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Abstract. The present investigation is concerned with the reflection in thermo-microstretch elastic solid in the presence of a transverse

magnetic field, at the boundary surface. The generalized theories of thermoelasticity developed by Lord and Shulman [1](L-S) and Green

and Lindsay [2](G-L) theories have been used to investigate the problem. The variations of amplitude ratios with angle of incidence have

been shown graphically. It is noticed that the amplitude ratios of the reflected waves are affected by magnetic field, stretch and thermal

properties of the medium.
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1. Introduction

The theory of thermoelasticity deals with the effect of me-

chanical and thermal disturbances on an elastic body. The

theory of uncoupled thermoelasticity consists of the heat equa-

tion, which is independent of mechanical effects, and the equa-

tion of motion, which contains the temperature as a known

function. There are two defects in this theory. First is that the

mechanical state of the body has no effect on the tempera-

ture. Second, the heat equation, which is parabolic, implies

that the speed of propagation of the temperature is infinite,

which contradicts physical experiments.

Biot [3] introduced the theory of coupled thermoelasticity

to overcome the first shortcoming. The governing equations

for this theory are coupled, eliminating the first paradox of

the classical theory. However, both theories share the second

shortcoming since the heat equation for the coupled theory

is also parabolic. To overcome this drawback, two generaliza-

tions to the coupled theory were introduced.

The first is due to Lord and Shulman [1], who obtained

a wave-type heat equation by postulating a new law of heat

conduction to replace the classical Fourier’s law. This new

law contains the heat flux vector as well as its time deriva-

tive. It contains also a new constant that act as a relaxation

time. Since the heat equation of this theory is of the wave-

type, it automatically ensures finite speeds of propagation for

heat and elastic waves. The remaining governing equations

for this theory, namely, the equations of motion and constitu-

tive relations, remain the same as those for the coupled and

uncoupled theories.

The second generalization to the coupled theory of elastic-

ity is what is known as the theory of thermoelasticity with two

relaxation times or the theory of temperature-rate-dependent

thermoelasticity. Mullar [4], in a review of the thermodynam-

ics of thermoelastic solids, proposed an entropy production

inequality, with the help of which he considered restrictions

on a class of constitutive equations. A generalization of this

inequality was proposed by Green and Laws [5]. Green and

Lindsay obtained another version of the constitutive equa-

tions in [2]. These equations were also obtained independent-

ly and more explicitly by Suhubi [6]. This theory contains

two constants that act as relaxation times and modify all the

equations of the coupled theory, not only the heat equation.

The classical Fourier’s law of heat conduction is not violated

if the medium under consideration has a center of symme-

try.

Eringen [7] developed the theory of micropolar elastic

solids with stretch by include the effect of axial stretch during

the rotation of molecules. The mechanical model underlying

this theory can be envisioned as an elastic medium composed

of a large number of short springs. These springs possess av-

erage inertia moments and can deform in axial directions. The

material points in this continuum possess not only classical

translational degree of freedom represented by the deforma-

tion vector field but also intrinsic rotations and an intrinsic ax-

ial stretch. The difference between these solids and micropolar

elastic solids stems from the presence of a scalar microstretch

and a vector first moment. These solids can undergo intrinsic

volume change independent of the macro-volume change. This

is accompanied by a non-deviatoric stress moment vector.

Eringen [8] developed a theory of thermo-microstretch

elastic solid in which he included microstructural expansions

and contractions. Eringen [9] also derived the equations of

motions, constitutive equations and boundary conditions for

thermo-microstretch fluids and obtain the solution of the prob-

lem for acoustical waves in bubbly liquids. Microstretch con-

tinuum is a model for Bravias lattice with a basis on the atomic

level and a two phase dipolar solid with a core on the macro-

scopic level. The material points of microstretch bodies can

stretch and contract independently of their translations and

rotations. For example, composite materials reinforced with
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chopped elastic fibers, porous media whose pores are filled

with gas or inviscid liquid, asphalt or other elastic inclusions

and ’solid-liquid’ crystals, etc. should be characterizable by

microstretch solids.

The linear theory of micropolar thermoelasticity was de-

veloped by extending the theory of micropolar continua to

include thermal effects by Eringen [10] and Nowacki [11].

Chandrasekhariah [12] formulated a theory of micropolar

thermoelasticity which includes heat flux, among the consti-

tutive variables.

Kalaski and Nowacki [13] investigated the wave type of

equations of thermo-magneto-microelasticity. Nowacki [14]

studied some problems of micropolar magnetoelasticity.

Kumar and Singh [15, 16] discussed the problems of wave

propagation in a micropolar generalized thermoelastic body

with stretch and in a generalized thermo-microstretch elastic

solid. Kumar and Singh [17] studied the reflection of plane

waves from the flat boundary of a micropolar generalized

thermoelastic half space with stretch. Tomar and Garg [18]

discussed reflection and transmission of waves from a plane

interface between two microstretch solid half-space. Kumar

and Pratap [19] studied reflection of plane waves in a heat

flux dependent microstretch thermoelastic solid half space.

Kumar, Pathania and Sharma [20] investigated the propaga-

tion of Rayleigh-Lamb waves in thermo-microstretch elastic

plates. In spite of these studies, magnetic effect on the prop-

agation of waves in generalized thermo-microstretch elastic

solid has not been studied.

In this paper, we study the problem of reflection of

plane waves at the free surface of the generalized thermo-

microstretch elastic solid permeated by transverse magnetic

field. Magnetic effect on the amplitude ratios of various re-

flected waves for the generalized theories of thermoelasticity,

with the angle of incidence are computed numerically and

presented graphically, for a specific model.

2. Basic equations

The simplified linear equations of electrodynamics of slowly

moving medium for a homogenous and perfectly conducting

elastic solid are the following:
{

εijkhk, j − (Ji + ε0Ėi) = 0, εijkEj, i + µ0ḣk = 0,

Ei + µ0(εijku̇jH0k) = 0, hi, i = 0,
(1)

Maxwell stress components are given by

Tij = µ0(Hihj +Hjhi −Hkhkδij), (2)

where H0i− the external applied magnetic field intensity vec-

tor, hi− the induced magnetic field vector, Ei− the induced

electric field vector, Ji− the current density vector, ui− the

displacement vector, µ0 and ε0− the magnetic and electric

permeabilities respectively, Tij− the components of Maxwell

stress tensor and δij− the Kroneker delta.

The above Eq. (1) are supplemented by the field of equa-

tions of motion and constitutive relations in the theory of gen-

eralized thermo-microstretch elastic solid, taking into account

the Lorentz force are

(λ + µ)uj, ij + (µ+K)ui, jj +Kεijkφk, j

−ν (T, i + τ1 ˙T, i) + λ0φ
∗
, i + Fi − ρ üi = 0,

(3)

(α+β)φj, ij +γφi, jj +Kεimnun, m−2Kφi−ρφ̈i = 0, (4)

α0φ
∗
, rr + ν1(T + τ1Ṫ )− λ1φ

∗ − λ0uj, j −
1

2
ρ0φ̈∗ = 0, (5)

ρ c∗(Ṫ + τ0T̈ ) + ν1T0(φ̇∗ + n0τ0φ̈∗)

+ ν T0(u̇j, j + n0τ0üj, j) −K∗T, rr = 0,
(6)

σij = λur,rδij + µ(ui,j + uj,i)

+K(uj,i − εijrφr) − ν(T + τ1Ṫ )δij ,
(7)

mij = αφr,rδij + βφi,j + γφj,i + b0εmjiφ
∗
,m, (8)

λk = α0φ
∗
,k + b0εklmφl,m, (9)

where λ, µ, K , α, β, γ, λ1, λ0, α0, b0 – the material con-

stants, T – temperature change, T0 – uniform temperature,K∗

– thermal conductivity, c∗ – specific heat at constant temper-

ature, ν = (3λ+ 2µ+K)αt1 , ν1 = (3λ+ 2µ+K)αt2 , αt1 ,

αt2 – linear thermal expansions, τ0 and τ1 are thermal relax-

ation times. ρ – the density,  – the microinertia, φi – the

microrotation vector, φ∗ – the scalar microstretch and σij –

the components of force stress tensor, mij – the components

of couple stress tensor, λk – the microstretch parameter, εijk

– the alternate tensor. Comma notation denotes partial deriva-

tives with respect to spatial co-ordinate and the superposed

dots denote the derivatives with respect to time. The Lorentz

force is given by

Fi = µ0εijkJjH0k. (10)

For L-S theory, τ1 = 0, n0 = 1; for G-L theory, τ1 > 0,

n0 = 0. The thermal relaxations τ0 and τ1 satisfy the in-

equality τ1 ≥ τ0 > 0 for G-L theory only.

3. Formulation of the problem

We consider a homogenous, isotropic, perfectly conduct-

ing thermo-microstretch elastic medium adjoining with free

surface, permeated by an initial magnetic field H0i acting

along the z-axis. The rectangular Cartesian co-ordinate sys-

tem (x, y, z) having origin on the surface y = 0 with y-axis

pointing vertically into the medium is introduced.

For two dimensional problem, we assume the displace-

ment vector ui and microrotation vector φi as

ui = (u, v, 0) and φi = (0, 0, φ3). (11)

We define the non-dimensional quantities as

x′ =
ω

c1
x, y′ =

ω

c1
y, u′ =

ρ c1ω

ν T0
u,

v′ =
ρ c1ω

ν T0
v, σ′

ij =
σij

ν T0
, T ′

ij =
Tij

ν T0
,

h′ =
h

H0
, m′

ij =
ω

c1ν T0
mij , λ′k =

c1
ν T0ω

λk,

t′ = ω t, τ ′1 = ωτ1, τ ′0 = ωτ0,
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E′
1 =

E1

µ0H0c1
, E′

2 =
E2

µ0H0c1
,

φ′3 =
ρ c21
ν T0

φ3, φ∗
′

=
ρ c21
ν T0

φ∗,

T ′ =
T

T0
,

(12)

where

ω =
ρ c∗c21
K∗

, c21 =
λ+ 2µ+K

ρ
, c22 =

µ+K

ρ
,

c2 =
1

µ0ε0
, a2

0 =
µ0H

2
0

ρ
.

Expressing the displacement components u(x, y, t), v(x, y, t)
by the scalar potential functionsψ1(x, y, t), ψ2(x, y, t) in di-

mensionless form

u =
∂ψ1

∂x
+
∂ψ2

∂y
, v =

∂ψ1

∂y
−
∂ψ2

∂x
(13)

and using the Eqs. (1), (3)–(6), and (10)–(13), we obtain two

coupled system of equations



















δ21∇
2 − δ22

∂2

∂ t2
−

(

1 + τ1
∂

∂ t

)

−a1

(

∂

∂ t
+ τ0n0

∂2

∂ t2

)

∇2 ∇2 −

(

∂

∂ t
+ τ0

∂2

∂ t2

)

−a3∇
2 a4

(

1 + τ1
∂

∂ t

)

λ0

ρ c21

−a2

(

∂

∂ t
+ τ0n0

∂2

∂ t2

)

∇2 − a5
∂2

∂ t2
− a6























ψ1

T

φ∗






=

[

0
]

(14)

and








∇2 −
c21
c22
δ22

∂2

∂ t2
K

ρ c22

−a7∇
2 ∇2 − a8

∂2

∂ t2
− 2a7









[

ψ2

φ3

]

=
[

0
]

(15)

where ∇2 is the Laplacian operator and

a1 =
ν2T0

ρ2c21c
∗
, a2 =

νν1T0

ρ2c21c
∗
, a3 =

λ0K
∗2

α0ρ2 c∗2c21
,

a4 =
ν1K

∗2

να0ρ c∗2
, a5 =

ρ0c
2
1

2α0
, a6 =

λ1K
∗2

α0ρ2 c∗2c21
,

a7 =
KK∗

γρ2c∗2c21
, a8 =

ρ

γ
c21,

δ21 = 1 +
a2
0

c21
, δ22 = 1 +

a2
0

c2
,

τ10 = τ1 + ıω−1, τ20 = τ0 + ıω−1, τ30 = τ0n0 + ıω−1.

4. Reflection and boundary conditions

We consider a plane wave (thermal(T) wave/longitudinal

microstretch(LM) wave/ coupled transverse and

microtational(CD-I) wave) propagating through the gener-

alized magneto-thermo-microstretch elastic solid half space

(y > 0) and making an angle of incidence θ0 with the y-axis,

at the free surface (y = 0). Corresponding to each incident

wave, we get reflected longitudinal displacement(LD)wave,

thermal(T) wave, longitudinal microstretch(LM) wave, cou-

pled transverse and microtational(CD-I and CD-II) waves as

shown in Fig. 1.

Fig. 1. Geometry of the problem

We assume the solutions of the system of equations (14)–

(15) in the form

{ψ1, T, φ
∗, ψ2, φ3}

= {ψ1, T , φ
∗, ψ2, φ3}e

ı{k(x sin θ−y cos θ)−ω t},
(16)

where k is the wave number and ω is the complex circular

frequency.

Making use of (11)–(13) and (16) in Eq. (14)–(15), we

obtain two equations, one is cubic and second is quadratic in

V 2 given by

V 6 + AV 4 +BV 2 + C = 0, (17)

V 4 +DV 2 + E = 0, (18)

where V = ω/k is the velocity of the coupled waves; V1,

V2, V3 are the velocities the coupled waves namely longitu-

dinal displacement(LD) wave, thermal(T) wave, longitudinal

microstretch(LM) wave respectively given by equation (17)

and V4, V5 are the velocities of coupled transverse and mi-

crorotational (CD-I and CD-II) waves respectively given by

equation (18) and
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A =
−1

δ22d2

[

δ22d1 + δ21d2 − ıωτ10τ30

{

a1a5 +
1

ω2
(a2a3 − a1a6)

}

−
λ0

ρ c21

(

ı

ω
a1a4τ10τ30 −

1

ω2
a3

)

]

,

B =
1

δ22d2

[

δ21d1 + δ22 − ıω a1τ10τ30 +
λ0

ρ c21

(

1

ω2
a3

)]

,

C = −
δ21
δ22d2

,

D =
1

d3

[

1

ω2

(

2a7 +
K

ρ c22

)

−

(

c21
c22
δ22 + a8

)]

,

E =
1

d3

d1 = a5 −
a6

ω2
+ τ20,

d2 = a5τ20 −
1

ω2
a6τ20 +

ı

ω
a2a4τ10τ30,

d3 =
c21
c22
δ22

(

a8 − 2
a7

ω2

)

.

Since the boundary y=0 is free from surface tractions. The

boundary conditions are

σ22 + T22 = 0, σ21 = 0,

m23 = 0, λ2 = 0,
∂ T

∂ y
= 0.

(19)

In view of equation (16), we assume the values of ψ1, T ,

φ∗, ψ2 and φ3 satisfying the boundary conditions as

{ψ1, T, φ
∗} =

3
∑

i=1

{1, ηi, ξi}

[A0ie
ı{ki(x sin θ0i−y cos θ0i)−ωit} + Pi],

(20)

{ψ2, φ3} =

5
∑

j=4

{1, ηj}

[B0je
ı{kj(x sin θ0j−y cos θ0j)−ωjt} + Pj ],

(21)

where

Pi = Aie
ı{ki(x sin θi+y cos θi)−ωit},

Pj = Bje
ı{kj(x sin θj+y cos θj)−ωjt},

ηi =
a1ω

2τ30

(

−1+a5V
2
i −a6

V 2

i

ω2

)

+a2a3V
2
i τ30

(−1+V 2
i τ20)

(

−1+a5V 2
i −a6

V 2

i

ω2

)

+ ı
ω
a2a4V 2

i τ10τ30
,

ξi =
ıa1a4ωV

2
i τ10τ30−a3(−1+V 2

i τ20)

(−1+V 2
i τ20)

(

−1+a5V 2
i −a6

V 2

i

ω2

)

+ ı
ω
a2a4V 2

i τ10τ30
,

ηj =
−a7

−1 + a8V 2
j − 2a7

V 2
i

ω2

, (i = 1, 2, 3 & j = 4, 5).

and A0i are the amplitudes of the incident LD-wave, T-wave,

LM-wave, and B0j are the amplitudes of the incident CD-I,

CD-II waves respectively. Ai are the amplitudes of the reflect-

ed LD-wave, T-wave, LM-wave, and Bj are the amplitudes

of the reflected CD-I, CD-II waves respectively (Fig. 1).

In order to satisfy the boundary conditions, the extension

of the Snell’s law will be

sin θ0
V0

=
sin θ1
V1

=
sin θ2
V2

=
sin θ3
V3

=
sin θ4
V4

=
sin θ5
V5

, (22)

where

k1V1 = k2V2 = k3V3 = k4V4 = k5V5 = ω at y = 0. (23)

Making use of potentials given by Eqs. (20)–(21) in

boundary conditions (19) and using Eqs. (22) and (23), we

get a system of five non-homogeneous equations which can

be written as

5
∑

i=1

aijZj = Yi, (j = 1, 2, ..., 5), (24)

where

a1i = −r1k
2
i − r2k

2
i cos2 θi + ıωiτ10ηi + r3ξi,

a1j = r2k
2
j sin θj cos θj ,

a2i = −(2 + r4)k
2
i sin θi cos θi,

a2j = k2
j sin2 θj − (1 + r4)k

2
j cos2 θj + r4ηj ,

a3i = −ı r5ξiki sin θi, a3j = ıηjkj cos θj ,

a4i = ıξiki cos θi, a4j = ı r6ηjkj sin θj ,

a5i = ı ki cos θi, a5j = 0, (i = 1, 2, 3 & j = 4, 5)

and

r1 =
λ

ρ c21
+ δ21 − 1, r2 =

2µ+K

ρ c21
, r3 =

λ0

ρ c21
,

r4 =
K

µ
, r5 =

b0
γ
, r6 =

b0
α0
,

Z1 =
A1

A∗
, Z2 =

A2

A∗
, Z3 =

A3

A∗
, Z4 =

B4

A∗
, Z5 =

B5

A∗
.

(25)

(i) For Incident LD-wave;

A∗=A01, A02 = A03 = B04 = B05 = 0

Y1 = −a11, Y2 = a21, Y3 = −a31,

Y4 = a41, Y5 = a51,

(ii) For Incident T-wave;

A∗=A02, A01 = A03 = B04 = B05 = 0

Y1 = −a12, Y2 = a22, Y3 = −a32,

Y4 = a42, Y5 = a52,

(iii) For Incident LM-wave;

A∗=A03, A01 = A02 = B04 = B05 = 0

Y1 = −a13, Y2 = a23, Y3 = −a33,

Y4 = a43, Y5 = a53,
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(iv) For Incident CD(I)-wave;

A∗=B04, A01 = A02 = A03 = B05 = 0

Y1 = a14, Y2 = −a24, Y3 = a34,

Y4 = −a44, Y5 = 0,

(v) For Incident CD(II)-wave;

A∗=B05, A01 = A02 = A03 = B04 = 0

Y1 = a15, Y2 = −a25, Y3 = a35,

Y4 = −a45, Y5 = 0,

and

V0 =































V1 for incident LD − wave,

V2 for incident T − wave,

V3 for incident LM − wave,

V4 for incident (CD-I) − wave,

V5 for incident (CD-II) − wave

(26)

In the absence of magnetic field and stretch effect, our

results tally with the results of Singh and Kumar [21], by

changing the dimensionless quantities into the physical quan-

tities.

5. Numerical results and discussion

Following Gauthier [22], the values of micropolar constants

are

λ = 7.59 × 109Nm−2, µ = 1.89 × 109Nm−2,

K = .0149 × 109Nm−2, ρ = 2.638× 103Kgm−3,

γ = 2.63 × 103N,  = 0.196× 10−6m2.

and other parameters are taken

c∗ = 0.9614× 103Jkg−1Kelvin−1,

K∗ = 2.502Jm−1sec−1Kelvin−1,

αt1 = 0.5 × 10−3Kelvin−1,

αt2 = 0.5 × 10−3Kelvin−1,

λ0 = 0.5 × 109Nm−2,

λ1 = 0.5 × 109Nm−2,

0 = 0.185 × 10−6m2,

α0 = .9 × 103N, b0 = .91 × 103N,

τ0 = .2, τ1 = .4

δ21 = 1.3, δ22 = 1.2,

ω/ω = 10, T0 = 298Kelvin.

The solid line and small dashes line represent magneto-

thermo-microstretch elastic medium for LS-theory- MMT1

and for GL-theory- MMT2 respectively. The solid line and

small dashes line with centre symbols represent thermo-

microstretch elastic medium for LS-theory- MT1 and for GL-

theory- MT2 respectively. Variations of amplitude ratios Zi,

with the angle of incidence θ0, for different waves are shown

in Figs. 2–16.

Fig. 2. Variation of the amplitude ratio Z(1) with angle of incidence

of thermal wave propagating with velocity V2

T-wave. Figure 2 depicts that behavior of variations of am-

plitude ratio Z(1) is similar for MMT1 and MT1 in the whole

range. Also due to magnetic effect, the values of Z(1) remain

larger for MT2 in comparison to the values for MMT2, for

all values of θ0 (angle of incidence). It is noticed from Fig. 3

Fig. 3. Variation of the amplitude ratio Z(2) with angle of incidence

of thermal wave propagating with velocity V2

that the behavior of variation of Z(2) is similar for MMT1

and MT1 and oscillatory for MMT2 and MT2 respectively, in

the whole range. The behavior of variations of Z(3) (Fig. 4)

is similar for MMT1 and MT1, in the whole range except

when 50 ≤ θ0 ≤ 60, where the values of Z(3) are vary large
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for MT1 in comparison to the values for MMT1. The values of

Z(3) are more for MT2 as compared to the values for MMT2

in the whole range except the difference between the values

for MT2 and MMT2 is small in the range 10 < θ0 < 30.

The values of Z(3) for MMT1 and MT1 have been shown in

Fig. 4 by multiplying its original value by 10−1 respective-

ly.

Fig. 4. Variation of the amplitude ratio Z(3) with angle of incidence

of thermal wave propagating with velocity V2

Fig. 5. Variation of the amplitude ratio Z(4) with angle of incidence

of thermal wave propagating with velocity V2

Fig. 6. Variation of the amplitude ratio Z(5) with angle of incidence

of thermal wave propagating with velocity V2

Figures 5 and 6 depict that the behavior of variations of

Z(4) (Fig. 5) and Z(5) (Fig. 6) is similar for MMT1, MT1

and also for MMT2, MT2 respectively, in the whole range,

but the values of Z(5) remain slightly more for MT2 in com-

parison to the values for MMT2, for all values of θ0.

LM-wave. Figure 7 depicts that due to magnetic effect, the

values of Z(1) are larger in the whole range for MT2 in com-

parison with the values for MMT2. Also the values for Z(1)
are smaller for LS theory(MMT1 and MT1) as compared to

the values for GL theory(MMT2 and MT2), in the whole

range. From Fig. 8 it is noticed that the trend of variations of

Fig. 7. Variation of the amplitude ratio Z(1) angle of incidence of

longitudinal microstretch wave propagating with velocity V3
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the values of Z(2) for GL theory(MMT2 and MT2) is similar

to the variations of Z(1) (Fig. 7), in the range 0 ≤ θ0 < 40.

The difference between the values of Z(2) for MMT2 and

MT2 decreases with further increase in angle of incidence.

Also the behavior of variation of Z(2) is similar for MMT1

and MT1, in the whole range. The values of Z(2) for MMT2

and MT2 have been shown in Fig. 8 by multiplying its origi-

nal value by 10−2 respectively. From Fig. 9 it is observed that

the behavior of variations of Z(3) is similar for MMT1 and

MT1; MMT2 and MT2, but the values remain more for LS

theory(MMT1 and MT1) as compared to GL theory(MMT2

and MT2), in the whole range.

Fig. 8. Variation of the amplitude ratio Z(2) angle of incidence of

longitudinal microstretch wave propagating with velocity V3

Fig. 9. Variation of the amplitude ratio Z(3) angle of incidence of

longitudinal microstretch wave propagating with velocity V3

Figure 10 depicts that the values of Z(4) are more for

MT1 and MT2 as compared with the values for MMT1 and

MMT2, in the whole range. The values of Z(4) for MT2

have been shown in Fig. 10 by multiplying its original value

by 10−1. Figure 11 depicts the values of Z(5) remain larger

for MMT2 in comparison to the values for MT2, in the whole

range, but for MMT1 and MT1 the behavior of variation is

similar in the range 0 ≤ θ0 ≤ 20 and as angle θ0 increases,

the values of MT1 become larger as compared with the values

for MMT1.

Fig. 10. Variation of the amplitude ratio Z(4) angle of incidence of

longitudinal microstretch wave propagating with velocity V3

Fig. 11. Variation of the amplitude ratio Z(5) angle of incidence of

longitudinal microstretch wave propagating with velocity V3
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(CD-I)-wave. From Figs. 12–14 it is noticed that the behavior

of variations of Z(1), Z(2) and Z(3) respectively, is similar

for MMT1 and MT1; MMT2 and MT2, with difference in

the magnitude, in the whole range, but the values of Z(1) for

MT2, are slightly more in comparison to the values for MMT2

when 5 < θ0 < 25, the values of Z(3) for MT2 are more in

comparison to the values for MMT2 in the range 5 < θ0 < 50
and the values of Z(2) (in Fig. 13) are more for MMT2 in

comparison to the values for MT2 when 5 < θ0 < 35. The

values of Z(3) for MT2 have been shown in Fig. 14 by mul-

tiplying its original value by 10.

Fig. 12. Variation of the amplitude ratio Z(1) angle of incidence

of coupled transverse and microrotational (CD-I) wave propagating

with velocity V4

Fig. 13. Variation of the amplitude ratio Z(2) angle of incidence

of coupled transverse and microrotational (CD-I) wave propagating

with velocity V4

Fig. 14. Variation of the amplitude ratio Z(3) angle of incidence

of coupled transverse and microrotational (CD-I) wave propagating

with velocity V4

Figure 15 depicts that the values of Z(5) are lowered to

minimum for MT1 as compared with the values for MMT1,

in the range 5 ≤ θ0 < 40, as the angle of incidence θ0 in-

creases the behavior of variations of Z(4) is similar for all

cases. From Fig. 16 it is noticed that the values of Z(5) start

with maximum for MMT1, but the trend of the variation for

all cases is similar in the whole range.

Fig. 15. Variation of the amplitude ratio Z(4) angle of incidence

of coupled transverse and microrotational (CD-I) wave propagating

with velocity V4
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Fig. 16. Variation of the amplitude ratio Z(5) angle of incidence

of coupled transverse and microrotational (CD-I) wave propagating

with velocity V4

6. Conclusions

Detailed numerical calculations have been presented for the

cases of thermal(T) wave, longitudinal microstretch(LM) wave

and coupled transverse(CD-I) wave incident at the free surface

of the model considered. Appreciable magnetic and thermal

effects have been observed on the amplitude ratios, for the

two theories of generalized thermoelasticity (L-S and G-L).

The problem though theoretical, is of physical interest in the

field of seismology, geophysics and earthquake engineering

etc.
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