periodic loading

with cache memory

In hard real-time systems (HRT systems) timeliness is as im-
portant as functional correctness. Aircraft control systems, nu-
clear power plants, flight control systems, car’s ABS – all of
them contain so called hard real time tasks (HRT tasks) which
must be finished by a given deadline.

One of the methods of scheduling of HRT tasks is peri-
odic loading introduced by Schwartzer, Dror, and Trudeau [3]
and further investigated by Zeng et al. [4]. In this approach we
are given a set of periodic, non-preemptive tasks to be sched-
uled on one processor (in case of a distributed system, tasks
are first allocated to single machines and then scheduled on
each of the processors). Processor time is split into a sequence
of time frames of the same size. In this context scheduling
means allocating instances of periodic tasks to time frames.
Each task is given a frame period and one has to choose for
each task a starting frame when its first instance will be ex-
ecuted. It should be done in such a way that the maximum
load over all the frames is minimized (load of a frame equals
total execution time of all the task instances assigned to that
frame). A schedule is feasible if the maximum load is not
greater than the frame size. Minimization of periodic load is
strongly NP-hard [5]. However, a number of quite effective
heuristic algorithms have been proposed [5, 3].

Periodic loading, as considered by Schweitzer, Dror, and
Trudeau [3], does not take into account cache memory. Cache
memory can speed-up execution of a program 10 times or
more [6], so it seems too important to be neglected. But for
many years in the area of HRT applications cache memory
was considered a nuisance. The reason was unpredictability.
Traditional cache memories were oriented towards minimiza-
tion of average execution time while in the area of HRT ap-
plications what really matters is worst-case behavior (many of
HRT applications are mission-critical). Recently some hard-
ware and software solutions have been proposed that make
cache memories more predictable. One of them is line thread-
ing [6] that allows fetching code and data of an HRT task
into cache memory and locking them there. Objects locked in
cache memory are called residents. By adding a cache mem-
ory and by placing some objects in it one can shorten load
of some frames (hopefully, load of mostly loaded frames)
and thus one can make a non-feasible schedule a feasible
one. Since usually a cache memory is considerably smaller
than the main memory, a combinatorial problem arises how
to choose residents of the cache memory to get a feasible
schedule. The approach studied in this section is quite sim-
ple. Scheduling is split into two stages: initial scheduling and
schedule improvement.

6.1. Initial scheduling. At this stage a tentative schedule is
generated which is based on the original version of the peri-
odic loading problem [3]. Duration of each task is estimated
with an assumption that during its execution the task will be

outside of the cache memory. Output of this stage is a se-
quence of frames with task instances assigned to them (see
Fig. 8). What really matters is load λ(ϕ)1 of each frame ϕ
that can be computed by simply adding durations of all the
tasks instances assigned to a given frame ϕ. Frame loads,
when transformed to Knapsack Lightening, will correspond
to initial knapsack weights w(k).

Fig. 8. Four frames with three periodic tasks: T1, T2, T3 (their peri-
ods are 1, 2, and 4, respectively). Assuming duration of T1 and T2
is 5, and duration of T3 is 10 one gets the following frame loads:

λ(1) = 10, λ(2) = 15, λ(3) = 10, λ(4) = 5

6.2. Schedule improvement. Given a design description one
decomposes the system into a set of elements that can be
placed in the cache memory. Those elements correspond to
procedures, arrays, class objects etc. Each element ε has its
size σ(ε) representing number of memory cells required to
store it in the cache memory. Ω describes the size of cache
memory, and the total size of elements placed in it cannot
exceed Ω.

To take into account impact of cache memory on load
λ(ϕ) of each frame ϕ, for each element ε a profit π(ε, ϕ)
is specified that describes how much λ(ϕ) will be decreased
by placing ε in the cache memory. Thus, when ε (and on-
ly ε) is in the cache memory, effective load of frame ϕ is
λ(ϕ) − π(ε, ϕ). If set of elements S are placed in the cache
memory, effective load of ϕ equals:

λ(ϕ) − Π(ϕ), where Π(ϕ) = Σε∈Sπ(ε, ϕ). (20)

Notice that π(ε, ϕ) allows to describe cases when an ele-
ment (e.g. an array) is shared by a number of frames (tasks)
and has different impact on different frames.

The question is what is minimal value of the maximum
frame load (the lower the maximum load the greater the
chance that the schedule will be feasible). Transformation
of that problem to Knapsack lightening is straightforward
(frames correspond to knapsacks, frame loads to initial knap-
sack weights, system elements to product types, cache size to
budget limit, and the number of memory cells required for
each task to price of product type).

7. Conclusions

In hard-real time systems the resources are usually limited
and there is a trade-off between resources availability and ex-
ecution time. An example of the trade-off is the problem of
dynamic storage management in hard-real time systems [7].
Another issue, discussed in the paper, is cache memory man-
agement in hard-real time systems. The paper presents an

1To avoid confusion with symbols used in the previous sections we decided to use Greek letters for symbols introduced in Sec. 6.

76 Bull. Pol. Ac.: Tech. 57(1) 2009

The Knapsack-Lightening problem and its application to scheduling HRT tasks

extension to the traditional periodic loading approach. That
extension allows for deterministic utilization of cache mem-
ory in hard real-time systems. It considerably increases the
possibility of finding a feasible schedule. The results of the
computational experiments show significant improvement of
minimization of the value of maximum time-frame load. For
large instances of the problem the MostEffective heuristic pre-
sented in Sec. 3.2 is recommended, while for small instances
(below 30 periodic tasks – see Fig. 1) one can use an exact
algorithm described in Sec. 4, which is based on the branch-
and-bound approach. To speed-up the exact algorithm one can
apply parallelization similar to that presented in [8].

Acknowledgements. We would like to thank Silvano Martel-
lo, Piotr Zielinski and Bartosz Bogacki for helpful discussions
concerning the paper. This research has been financially sup-
ported by the Polish Ministry of Science and Higher Educa-
tion under grant N519 188 933.

REFERENCES

[1] J. Błażewicz, P. Formanowicz, W. Kubiak, M. Przysucha, and
G. Schmidt, “Parallel branch and bound algorithms for the two-

machine flow shop problem with limited machine availability”,
Bull. Pol. Ac.: Tech. 48 (1), 105–115 (2000).

[2] W. Complak, “Deterministic approach to the notebook memory
management in systems strongly conditioned by time”, Doctoral

Dissertation, Poznań University of Technology, Poznań, 2001,
(in Polish).

[3] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems,
Springer Verlag, Berlin, 2004.

[4] J.R. Nawrocki and A. Urbański, “Optimization of region-based
storage allocation”, Bull. Pol. Ac.: Tech. 42 (4), 605-617 (1994).

[5] J.R. Nawrocki and A. Czajka, “Task classyfying in systems
strongly conditioned by time with the use of the metod of cyclic
loading”, Silesian University of Technology Periodicals: Auto-

matics 1389, 169–179 (1998), (in Polish).
[6] P.J. Schweitzer, M. Dror, and P. Trudeau, “The periodic load-

ing problem: formulation and heuristics”, INFOR 26 (1), 40–62
(1988).

[7] G. Yu, “On the max-min 0-1 Knapsack problem with robust op-
timization applications”, Operations Research 44 (2), 407–415
(1996).

[8] D.D. Zeng, M. Dror, and H. Chen, “Efficient scheduling of peri-
odic information monitoring requests”, EJOR 173 (2), 583–599
(2006).

Bull. Pol. Ac.: Tech. 57(1) 2009 77

