An algorithm for the calculation of the minimal polynomial

S. BIAŁAS 1* and M. BIAŁAS 2

1 The School of Banking and Management, 4 Armii Krajowej St., 30-150 Kraków, Poland
2 Faculty of Management, AGH University of Science and Technology, 30 Mickiewicza St., 30-059 Kraków, Poland

Abstract. This paper gives the simple algorithm for calculation of the degree and coefficients of the minimal polynomial for the complex matrix \(A = [a_{ij}]_{n \times n} \).

Key words: matrix, minimal polynomial, characteristic polynomial.

1. Introduction

We use the standard notation. We denote by \(M_{m,n} \) the set of \(m \times n \) real or complex matrices. In case \(n = m \) we will write \(M_n \) instead of \(M_{n,n} \).

A complex polynomial \(f(\lambda) \) is called an annihilating polynomial for a matrix \(A \in M_n \) if \(f(\lambda) \neq 0 \) and \(f(A) = 0 \). The complex polynomial \(\psi(\lambda) \) of least degree for which \(\psi(A) = 0 \) is called the minimal polynomial of the matrix \(A \in M_n \).

The properties and the applications of the minimal polynomials in the control theory have been presented in [1, 2].

In this paper the simple algorithm is given for calculation of the degree and coefficients of the minimal polynomial.

For the matrix \(A = [a_{ij}] \in M_n \) we will use the following notations:

- \(\varphi(\lambda) = \det(\lambda I - A) \) – characteristic polynomial of the matrix \(A \),
- \(\psi(\lambda) \) – minimal polynomial of the matrix \(A \),
- \(\text{vec} A = [a_{11} \ a_{12} \ a_{13} \ ... \ a_{n1} \ a_{21} \ a_{22} \ ... \ a_{n2} \ ... \ a_{m1} \ a_{m2} \ ... \ a_{mn}]^T \),
- \(A^0 = I \in M_n \),
- \(A^k = A^{k-1}A \ (k = 1, 2, \ldots) \),
- \(A^{(k)} = a_{ij}^{(k)} \ (k = 0, 1, 2, \ldots) \),
- \(B_k = [a^{(0)} a^{(1)} \ ... \ a^{(k)}] \ (k = 0, 1, 2, \ldots) \) where \(a^{(k)} = k + 1 \)-th column of the matrix \(B_k \in M_{n^2,k+1} \),
- \(\text{rank} (B) \) – rank of the matrix \(B \),
- \(\text{deg} f(x) \) – degree of the polynomial \(f(\lambda) \),
- \(\text{unit matrix} \),
- \(\varnothing \) – empty set.

Example 1. For the matrix \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \) we have:

\[
\begin{align*}
\varphi(\lambda) &= \det(\lambda I - A) = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}), \\
\psi(\lambda) &= \lambda - (a_{11} + a_{22}) = 0 , \\
A^{(0)} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \\
A^{(1)} &= \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}, \\
B_1 &= \begin{bmatrix} 1 & a_{11} \\ 0 & a_{21} \end{bmatrix}.
\end{align*}
\]

2. An algorithm for the calculation of the degree and the coefficients of the minimal polynomial

For the matrix \(A = [a_{ij}] \in M_n \) we will prove the following Lemma.

Lemma 1. If the matrix \(A = [a_{ij}] \in M_n \), the matrix \(B_k \) is defined by (1), then

\(K = \{k \in N : \text{rank} B_k = \text{rank} B_{k-1} \neq 0 \ \text{and} \ n \in K \} \).

Proof. We see that if

\[
\varphi(\lambda) = \det(\lambda I - A) = \lambda^n + b_{n-1}\lambda^{n-1} + \cdots + b_1\lambda + b_0,
\]

then

\[
A^n + b_{n-1}A^{n-1} + \cdots + b_1A + b_0I = 0 \in M_n,
\]

\[
a^{(n)} = -[b_{n-1}a^{(n-1)} + \cdots + b_1a^{(1)} + b_0a^{(0)}],
\]

\[
\text{rank} B_n = \text{rank} [a^{(0)} a^{(1)} \ ... \ a^{(n)}] = \text{rank} [a^{(0)} a^{(1)} \ ... \ a^{(n-1)} 0] = \text{rank} B_{n-1},
\]

where \(0 = [0 0 \ldots 0]^T \in M_{n^2,1} \). Therefore \(n \in K \) and \(K \neq \emptyset \).

Definition 1. A number \(k_0 = \min K \) is called the associated rank of the matrix \(A = [a_{ij}] \in M_n \).

Theorem 1. If \(k_0 \) is the associated rank of the matrix \(A = [a_{ij}] \in M_n \) and \(\psi(\lambda) \) is the minimal polynomial of this matrix then:
1) \(\text{rank } B_k = k + 1 \) \((k = 0, 1, \ldots, k_0 - 1) \),
2) \(\text{rank } B_k = k_0 \) \((k \geq k_0) \),
3) \(\deg \psi(\lambda) = k_0 \),

where the matrix \(B_k \) is defined by the relation (1).

Proof. Let \(B_k = [a^{(0)}(1) \ldots a^{(k_0 - 1)}] \).

First we prove that \(\text{rank } B_k = k + 1 \) \((k = 0, 1, \ldots, k_0 - 1) \). From the definition of \(k_0 \) it follows that \(\text{rank } B_{k_0} = \text{rank } B_{k_0 - 1} \).
For \(k = 1 \) \(\text{rank } B_1 = \text{rank } B_0 = 1 \).

However, for \(k > 0 \) we have:

\[
\begin{align*}
\text{rank } B_1 & > \text{rank } B_0 = 1 \Rightarrow \text{rank } B_1 = 2, \\
\text{rank } B_2 & > \text{rank } B_1 = 2 \Rightarrow \text{rank } B_2 = 3,
\end{align*}
\]

\[
\begin{align*}
\text{rank } B_{k_0 - 1} & > \text{rank } B_{k_0 - 2} = k_0 - 1 \Rightarrow \text{rank } B_{k_0 - 1} = k_0.
\end{align*}
\]

Therefore \(\text{rank } B_k = k + 1 \) \((k \in \{0, 1, 2, \ldots, k_0 - 1\} \)
and \(\text{rank } B_{k_0} = \text{rank } B_{k_0 - 1} = k_0 \).
Hence it follows that the columns \(a^{(0)}, a^{(1)}, \ldots, a^{(k_0 - 1)} \) are linear independent and the column \(a^{(k_0)} \) can be written as the linear combination of the columns \(a^{(0)}, a^{(1)}, \ldots, a^{(k_0 - 1)} \), so there exists \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{k_0 - 1}) \in C^{k_0} \) such that

\[
\begin{align*}
\alpha_0 a^{(0)} + \alpha_1 a^{(1)} + \cdots + \alpha_{k_0 - 1} a^{(k_0 - 1)} &= -a^{(k_0)}.
\end{align*}
\]

It denotes that

\[
\alpha_0 I + \alpha_1 A + \cdots + \alpha_{k_0 - 1} A^{k_0 - 1} + A^{k_0} = 0 \in M_n
\]

and the polynomial \(f(\lambda) = \alpha_0 + \alpha_1 \lambda + \cdots + \lambda^{k_0} \) is the annihilatory polynomial of the matrix \(A \).

For \(k > k_0 \), \(m = k - k_0 \) and any arbitrary numbers \(\beta_0, \beta_1, \ldots, \beta_m - 1 \in C \) the polynomial \(g(\lambda) = f(\lambda)(\beta_0 + \beta_1 \lambda + \cdots + \beta_m - 1 \lambda^{m - 1} + \lambda^m) = \gamma_0 + \gamma_1 \lambda + \cdots + \gamma_{k_0 - 1} \lambda^{k_0 - 1} + \lambda^k \) is the annihilatory polynomial of the matrix \(A \), too.

Therefore

\[
\begin{align*}
\gamma_0 I + \gamma_1 A + \cdots + \gamma_{k_0 - 1} A^{k_0 - 1} + A^k &= 0 \in M_n,
\end{align*}
\]

\[
\begin{align*}
\gamma_0 a^{(0)} + \gamma_1 a^{(1)} + \cdots + \gamma_{k_0 - 1} a^{(k_0 - 1)} + a^{(k)} &= 0 \in M_{n^2}.
\end{align*}
\]

(2)

In the matrix \(B_k = [a^{(0)}(1) \ldots a^{(k_0 - 1)}(1) a^{(k_0)} a^{(k_0 + 1)} \ldots a^{(k)}] \)
the column \(a^{(j)} \) can be multiplied by \(-\gamma_j (j = 0, 1, \ldots, k - 1)\)
and added to the column \(a^{(k)} \). Hence (2) we have

\[
\begin{align*}
\text{rank } B_k &= \text{rank } [a^{(0)}(1) a^{(1)} \ldots a^{(k_0 - 1)}(1) a^{(k_0)}(0) \cdots 0] = \text{rank } B_{k - 1}.
\end{align*}
\]

Similarly transformation can be used to the matrix \(B_{k - 1} \).
At the end, we have

\[
\begin{align*}
\text{rank } B_k &= \text{rank } [a^{(0)}(1) a^{(1)} \ldots a^{(k_0 - 1)}(1) a^{(k_0)}(0) \cdots 0] = \text{rank } B_{k_0} = k_0
\end{align*}
\]

for \(k \geq k_0 \). This finishes the proof of 2) of the Theorem 1.

Now we prove that if \(\psi(\lambda) \) is the minimal polynomial of the matrix \(A \) then \(\deg \psi(\lambda) = k_0 \).

Hence that \(\text{rank } B_{k_0} = \text{rank } B_{k_0 - 1} = k_0 \) it follows that the set of equations

\[
B_{k_0 - 1} \alpha = -a^{(k_0)},
\]

with the unknown \(\alpha = [\alpha_0 \alpha_1 \ldots \alpha_{k_0 - 1}]^T \in C^{k_0} \), has only one solution and

\[
\alpha_0 I + \alpha_1 A + \cdots + \alpha_{k_0 - 1} A^{k_0 - 1} + A^{k_0} = 0 \in M_n,
\]

besides

\[
\alpha_0 + \alpha_1 \lambda + \cdots + \alpha_{k_0 - 1} \lambda^{k_0 - 1} + \lambda^k,
\]

is the annihilatory polynomial of the matrix \(A \).

Hence that \(\text{rank } B_k = k + 1 \) \((k = 0, 1, \ldots, k_0 - 1) \) it follows that the set of equations

\[
B_{k - 1} \alpha = -a^{(k)},
\]

with the unknown \(\alpha = [\alpha_0 \alpha_1 \ldots \alpha_{k - 1}]^T \in C^{k} \), has not the solutions.

This denotes that the polynomial (3) is the minimal polynomial of the matrix \(A \) and \(\deg \psi(\lambda) = k_0 \).

Now, we give the algorithm for the calculation of the degree and coefficients of the minimal polynomial of the matrix \(A = [a_{ij}] \in M_n \).

Consider the matrix

\[
B_n = [a^{(0)}(1) \ldots a^{(n)}] \in M_{n^2}, n + 1.
\]

which is defined in (1).

The elements of the matrix \(B_n \) are denoted by \(b_{ij} \), therefore \(B_n = [b_{ij}] \in M_{n^2, n + 1} \), where \(b_{11} = 1, b_{12} = a^{(1)}, \ldots, b_{1,n + 1} = a^{(n)} \), \(b_{n+1,1}, \ldots, b_{n+1,n} = 0 \).

We will calculate the rank of the matrix \(B_n \) by Gaussian elimination, except interchange and cancel of the null columns.

We obtain

\[
\begin{pmatrix}
1 & b_{12} & \cdots & b_{1,n + 1} \\
0 & b_{22} & \cdots & b_{2,n + 1} \\
& \ddots & \ddots & \ddots \\
0 & b_{n^2,2} & \cdots & b_{n^2, n + 1}
\end{pmatrix}
\]

rank \(B_n \) = rank

where, for example \(b_{22}^{(1)} = b_{22}, \ldots, b_{2,n + 1}^{(1)} = b_{2,n + 1}, b_{n^2,2}^{(1)} = b_{n^2,2} - b_{12} \).

From the Lemma 1 it follows that \(n \in K = \{k \in N : \text{rank } B_k = \text{rank } B_{k - 1}\} \).
An algorithm for the calculation of the minimal polynomial

Therefore there exists \(r \in N \) such that \(r \leq n \) and

\[
\begin{pmatrix}
1 & b_{12} & b_{13} & \ldots & \ldots & \ldots & \ldots & \ldots & b_{1,n+1} \\
0 & b_{12}^{(1)} & b_{23}^{(1)} & \ldots & \ldots & \ldots & \ldots & \ldots & b_{2,n+1}^{(1)} \\
0 & 0 & b_{33}^{(2)} & \ldots & \ldots & \ldots & \ldots & \ldots & b_{3,n+1}^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \ldots & \ldots & \ldots & \ldots & \ldots & b_{r,n+1}^{(r-1)}
\end{pmatrix},
\]

where \(b_{ij}^{(r-1)} \neq 0 \) (\(i = 1, 2, \ldots, r \)).

From this it follows that \(\text{rank}_B j = j \) (\(j = 1, 2, \ldots, n \)), \(\text{rank}_B r = r \).

Therefore \(k_0 = \min K = r \) and \(\deg \psi(\lambda) = r = k_0 \).

Thus, by Gaussian elimination we can compute the degree of the minimal polynomial of the matrix \(A \).

Hence that \(\det B_{r-1} = \det B_{k_0-1} \neq 0 \) and \(\text{rank}_B k_0 = \text{rank}_B k_0-1 = k_0 \) it follows that the set of equations

\[
B_{k_0-1} \alpha = -\delta^{(k_0)},
\]

with the unknown \(\alpha = [\alpha_0 \alpha_1 \ldots \alpha_{k_0-1}]^T \in C^{k_0} \), has only one solution and

\[
\alpha + \alpha_1 A + \cdots + \alpha_{k_0-1} A^{k_0-1} + A^{k_0} = 0 \in M_n.
\]

Therefore \(\alpha_0, \alpha_1, \ldots, \alpha_{k_0-1} \) are the coefficients of the minimal polynomial of the matrix \(A \). The set of Eq. (4) is equivalent to the set of equations

\[
\tilde{B} \alpha = \tilde{b},
\]

where

\[
\tilde{B} = \begin{pmatrix}
1 & b_{11} & \ldots & \ldots & b_{1r} \\
0 & b_{21}^{(1)} & \ldots & \ldots & b_{2r}^{(1)} \\
0 & 0 & b_{33}^{(2)} & \ldots & b_{3r}^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & \ldots & b_{r,r}^{(r-1)} \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix}
b_{1,r+1} \\
b_{2,r+1}^{(1)} \\
b_{2,r+1}^{(2)} \\
\vdots \\
b_{r,r+1}^{(r-1)} \end{pmatrix},
\]

\(\alpha = [\alpha_0 \alpha_1 \ldots \alpha_{k_0-1}]^T, r = k_0 \).

Example 2. We will calculate the minimal polynomial of the matrix

\[
A = \begin{pmatrix}
3 & -3 & 2 \\
-1 & 5 & -2 \\
-1 & 3 & 0
\end{pmatrix}.
\]

In this example we have

\[
A^2 = \begin{pmatrix}
10 & -18 & 12 \\
-6 & 22 & -12 \\
-6 & 18 & -8
\end{pmatrix},
\]

\[
A^3 = \begin{pmatrix}
36 & -84 & 56 \\
-28 & 92 & -56 \\
-28 & 84 & -48
\end{pmatrix},
\]

\[
\text{rank}_B 3 = \begin{pmatrix}
1 & 3 & 10 & 36 \\
0 & -3 & -18 & -84 \\
0 & 2 & 12 & 56 \\
0 & -1 & -6 & -28
\end{pmatrix},
\]

\[
\text{rank}_B 3 = 2.
\]

\[
A = [\alpha_0 \alpha_1] = [8 -6]^T.
\]

Therefore, \(\psi(\lambda) = \lambda^2 - 6\lambda + 8 \) is the minimal polynomial of the matrix \(A \).

REFERENCES
