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Abstract. The paper deals with the application of the feed-forward and cascade-forward neural networks to mechanical state variable
estimation of the drive system with elastic coupling. The learning procedure of neural estimators is described and the influence of the input
vector size and neural network structure to the accuracy of state variable estimation is investigated. The quality of state estimation by neural
estimators of different types is tested and compared. The simple optimisation procedure is proposed. Optimised neural estimators of the
torsional torque and the load machine speed are tested in the open-loop and closed-loop control structure of the drive system with elastic
joint, with additional feedbacks from the shaft torque and the difference between the motor and the load speeds. It is shown that torsional
vibrations of the two-mass system are damped effectively using the closed-loop control structure with additional feedbacks obtained from
the developed neural estimators. The simulation results are confirmed by laboratory experiments.
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1. Introduction

Modern industrial drives are required to present relatively high
dynamical performance. They have to achieve the reference
signal with fast dynamics and to minimize the intermediate
phases. Typically, when the industrial drive is designed, the
elasticity of the shaft is neglected. In the case of the stan-
dard drive such an assumption is reasonable; however, there
is a large group of drives, like: rolling-mill drives, conveyer
belt or cage host drives, modern servo-drives, robot-arm or
even computer disc drives, where the characteristic features
of the mechanical part have to be included in the analysis
[1–4].

A lot of control methods have been developed in order
to suppress the torsional vibrations in the drive systems with
elastic couplings. One basic concept relies on the modifica-
tion of the speed controller parameters setting as presented
in [5]. This method can slightly improve the damping ability
of the drive, but the system dynamics decreases at the same
time. The next solution is based on the application of digital
filters [3]. It is commonly applied, when the resonant frequen-
cy of the system excides hundreds of hertz. However, it also
reduces the drive system dynamical performance. The more
advanced approaches are based on the application of the ad-
ditional feedback from a selected state variable. In [6] nine
different control structures with one additional feedback are
presented and compared. The design method of the control
structure relies on the pole-placement method. The most ad-
vanced control structures, which allowed free setting of the
system dynamics are based on the application of the additional
feedbacks from all state variables. These can be the classical
control structure with two additional feedbacks [6] or a state
control structure [7].

In all control structures which use additional feedbacks
from mechanical state variables, the information on these sig-
nals is required. Except of the driven motor speed, all these
state variables, like the load machine speed, torsional torque
or their derivatives, are hardly or even non-measurable ones.
In many applications the Luenberger observers are applied for
the non-measurable state variables estimation. In the case of
the linear, well identified system, with small value of mea-
surement noises, this estimator can ensure good accuracy of
reconstructed variables. However, if the system has high val-
ue of parameter and measurement noises the performance of
Luenberger observer is non-satisfactory. Contrary to the Lu-
enberger observer, the Kalman filter can ensure much better
results of mechanical variable estimation in the presence of
noises [8, 9]. It results from the fact that Kalman filter al-
gorithm relies directly on the parameter and measurement
noises. But this solution has some drawbacks also: to en-
sure the proper work of Kalman filter there is a need to
set the state and measurement covariance matrices correct-
ly, which is a quite difficult task. Moreover, the algorithm
is computationally complicated and requires a fast micro-
processor, which in turn raises the total cost of the appli-
cation [9].

Recently much research has been devoted to the issue of
the artificial neural networks (NN). They have been applied
in different industrial branches, including electrical drives, for
the state variables estimation, control and diagnostic purpos-
es [10, 11]. The big advantage of the NN is the ability of
non-linear function mapping. The neural estimators do not
need a mathematical model of the system, only the training
data are required. The next advantage of NN is the possibility
of data generalisation: this means the ability of representation
areas not included in the training process.
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The NN estimator can be designed to be more robust to
parameter and measurement noises than the Luenberger ob-
server. In comparison to the Kalman filter, the NN estimator
requires less computational time, which decreases the imple-
mentation cost. Additionally, in the case of special micropro-
cessor structure (FPGA), the time necessary to run one loop
of the NN algorithm can be drastically reduced due to the
fact that NN allows parallel data processing in contrast to
the Kalman filter, whose algorithm is sequential. That means
further cost reduction in the case of NN application.

This paper deals with the application of the neural net-
works to mechanical state variable estimation of the drive
system with elastic joint. The learning procedure of neural
estimators is described and the influence of the input vec-
tor size and neural network structure to the accuracy of state
variable estimation is investigated. The quality of state estima-
tion by feed-forward and cascade-forward neural networks is
tested and compared. The simple NN optimisation procedure
is proposed, which not only reduces the number of neural
connections in the structure (zeroing chosen weight factors,
what simplifies the practical realisation of the neural estima-
tors), but also improves the estimation accuracy. Next the op-
timised neural estimators of the torsional torque and the load
machine speed are tested in the open-loop and closed-loop
control structure of the drive system with elastic joint, with
additional feedbacks from the shaft torque and the difference
between the motor and the load speeds. The simulation results
are confirmed by laboratory experiments.

2. Mathematical model of the drive system and

applied control structure

In the paper the commonly-used mathematical model of the
drive system with elastic coupling is considered. The system is
described by the following state equation (in per unit system):
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where: ω1, ω2 – motor and load speeds; me, mSD, mS , mL,
mf – motor, shaft (before backlash), shaft, disturbance and
nonlinear friction torques; T1, T2 – mechanical time constant
of the motor, and load machine; Tc – stiffness time constant;
ε – the width of the backlash.

Fig. 1. The block diagram of the nonlinear two-mass system

In Fig. 1 the block diagram of the nonlinear two-mass
system is presented. The classical cascade control structure
of such system consists of two major control loops: the inner
control loop encloses the current controller, the power con-
verter and the electromagnetic part of the motor. It is designed
to provide sufficiently fast torque regulation and very often is
approximated by a first order filter. The PI current controller
is usually adjusted according to the well known modulus cri-
terion. The outer control loop includes: the mechanical part of
the drive, the speed sensor and the PI controller typically ad-
justed according to the symmetry criterion or pole placement
method [6], neglecting the nonlinear phenomena occurring in
the two-mass system (nonlinear friction torques and backlash).

The classical structure works well only for some inertia
ratio (T2/T1) of the two-mass system. In the case of low me-
chanical time constant of the load machine, transients of the
system are not proper. To improve the dynamical characteris-
tics of the drive, the modification of the cascade structure is
necessary. It is obtained by insertion of additional feedbacks
from selected state variables to the control structure [6]. In
this paper the following feedback state variables are chosen:
the shaft torque and the difference between the motor and the
load speed, as shown in Fig. 2.

Fig. 2. The block diagram of the control structure

Parameters of the control structures are setting using the
following equations (neglecting non-linear elements) [6]:

KI = ω4

0T1T2Tc (5)

KP = 4ξrω
3
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)
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where: ω0 – the required resonant frequency of the system,
ξr – the required value of the damping coefficient, k1, k2
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– feedback coefficients, KI , KP – the integral and the pro-
portional part of the PI controller with the following transfer
function:

Gr = Kp + KI/s. (9)

The direct feedbacks from the shaft torque and load speed
are very difficult in the industrial application. Therefore, in
many papers different methods for non-measurable variable
reconstructions have been considered [7–9]. Usually the Lu-
enberger observer or Kalman filter are applied. However, the
presence of the nonlinear elements makes the application of
those methods much more complicated. The linearization of
the system in every point of the work becomes necessary.
As a result, the control algorithm becomes more complicated
and the application of a faster microprocessor becomes nec-
essary. Due to those factors in this paper the NN estimators
are applied to reconstruct the non-measurable variables of the
non-linear two-mass system.

3. Basic structures of neural state estimators

and training procedure

In order to work properly, the NN estimators require a suit-
able choice of the learning signals. The appropriate selection
of learning vectors can ensure good data generalization. It
means that NN estimators can reconstruct even the states not
taken into consideration during the learning procedure cor-
rectly. The learning vectors should change in a wide range and
include all specific cases of the system work (reverse work,
different load torque level). As was shown in [12], the NN
estimators possess the best accuracy when the input vector is
defined in the following way:

W = [ω1(k), ω1(k − 1), ω1(k − 2), me(k),

me(k − 1), me(k − 2)] .
(10)

The factor k stands for the actual sampling period. So the
NN estimators were supplied by the actual and delayed by
one and two samples of the electromagnetic torque and motor
speed. For this research two types of the NN are selected:

– feed-forward neural networks;
– cascade-forward neural networks.

In order to get the learning signals, the control structure
presented in Fig. 1 with direct feedbacks from the shaft torque
and load speed is used in simulations. The main parame-
ters of the analysed system are following: T1 = 203 ms,
T2 = 203 ms, Tc = 2.6 ms. The obtained signals are pre-
sented in Fig. 3.

In the paper the following initial structure of the NN is
selected for both state variable estimators, after comparing
different NN configurations, taking into account the quality
of state variable estimation as well as simplicity of the prac-
tical realization (the total number of neurons):

{NN} = {6-8-1} (11)

which means: 6 inputs, 8 neurons in hidden layer, 1 output.
For the hidden layer the nonlinear tangensoidal activa-

tion functions are applied. As the output function of the NN
estimators the linear activation functions are selected. The
back-propagation learning method is used to train the NN
systems. After the training process the quality performance
of the designed NN estimators is checked using the test sig-
nals presented in Fig. 4 (obtained in simulation of the control
structure with directly measured state variables).

a) b) c)

d) e) f)

Fig. 3. Transients of the learning signals: reference speed (a) load torque (b) motor speed (c), electromagnetic torque (d) load speed (e) shaft torque (f)
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a) b) c)

d) e) f)

Fig. 4. Transients of the testing signals: reference speed (a) load torque (b) motor speed (c), electromagnetic torque (d) load speed (e) shaft torque (f)

a) b)

c) d)

Fig. 5. Transients of the real and estimated state variables: load speeds and estimation error (a,c) shaft torques and estimation error (b,d) for the feed-forward
NN (a,b) and the cascade-forward NN (c,d)

Next the reconstruction accuracy of the non-measurable
state variables (load speeds and shaft torque) for feed-forward
NN estimators is checked. The real and estimated transients
of the load speed and its estimation error are demonstrated in
Fig. 5a. In the steady state condition the estimation error of
the load speed equals almost zero. The big, quickly eliminat-
ed estimation errors appear, when the speed reference value

rapidly changes its direction. In Fig. 5b the real and estimated
shaft torques and its estimation error are presented. The es-
timation accuracy of the shaft torque is much better than for
the load speed. The estimated shaft torque transient covers its
real value almost perfectly.

Next the performances of the NN cascade-forward estima-
tors are investigated. In Fig. 5c the real and estimated tran-
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sients of the load speeds are presented. The estimation errors
are a bit bigger than for the feed-forward NN tested before.
The rapid change of the reference value causes bigger esti-
mation errors. In Fig. 5d the real and estimated shaft torques
and their error are shown. Similarly as in the previous case,
the reconstructed transient covers its real value without visible
difference.

4. Optimisation of neural estimators

Because the feed-forward NN estimators present better perfor-
mances than the cascade-forward NN systems, they are select-
ed for the optimisation procedure. This procedure should im-
prove the estimation quality of those estimators and minimise
the number of required neural connections in the structure
(zeroing of chosen weight factors).

The applied optimisation algorithm can be presented as
follows:

1. Calculation of the total reconstruction error of the tested
NN.

2. Every internal connection between weights is neglected
(only one at a time) and the state estimation errors are
determined.

3. The errors of all cases are compared and the network which
has the smallest error is selected to the next step of the pro-
cedure.

4. The chosen estimator is learned again.

5. The procedure is repeated, starting from the step 1.
6. The optimisation process is stopped when there is no pos-

sibility to obtain a smaller estimation error.

In Fig. 6 transients of the optimised NN estimators based
on feed-forward networks are presented.

The optimization procedure improves the characteristics
of the NN estimators. As can be seen from the comparison
of transients in Fig. 5a and Fig. 6a, the dynamical errors of
the load speed estimate significantly decrease. Also the esti-
mation accuracy increases in the steady state condition. The
estimated transient covers its real value thoroughly. In Fig. 6b
the real and estimated shaft torques and their estimation errors
are presented. There is no visible error between the real and
estimated values of the shaft torque.

In order to shown the efficiency of the applied optimiza-
tion procedure, the estimation errors of different NN systems
are calculated, using the following formula:

∆j =

N
∑

i=1

|xj − x̂je|

N
∗ 100% (12)

where: xj – real value, x̂je – estimated value, N – number
of samples.

In Fig. 7 the estimation errors calculated using the Eq.
(12), for the feed-forward, cascade-forward and the optimized
feed-forward NN estimators are presented.

a) b)

Fig. 6. Transients of real and estimated state variables: load speeds and its estimation error (a), shaft torques and its estimation error (b) for the optimized
feed-forward NN

a) b)

Fig. 7. Estimation errors of the load speed (a) and shaft torque (b) calculated using Eq. (12), for the optimized feed-forward (1), non-optimized feed-forward
(2) and cascade-forward (3) NN estimators
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The following conclusions result from the analysis of the
Fig. 5–7. The cascade-forward NN estimators present the
worst dynamical and steady-state performance; their estima-
tion errors, calculated according (12), are about 2.2% for the
load speed and about 0.118% for the shaft torque. The ap-
plication of the feed-forward type NN systems decreases the
estimation error to the values 1.6% and 0.095% for load speed
and shaft torque, respectively. The optimized feed-forward NN
estimators have the best characteristics. Their estimation er-
rors are about 1.1% for the load speed and 0.075% for the
shaft torque.

5. Simulation tests in the closed-loop operation

Next the NN estimators are tested in the closed-loop control
structure (shown in Fig. 2). The information about the mo-
tor speed and electromagnetic torque comes directly from the
measurement sensors. The load speed and the shaft torque
signals are provided by the NN estimators. In Fig. 8 tran-
sients of such two-mass system are presented. The assumed
resonant frequency of the system is ω0 = 40 s−1 and the
damping coefficient is ξr = 0.7. The drive system is working
under reverse condition. The applied load torque transient is
presented in Fig. 8e.

As can be concluded from Fig. 8, the motor and load
speeds have the desired shapes. The estimation errors of the
load speed and shaft torque are very small. The presented
transient of the real and estimated variables are almost iden-
tical.

6. Experimental results

The theoretical considerations are confirmed experimentally.
The laboratory set-up, presented in Fig. 9 is composed of
a motor driven by a static converter. The motor is coupled
to a load machine by an elastic shaft (a steel shaft of 5 mm
diameter and 600 mm length). The motors have the nominal
power of 500 W each. The speed and position of both motors
are measured by incremental encoders (36000 pulses per rota-
tion). There is no shaft torque sensor on the laboratory set-up.
Therefore, in order to check the estimated shaft torque shape,
the Kalman filter is applied [9]. The mechanical system has
a natural frequency of approximately 9.5 Hz. The control and
estimation algorithms are implemented with a digital signal
processor using the dSPACE software.

In the analysed system the direct feedback from the mo-
tor speed and the electromagnetic torque (motor current) is
realised. The additional feedbacks – form the load side speed
and the torsional torque – come from NN estimators.

In Fig. 10 transients of the closed-loop control structure
are presented. The assumed values of resonant frequency is
ω0 = 45 s−1 and the damping coefficient is ξr = 1. The
system works under reverse condition. The reference value of
the speed is set to 0.2 of the nominal speed (Fig. 10 a,c,e),
to avoid the electromagnetic torque limitation. In Fig. 10a the
motor and the load speed are presented. At the time t = 1.5 s
the passive load torque is applied (mL = 0.8 mN ). At that
moment only small quickly damped estimation error of the
load speed appears (Fig. 10c). The NN estimator of the shaft
torque provides very good estimation accuracy.

a) b) c)

d) e)

Fig. 8. Simulated transients of motor speed (a), electromagnetic torque (b), and load torque (c), real and estimated load speeds (d), real and estimated shaft
torques (e) for the closed-loop control structure with NN estimators
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Fig. 9. Schematic diagram of the experimental set-up

a) b)

c) d)

e) f)

Fig. 10. Experimental transients of motor and load speeds (a,b), real and estimated load speed (c,d): real and estimated shaft torques (e,f) for different value
of the reference speed
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Then the system is tested for the bigger value of the refer-
ence speed, equal 0.4 [p.u]. The system transients are present-
ed in Fig. 10 b,d,f. The control structure also works properly.
The estimation errors of the load speed and shaft torque are
small. The torsional vibrations in the two-mass drive systems
are suppressed effectively using the control structure with two
additional feedbacks obtained from properly trained and opti-
mized NN estimators.

7. Conclusions

In the paper the issues related to the non-measurable variables
estimation are presented.

The information about mathematical model of the drive
system is not required in the design process of NN estimators.
The suitable choice of training vector for the NN estimator is
essential. Decision about topology of NN has significant in-
fluence to the precision of the state variables estimation. Two
types of the NNs were tested and compared: the feed-forward
and cascade-forward NN. The feed-forward NNs ensure bet-
ter estimation accuracy than cascade-forward neural networks.
The best estimation results were obtained after the application
of the proposed optimization procedure of the feed-forward
NN based state estimators for the drive system with elastic
coupling. The experimental results have confirmed the good
performance in the torsional vibration dumping of the pro-
posed control structure of the drive system with suitably de-
signed neural estimators of non-measurable feedback signals.
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