Electrostatic deposition of nanothin films on metal substrate

A. JAWOREK*, A.T. SOBCZYK, A. KRUPA, M. LACKOWSKI, and T. CZECH

The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-952 Gdańsk, Poland

Abstract. Thin solid film has been deposited by electrohydrodynamic spraying (electrospraying) onto a metal substrate. Electrospraying is a low-energy physical process in which tangential stress exerted by electric field on the surface of a liquid flowing form a capillary nozzle causes jet elongation, and the Coulomb repulsive forces disintegrate of this jet into fine droplets. By this method TiO$_2$, ZnO, MgO, or Al$_2$O$_3$ particles of size from 20 to 100 nm electrosprayed from a colloidal suspension were deposited onto a stainless steel substrate. The advantage that electrospray has over other methods for thin solid film production is that the growth rate of the layer is relatively high, the process can be carried out in an ambient atmosphere, in air or other gas, and at low temperature, without the need for a complex reactor and vacuum systems.

Key words: electrospray deposition, metal-oxide layer.

1. Introduction

Electrohydrodynamic spraying (electrospraying) has been utilized as a means for the deposition of thin solid films of thickness 100–200 nm on a metal substrate. Electrospraying is a low-energy physical process in which tangential stress is exerted by electric field on the surface of a liquid flowing form a capillary nozzle. This stress causes jet elongation, and next, the repulsive Coulomb forces disintegrate the jet into fine droplets. To this goal, the nozzle has to be connected to a high electric potential. A counter electrode, which can be a substrate or an extractor, has to be grounded.

Various forms of jet instabilities, known as spraying modes, have been observed and reported in the literature [1–11], however in practice, only some of these modes can be useful in practice. For the purpose of thin film deposition only cone-jet and multijet modes are of practical importance. This is because only in these modes, sufficiently fine droplets, of micron size, and of narrow size distribution can be obtained. Small droplets of a solution or colloidal suspension can provide films of thickness smaller than 1000 nm, depending on the solute concentration or size of suspended particles. The selection of proper materials to be deposited allows production of functional layers of required physical, thermal, or mechanical properties. Electrospray method was also tested by many authors for the production of nanocomposite materials or for direct writing (patterning), a technique which is capable of producing structures of width finer than 10 μm [12–16]. An advantage of electrospray-made composite products is that the composition can be changed on demand during the production process. Electrospray composites were formed from, for example, alumina-titania [17] or aluminum-rutile [18] components.

The purpose of this paper is to demonstrate the electrospray method as a means for thin solid film deposition on a metal substrate for thermal and corrosion protection of a material. By this method TiO$_2$, ZnO, MgO, or Al$_2$O$_3$ particles of size from 20 to 100 nm were deposited. The advantage that electrospray has over other methods for thin solid film production is that the growth rate of the layer is relatively high. The process can be carried out in an ambient atmosphere, in air or other gas, and at low temperature, without the need for a complex reactor and vacuum systems. The deposited material is not damaged in this process that is important in the case of biological substances. The electrospray can produce highly pure materials with structural control at the nanometer scale. The crystallinity, texture, film thickness, and deposition rate can be controlled by adjusting voltage, flow rate, and the substrate temperature [19, 20]. Microscope inspections confirmed that electrospray deposited layer is even, without micro-fissures and structural dislocations. The electrospray is a very efficient process because at least 80–90% of the solution can be deposited onto the substrate. Compared to conventional nozzles, electrospray nozzle can be an order of magnitude larger than the produced droplet size that prevents nozzle clogging.

2. Experimental

The electrospray system consisted of a stainless-steel capillary nozzle and a heated stainless steel table of diameter of 120 mm. The distance between the nozzle tip and the table was 15 or 25 mm. The substrate was a stainless steel rectangular plate 500 μm thick and of the dimensions of 25 × 30 mm. In order to facilitate solvent evaporation, the substrate was electrically heated by an electric heater placed beneath the table. The temperature of the substrate was about 70–90°C. At the level of the needle tip a grounded extractor electrode, in the form of ring of inner diameter of 30 mm, was mounted in order to improve meniscus and droplet formation in the electric field, and wider distribution of the spray plume over the substrate. The dimensions of the capillary and electro-

*e-mail: jaworek@imp.gda.pl
spraying conditions are specified in the caption to each figure presenting the experimental results.

The nozzle was connected to a high voltage ac/dc generator PM04015 TREK switched to positive polarity, while the plate and extractor electrodes were grounded. The spray plume was recorded using CCD camera PANASONIC NV-GS 400.

The liquid was supplied through a polyethylene pipe 0.8 mm inner diameter, from a syringe pump AP22 (Ascor – Poland) mounted above the nozzle. Methanol used as a solvent in these experiments was purchased from POCH Gliwice (Poland). MgO particles of 40.3 g/mol (99% metals basis) and size 100 nm, TiO$_2$ particles of molecular weight of 79.9 g/mol (99.9% metals basis) and mean diameter 29 nm, ZnO particles of molecular weight of 81.37 g/mol (>99% metals basis) and mean diameter 71 nm, and Al$_2$O$_3$ particles of molecular weight 101.96 g/mol (99.6% purity) and mean diameter 30 nm were purchased from Alfa Aesar.

The suspensions were prepared by stirring the commercial nanopowder in a mixture of different fraction of ethylene glycol and methanol in a glass vessel for 24 h. A small amount of Dynasylan®Memo purchased from Degussa was added as suspension dispersant. Next the suspension was loaded to a syringe and mounted in the syringe pump.

A schematic illustrating the principle of electrospray thin solid layer deposition is shown in Fig. 1. The substrate was heated during electrospraying process (Fig. 1, left), and after the voltage was switched-off, the heating was continued to complete solvent evaporation (Fig. 1, right). The suspensions were electrosprayed for a time of 30–60 min. The flow rate of the suspensions was set to 1 or 1.5 ml/h. The detailed data of the experimental conditions are specified in captions to each figure. The produced structures were examined under a scanning electron microscope EVO-40 (Zeiss).

Fig. 1. Schematic of electrospray system for thin layer deposition from a suspension

3. Results

Electrospray deposition was applied for thin layer production from a suspension of a material to be deposited. The spray system used in the experiments operated in the cone-jet mode or multi-jet mode. The multi-jet mode made it possible to obtain simultaneously a large number of emission cones from a single capillary, and the droplets can be smaller than from a single cone. The electrospray droplets were targeted onto a metal substrate to form a tight solid layer on it after solvent evaporation. Evaporation can be speeded-up by heating the substrate during the deposition process or after it.

As a result of electrospraying of suspension of a material to be deposited, homogeneous metal-oxides films were obtained. The films were composed of small agglomerates, smaller than a couple of microns, built from the particles of dry powder used for preparing the suspension. The agglomerates were formed during the solvent evaporation from the droplet on its flight towards the substrate. The lower is the concentration of the suspension the smaller are the agglomerates.

SEM images of the layers deposited on a stainless steel plate are shown in Figs. 3–12. The voltage to the capillary and other important parameters are specified in the caption to each figure.

Figures 3–6 present MgO deposit on a stainless steel substrate at various magnifications and for two regions of the deposit. Figures 3 and 4 show a region under the capillary nozzle, and Figs. 5 and 6 at periphery of the deposit. On this example it is shown that the layer is different depending on the region on the deposit Close-up view shows that layer at the edge is grainy with the grain size of about 1–2 µm. The layer under nozzle is composed of large particle agglomerates, whereas at the edge, the clusters are smaller and the layer is more uniform. This can be explained by different droplets deposition. Close to the capillary nozzle axis, large droplets of higher inertia are deposited. Smaller droplets, of lower mass are easily deflected by the repelling electric field, and are landing near the edge of the plate. Smaller crystallites were therefore formed at this region.
Electrostatic deposition of nanothin films on metal substrate

Fig. 3. SEM image of MgO particle layer deposited by electrospraying on a stainless steel substrate at the center of plate under needle electrode (MgO suspension in methanol, weight fraction = 0.06, voltage = 5.7 kV$_{DC} + 3.8$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 40 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1.5 ml/h)

Fig. 4. SEM image of MgO particle layer deposited by electrospraying on a stainless steel substrate at the center of plate under needle electrode (MgO suspension in methanol, weight fraction = 0.06, voltage = 5.7 kV$_{DC} + 3.8$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 40 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1.5 ml/h)

Fig. 5. SEM image of MgO particle layer deposited by electrospraying on a stainless steel substrate at the edge of deposit (MgO suspension in methanol, weight fraction = 0.06, voltage = 5.7 kV$_{DC} + 3.8$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 40 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1.5 ml/h)

Fig. 6. SEM image of MgO particle layer deposited by electrospraying on a stainless steel substrate at the edge of deposit (MgO suspension in methanol, weight fraction = 0.06, voltage = 5.7 kV$_{DC} + 3.8$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 40 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1.5 ml/h)

Fig. 7. SEM image of TiO$_2$ particle layer deposited by electrospraying on a stainless steel substrate (TiO$_2$ suspension in methanol, weight fraction = 0.06, voltage = 6.3 kV$_{DC} + 4$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 60 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1 ml/h)

Fig. 8. SEM image of TiO$_2$ particle layer deposited by electrospraying on a stainless steel substrate (TiO$_2$ suspension in methanol, weight fraction = 0.06, voltage = 6.3 kV$_{DC} + 4$ kV$_{AC}$, capillary 450 µm o.d., 250 µm i.d., deposition time 60 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 1 ml/h)

Fig. 9. SEM image of ZnO particle layer deposited by electrospraying on a stainless steel substrate (ZnO suspension in methanol, weight fraction = 0.06, voltage = 6 kV_{DC} + 2 kV_{AC}, capillary 450 µm o.d., 250 µm i.d., deposition time 60 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 3 ml/h)

Fig. 10. SEM image of ZnO particle layer deposited by electrospraying on a stainless steel substrate (ZnO suspension in methanol, weight fraction = 0.06, voltage = 6 kV_{DC} + 2 kV_{AC}, capillary 450 µm o.d., 250 µm i.d., deposition time 60 min, distance between the capillary nozzle and substrate plate 15 mm, flow rate = 3 ml/h)

Fig. 11. SEM image of Al_{2}O_{3} α particle layer deposited by electrospraying on a stainless steel substrate (Al_{2}O_{3} α suspension in methanol, weight fraction = 0.06, voltage = 17 kV_{DC} + 2.5 kV_{AC}, capillary 450 µm o.d., 250 µm i.d., deposition time about 10 min, volume of sprayed solution 2 ml, distance between the capillary nozzle and substrate plate 25 mm)

Fig. 12. SEM image of Al_{2}O_{3} α particle layer deposited by electrospraying on a stainless steel substrate (Al_{2}O_{3} α suspension in methanol, weight fraction = 0.06, voltage = 17 kV_{DC} + 2 kV_{AC}, capillary 450 µm o.d., 250 µm i.d., deposition time about 10 min, volume of sprayed solution 2 ml, distance between the capillary nozzle and substrate plate 25 mm)

Figures 7 and 8 show the layers of TiO_{2} deposited onto the stainless steel substrate. The voltage supplying the capillary was 6.3 kV_{DC} + 4 kV_{AC}. The layer consists of flake-like clusters and separate nanoparticles. Few larger grains (about 3 µm in size) can also be observed (Fig. 7).

In Figs. 9 and 10 fragments of the layer of ZnO nanoparticles are shown. The layer of ZnO consists of irregular crystal flakes and has many cracks. The particles of the size 100-200 nm forming the layer can be readily noticed (Fig. 10).

α−Al_{2}O_{3} deposit on the stainless steel substrate for various magnifications is presented in Figs. 11 and 12. The particles form a tight layer of particles without visible agglomerates. Larger particles (1–2 µm in diameter in Fig. 11) are probably an effect of coagulation of the smaller ones.

4. Discussion

Thin solid films, thinner than a couple of microns, can be used in manufacturing micro- and nano-electromechanical systems (MEMS or NEMS), in microelectronic devices as semiconducting, insulating or conducting layers, or to improve surface properties of mechanical elements. There are several conventional methods available for thin film deposition on a substrate:

1. Casting of a solution or colloidal suspension on a substrate, followed by solvent evaporation,
2. Cathode spraying, applicable to metal layer preparation,
3. Condensation of vapors of a material on the substrate,
4. Laser ablation for material evaporation,
5. Chemical vapor deposition and plasma assisted/enhanced chemical vapor deposition,
6. Physical vapor deposition,
7. Electroplating, applicable only to metal film formation.

As reported in the literature, in specific cases, the electro-sprayed layer exhibited better properties than those obtained by other methods, for example chemical vapor deposition or physical vapor deposition.
Electrostatic deposition of nanothin films on metal substrate

Although at the current state of knowledge it is not possible to predict which method of nanothin layer deposition could be commercialized as the most effective, researchers from various laboratories are testing all of the possible solutions. Recently, many researchers have tested the electrospray technique as a means for functional layer deposition from aerosol phase. Usually, the material to be deposited is sprayed directly onto the substrate but the layer can also be formed from a precursor, i.e., a compound, which is decomposed at high temperature or converted to another substance in chemical reactions with other compound sprayed simultaneously or delivered in the gaseous phase. Usually, metal nitrates or acetates dissolved in water, methanol, ethanol, or their mixtures are electrosprayed as precursors for metal-oxide layer production. This process is more complex and needs more precautions than deposition a layer from a suspension. Therefore, for layers thicker than 100 nm, electrospray deposition of a material from a suspension can be used. It is a simpler process, which does not require special chemical reactions and precautions due to possible toxicity of the electrosprayed compounds. This process also seems to be cheaper in the mass production. The layer deposition from a suspension, however, frequently requires sintering the material in order to stabilize the layer. A literature review of thin film deposited from electrosprayed suspensions is presented in Table 1.

The current and potential commercial applications of functional layers produced from a suspension via electrospraying are as follows:

1. Dielectric layers for microelectronic devices formed from alumina (Al$_2$O$_3$) or silica (SiO$_2$) [13, 21–32]. The same metal oxides were also used as corrosion and thermal protection layers.

2. ZrO$_2$:Y$_2$O$_3$ (Yttria-Stabilized-Zirconia – YSZ). nanoparticles have found application as solid electrolyte [33], while platinum particles as electrodes [34], in fuel cells.

3. Gold or silver nanoparticles were deposited as nanowires for nanoelectronic applications [13, 35–38].

4. Nickel nanoparticles were deposited as seeds for amorphous silicon growth [39].

5. Solid lubricating films of molybdenite (MoS$_2$) were obtained by electrospraying of MoS$_2$ suspension [40, 41].

6. Composite ceramics from alumina-zirconia [42] or zirconia-silicon carbide [29] were also produced via electrospraying of suspensions.

7. Superhydrophobic coating for the production of self-cleaning materials was electrosprayed – deposited from fine PTFE particles of the size 50–300 nm suspended in water [43, 44].

8. PZT (lead zirconate titanate) microcoatings are or potentially can be applied as piezoelectric micro-sensors, ferro-electric capacitors, piezoelectric micro actuators, or non-volatile random access memory due to excellent piezoelectric, ferroelectric and dielectric properties of this material. The PZT layers were, for example, produced by Lu et al. [45], Wang and Derby [46], and recently by Sun et al. [47].

9. Hydroxyapatite nanoparticles or relics deposited on various substrates were investigated with the goal for the formation of implants for bone repair, or orthopaedic and dental implants manufacturing [15, 16, 48–53], or for the creation of micro- and nano-scale surface morphology for a favorable cell response [49].

Review of the production of thin layers via electrospraying of appropriate precursors or from various suspensions can be found in [19, 20].

Our results with metal oxide nanoparticles confirmed earlier reports that the films produced by electrospraying can be homogeneous and composed of small agglomerates built of nanoparticles forming the suspension. The quality of thin film formed on a substrate strongly depends on the size of particles or droplets forming the layer, and their monodispersity. Even layers, of uniform thickness are obtained when the droplets are uniformly dispersed over the substrate. Smaller particles, of narrow size distribution are required in order to reduce the number and size of voids, flaws and cracks in the film. The electrospray allows generating fine droplets in micro- and submicron size range, with narrow size distribution. Electrostatic forces disperse the droplets homogeneously in the space between the nozzle and the substrate. The film thickness, its texture, and deposition rate can be controlled by varying the voltage, flow rate, concentration of the material to be deposited, and the substrate temperature.

Regardless of promising results presented in this and other papers, several problems have to be solved. The most important is stability of the electrospraying mode. Small changes in liquid properties (due, for example, to temperature variation) can switch the spraying mode from that generating submicron droplets to another one, sputtering the liquid. The layer uniformity depends also on the deposited material, and the spraying conditions should be set for a specific material separately. We also noticed that adding of a surfactant can improve the layer quality, but for some materials can cause larger agglomerates formation.

A novelty in our experiments is using ac/dc excitation of the electrospray nozzle in order to thin layer deposition. It was noticed that sine-wave ac voltage of frequency 314 Hz superimposed on dc bias could stabilize the cone-jet mode of spraying and the spray plume. Excitation at this frequency is certainly not a synchronous droplet generation, which ought to be at least tens of kHz.
Table 1

Submicron films produced from suspensions deposited by electrospraying

<table>
<thead>
<tr>
<th>Film material (particles size)</th>
<th>Substrate (process temperatures)</th>
<th>Solvent</th>
<th>Flow rate (deposition time or growth rate)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>alumina (Al$_2$O$_3$) (100 nm)</td>
<td>aluminum (100–250°C substrate)</td>
<td>ethanol</td>
<td>0.8 ml/h or 1.5 ml/h (60 min)</td>
<td>[21]</td>
</tr>
<tr>
<td>gold (Au) (20, 30, 40, 60, 100 nm)</td>
<td>silicon (500°C annealing for 15 min)</td>
<td>water + stabilizer (citrate ligands)</td>
<td>6 µl/h (0.03 µm$^{-1}$·h$^{-1}$ for 100 nm, 2 µm$^{-1}$·h$^{-1}$ for 20 nm)</td>
<td>[35]</td>
</tr>
<tr>
<td>hydroxyapatite Ca$_5$(PO$_4$)$_3$(OH) (50–80 nm)</td>
<td>glass</td>
<td>ethanol</td>
<td>6–10 ml/h</td>
<td>[48]</td>
</tr>
<tr>
<td>molybdenite (MoS$_2$) (120×1000 nm – platelets) [280–1000 nm]</td>
<td>silicon</td>
<td>isopropanol, acetone, alcohol, or toluene</td>
<td>2.4 ml/h (25 min)</td>
<td>[40, 41]</td>
</tr>
<tr>
<td>nickel (Ni) (2–3 nm)</td>
<td>silicon (600°C annealing for 2 h in N$_2$)</td>
<td>ethylene glycol monoethyl ether acetate + alkylnaphthalene + polyamine</td>
<td>0.2–1 ml/h</td>
<td>[39]</td>
</tr>
<tr>
<td>platinum (Pt) (5 nm) [0.3 mg/cm2]</td>
<td>carbon (60°C substrate)</td>
<td>isopropanol + Nafion (33 wt.%)/butylacetate (45%) + ethanol (50%) + glycerol (5%) + Nafion (33 wt.%).</td>
<td>0.6 ml/h (0.5–20 min)</td>
<td>[43, 44]</td>
</tr>
<tr>
<td>PZT (lead zirconate titanate) (75–175°C substrate, 650°C for 1200 s treatment)</td>
<td>Ti/Pt // silicon</td>
<td>1-propanol</td>
<td>90 µl/h (10–330 s)</td>
<td>[47]</td>
</tr>
<tr>
<td>silica (SiO$_2$) (20 nm) (10–30 nm) (5 nm)</td>
<td>quartz glass (600°C annealing for 2 h, ramp 5°C/min)</td>
<td>ethylene glycol</td>
<td>36 ml/h</td>
<td>[22, 24]</td>
</tr>
<tr>
<td></td>
<td>silicon oxide // silicon</td>
<td>water (50 vol.%) + methanol (50 vol.%)</td>
<td>8 µl/h (6×107 particles/s) (horizontal spraying)</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>glass slide</td>
<td>ethylene glycol</td>
<td>22 ml/h</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>quartz glass (1200°C sintering)</td>
<td>glycerol (for alumina), olive oil (for zirconia) + 1 wt.% dispersant</td>
<td>0.25–250 ml/h</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td>silicon coated with Pt (400°C substrate; 800°C sintering for 1 h, ramp: 3°C/min – heating, 2°C/min – cooling)</td>
<td>ethylene glycol</td>
<td>0.4–1.8 ml/h (2 min)</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>silicon coated with Pt (400°C substrate; 800°C sintering for 1 h, ramp: 3°C/min – heating, 2°C/min – cooling)</td>
<td>ethanol (50 vol.%) + acetylacetone (50 vol.%)</td>
<td>1–2 ml/h (0.5–1 h)</td>
<td>[33]</td>
</tr>
</tbody>
</table>
5. Conclusions

The paper provides experimental results of electrospray deposition of thin metal-oxide layer onto stainless steel substrate. The layer was produced from colloidal suspension of the material to be deposited in methanol. It has been demonstrated that metal oxide layers of various morphologies can be produced by this method. The layer morphology depends on the suspended material, the deposition rate, and the substrate temperature.

It can be concluded that electrospraying is a versatile tool for liquid atomisation, which has an advantage of uniform droplets generation for layer deposition purposes. Such layer-deposition system can operate at atmospheric conditions, and low or slightly elevated temperature. The electrospray operation at atmospheric conditions has an advantage of uniform micro- and nanothin film deposition on large areas without a special need for expensive installations. The electrospraying is a single-step, low-energy, and low-cost material processing technology, which can deliver the products of unique properties, with easily controlled deposition rate and film thickness via liquid flow rate and voltage to the capillary nozzle.

Acknowledgements. The paper is supported by Polish Ministry of Science and Higher Education within the Project No. 4078/T02/2007/32.

REFERENCES

Electrostatic deposition of nanothin films on metal substrate

Bull. Pol. Ac.: Tech. 57(1) 2009