
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 56, No. 3, 2008

On reducing PLC response time

M. CHMIEL∗

Institute of Electronics, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland

Abstract. The dual core bit-byte CPU must be equipped with properly designed circuits, providing interface between the two processor units,

and making it possible to exploit all its advantages like versatility of the byte unit and speed of the bit unit. First of all, the interface circuits

should be designed in such a way, that they don’t disturb maximally parallel operation of the units, and that the CPU as a whole works in

the same manner as in a standard PLC. The paper presents hardware solutions supporting effective operation of PLC CPU-s. Possibilities

of solving problems concerning data exchange between a CPU and peripheral circuits were presented, with a special stress on timers and

counters, and also on data exchange between the bit unit and the byte unit. The objective of the proposed solutions is to decrease the time

necessary for a CPU to access its peripheries.

Key words: Programmable Logic Controller, Bit-Byte Structure of CPU, Control Program, Scan Time, Response Time, Throughput Time,

Timer Function, Counter Function, Concurrent Operation.

1. Introduction

This paper presents results of research and implementation

that were aimed at maximal reduction of access time to ob-

ject signals. On the other hand, improved PLC CPU should

also be functional and cost effective.

Entire operation cycle of a PLC consists of the follow-

ing items: network communication, CPU test, object signal

update and control program execution. Operation connected

with object signal update and control program execution are

considered in this paper. There are two typical architectures

of a CPU known from literature that can be used. Those are:

typical or slightly modified microcontroller (e.g. dedicated

processors designed as ASICs) and dual processor bit-byte ar-

chitecture with separated processing of instructions operating

on binary and word variables. There also exist very expensive

multiprocessor solutions [1, 2].

Dual processor architecture is optimized for faster exe-

cution of logic instructions. This feature allows obtaining not

only cost effective but also functional and fast PLC CPU. Spe-

cific hardware and software solutions are required to obtain

high performance dual bit-byte processor CPU. This specific

mixed hardware software solution allows the features of both

processors to be exploited to the maximum. First of all both

processors should operate independently from each other. In-

dependent operation allows maximizing throughput of both

processors particularly taking advantage of fast operation of

the bit processor. Quick response is especially required in the

case of disturbances or failure in controlled process by chang-

ing the state of the appropriate executor or indicator.

Independent operation of dual core processor executing

common control program requires solving a problem of com-

mon resource accessing. In a typical CPU or multi pro-

cessor CPU that executes a control algorithm in a serial-

cyclic fashion those problems are unknown (since there is

only one processor that can access common resources at

a time).

Thanks to their special features such structures are capa-

ble of achieving satisfactory performance in terms of both

binary signal processing, owing to the inclusion of a dedicat-

ed bit processor, and handling of analogue signals, which is

carried out by a standard, inexpensive microcontroller. Such

a structure includes two separate components: a binary (bit)

unit and a byte unit. Therefore, a control program has to be

subdivided into two parts. What‘s more, such an approach is

justified by the fact that special features of the instructions for

those two processors shall be different. The bit processor ex-

ecutes every instruction during a single clock cycle, whereas

for the byte processor every single instruction is equivalent to

a procedure execution that consists of several native instruc-

tions. Such procedures are written in assembler or with use

of high-level languages.

The paper deals with improving the operation speed of

a bit-byte CPU in a PLC. The following improvements and

modifications are proposed:

• a new architecture of CPU,

• fast inter processor information exchange,

• improved hardware-software service of timers and coun-

ters,

• improved process signal servicing.

All the improvements and modifications mentioned above

lead to reduced response time and throughput time.

2. Process inputs/outputs

The way microprocessors access peripheral modules has an

important influence on the operating speed of a microcon-

troller. One approach is to use a dedicated microprocessor

∗e-mail: Miroslaw.Chmiel@polsl.pl

229



M. Chmiel

that is responsible for updating the state of the inputs and out-

puts of the microcontroller. This solution is expensive and in-

volves complicated reading and writing of common resources.

However, in the solution presented in this paper, a different

approach has been applied that does not require the above-

mentioned dedicated microprocessor. In addition, it should

speed up the operation of the central unit of the microcon-

troller. Input and output units are equipped with special mech-

anisms that facilitate creation of process image input and out-

put (PII, PIO) directly in the units. There are two ways the

central unit could determine the rhythm of updating the pro-

cess image input and output:

• after each program scan execution,

• when requested by the current refresh command.

Therefore, depending on the type of the command, one

is able to read the input state that has been stored at the be-

ginning of the current program loop or to read the current

state of the input. The state of the output can be stored in

the process image register and the state of the latter is then

copied to the output register at the end of the current iteration

of the program loop. One can also directly set a new value

at the given output, which immediately updates the state of

the process image output register. The units are also equipped

with edge detection mechanisms. There is no need to perform

a software edge detection by PLC CPU that reduces overall

execution time. Block diagrams of binary I/O units are pre-

sented in Fig. 1. For the sake of legibility, the edge detection

circuit is not shown in the schematic of the output unit.

Fig. 1. Binary inputs and outputs module schematic

3. Timers and counters

Byte processor maintains timers and counters while bit pro-

cessor mainly uses the results of their operation. They are

implemented as the software modules for microprocessor but

in most cases are utilized by bit processor. The operation of

timers and counters may be organized using condition flip-

flop exchange described in Section 4, but timer and counter

operations are very frequently used in PLC, therefore spe-

cial instructions for timers and counters should be created to

make the system operation faster. These instructions should

involve both processors in timer and counter servicing. The

bit processor sets or resets the status bit of a given timer or

counter. At the same time the byte processor completes its in-

struction (instruction subprogram). The bit processor executes

its control program without waiting for the byte processor to

receive its status. The status of timers and counters is stored

in data memory of the byte processor. The copy of the status

is sent to a special buffer register the outputs of which are

located in the bit processor discrete input area. Thanks to the

following hardware arrangement checking the state of each

timer or counter takes one clock cycle and results in extreme-

ly fast timer and counter servicing mechanism. The structure

enabling both processors to access the timers and counters

independently is shown in Fig. 2.

Fig. 2. Hybrid Realisation of Timer and Counter

4. Structure of bit-byte central processing unit

of programmable logic controllers

Let us consider a startup procedure for a three phase AC

motor as an example demonstrating the capabilities of the

bit-byte central processing unit of a PLC. Motor switching

relays are controlled from two outputs of the PLC. One of

them switches the motor in Y configuration while the other

one in ∆ configuration. During the start-up phase the motor

power connection configuration is changed from Y to ∆ after

the shaft reaches the desired minimal rotation speed. Rotation

speed is measured as analogue value. From the point of view

of a PLC CPU rotation speed is just a number.

The control program consists of parts that are executed by

the bit processor and the byte processor. Some actions require

co-operation between both processors. There are three digital

inputs connected to the controller. Two of them are connected

to push buttons and the other one is connected to a sensor:

• Start – pushing this button starts the process after a certain

delay. Process begins from start-up procedure.

• Start up – switches power to motor in Y configuration,

• Stop – pushing this button stops immediately the entire

process and turn off all outputs,

• BLK – this signal confirms that the object meets all con-

ditions required for process starting – start enable,

Analogue input delivers information about the actual mo-

tor speed.

Two binary outputs are also used:

• Start up – is active for the time needed by the motor to

reach the nominal rotation speed,

• Out – signal that controls output in normal working mode.

Activated after start-up procedure.

A schematic diagram of signal connection is presented in

Fig. 3. The control algorithm written in LD graphical lan-

guage for Simatic S7-300 [3] is presented in Fig. 4. Apart

230 Bull. Pol. Ac.: Tech. 56(3) 2008



On reducing PLC response time

from the symbols of switches and coils two block compo-

nents are used. Comparator is used to compare the current

speed with the reference value (nominal speed). Timer unit is

used to delay the Start-up signal.

Fig. 3. Example circuit signal connection

Fig. 4. The Ladder Diagram (LD) program

All places where passing of logical conditions between

processors is required are marked in Fig. 4. As seen, the log-

ical condition based on signals Start, Stop, and BLK activates

output, uses a memory “Flag” and triggers time counting op-

eration. Timer drives Start up signal. When Start up signal is

activated it enables the comparison block. This block checks

the actual motor speed value and activates the Out signal if it

is at least the same as the reference value. There are four dif-

ferent places where information is passed between processors

in CPU. Twice the information is passed from the bit proces-

sor to the byte processor. On the Ladder Diagram each block

component is triggered by logic signals. On the other hand

each block drives logic signals. This simple example gives

overview of logic state passing in bit-byte PLC CPU between

two processors. Another problem concerns control program

instruction ordering, fetching and passing between processors

as well operation synchronisation.

4.1. Basic bit-byte architecture of CPU. In the basic ar-

chitecture of a bit-byte CPU instruction memory is common.

Each processor fetches an instruction, as it is needed. In this

mode processors operate in a serial way waiting for each oth-

er until instruction execution is completed. Introducing du-

al processor architecture even with single instruction stream

is expected to improve performance. Bit operations are time

consuming for a universal processor or microcontroller. Ad-

ditional processor that is designed for bit operation greatly

reduces time and program overhead for bit operation for bit

operations [4].

In a simple dual processor architecture the program listing

is similar to that presented in Fig. 5 [5]. The bit processor ex-

ecutes bit instructions while the byte processor remains idle.

Byte instruction is executed by the byte processor while the

bit processor is waiting for instruction. Complex bit-byte in-

structions are expanded into instructions for either or both

processors in an appropriate order.

Fig. 5. Program 1 written in instruction list form

The program contains 14 instructions, 9 of which are in-

structions for the bit processor. Thus the instructions for the bit

processor constitute 64% of the whole program. Some man-

ufacturers determine the scan time, i.e. the time of executing

1000 instructions, for such content of binary instructions in

the program. The example program satisfies thus the require-

ments demanded by such standards.

Let us assume that instruction execution times in our ex-

ample program are the same, as execution times for the well-

known Siemens S7-315-2DP PLC. For this PLC execution

time of a binary instruction is 0.1 µs, and execution time of

a word instruction is 10 times longer – 1 µs [6]. Assuming

such execution times, the PLC will execute the program pre-

sented in Fig. 5 in 5.9 µs (of course the time required for

system functions, communication with I/O modules, etc. was

not included).

This basic dual processor architecture can use bit-

processor as a kind of co-processor for specific operation [6].

When both processor units are equally privileged then ad-

ditional arbitration circuitry is required. The circuit initially

decodes instruction and directs it to the proper processing

unit.

The dual processor architecture [7] where instruction de-

coder selects processing unit for execution of current instruc-

tion is presented in Fig. 6. When instruction processing is

Bull. Pol. Ac.: Tech. 56(3) 2008 231



M. Chmiel

completed the active processor increments instruction counter

and the cycle starts over. Usually instruction decoder is a part

of the bit processor. Instruction processing is deterministic

and controlled by a common instruction decoder for both pro-

cessors. Common instruction memory forces serial execution

of the control program. The byte processor is also equipped

with local standard-procedures memory. Common procedures

for complex control instruction, such as PID or FUZZY con-

trollers, timers, counters, advanced arithmetic functions, net-

work and remote communication servicing etc., are stored

in this memory as standard procedures. The CPU shown in

Fig. 6 utilises high speed of bit processor operation however

it has to execute control program serially because the sys-

tem is equipped with one control program memory, one pro-

cess I/O image and one system bus. In the presented solution

standard-procedures memory is used. The procedures stored

in this memory could be executed by the byte processor con-

currently to bit processor operation. The logical conclusion

would be therefore to equip each processor with its own pro-

gram memory so that the relevant parts of the program could

be placed in the memory of the appropriate processor.

Fig. 6. Block diagram of the one bus CPU [7]

Such approach was proposed by Donandt [8]. Computa-

tion process is controlled by the byte processor that passes

tasks to the bit processor. The bit processor is an autonomous

calculation unit dependent on the master processor. This ap-

proach allows for concurrent operation of both processors.

Once the operation of the bit processor is initialised, the byte

processor (master) is able to resume its operation and contin-

ue program execution instead of waiting for the bit processor

to complete its task. There are architectural limitations that

reduce performance and concurrency. Only master processor

can access process image memory. This limits parallel pro-

gram execution.

4.2. Dual processor CPU. The presented examples of bit-

byte CPUs deliver guidelines and requests for new architec-

ture design. Dual processor CPU should be equipped with

a fast bit processor. This processor may be designed as cus-

tom hardware using, for example, programmable logic compo-

nents. The bit processor is responsible for instruction fetching.

The byte processor is equipped with local standard-procedures

memory that contains implementation of all byte instructions

that this processor is expected to perform. Each instruction for

byte processor is a subprogram that is executed as a request

from the bit processor. This approach establishes the fast bit

processor as a master processing unit. In order to avoid con-

flicts during data memory access each processor uses its local

data memory.

The CPU architecture described above is shown in

Fig. 7 [9]. a control program is stored in the main program

memory. The program contains instructions for the bit pro-

cessor. Byte processor instructions are represented by entry

point addresses to the appropriate subprograms. After com-

pleting execution of an instruction the byte processor transfers

its ready state to the bit processor. The bit processor fetches

then the next instruction and passes it for execution to the

appropriate processor.

Fig. 7. Bit-byte CPU with Master Bit Processor

The flow diagram for program execution is shown in

Fig. 8. In the presented circuit the processors are able to exe-

cute a single instruction or a group of instructions for a given

processor concurrently. Such possibility decreases the time of

control program execution.

Fig. 8. Program execution in bit-byte CPU

232 Bull. Pol. Ac.: Tech. 56(3) 2008



On reducing PLC response time

Let us return to the previously considered example and

consider step-by-step program execution process by the CPU

from Fig. 7, which operates according to the flow diagram

presented in Fig. 8. The control program shown in Fig. 9

consists of different kinds of instructions:

• Bit instructions stored in the main program memory exe-

cuted usually in one clock cycle,

• Byte instructions that require byte processor program mem-

ory access,

• Complex instructions that require processor co-operation

while the result of operation depends on both processor

calculations performed in the appropriate order.

Fig. 9. Instruction allocation case 1

Byte processor instructions can have the following format:

• Simple without arguments – the instruction consists of op-

eration code that points to program memory place where

standard programs can be found (A >= I),

• Simple instruction with single argument – contains (L

“Time”),

• Complex instructions that require co-operation of bit-

processor. Instructions of this type trigger appropriate ac-

tions in both bit and byte processors (SD “Timer”).

All bit instructions are executed very quickly (each in-

struction in a single clock cycle). Byte instructions must

be passed to the byte processor. Signal NEXT is activated

(Fig. 8). Bit processor enters wait state until signal GO is

activated because subsequent instruction is also of the byte

type. In the following situation the bit processor has to en-

ter wait state and the byte processor must inform it about

execution progress, which increases operation time. Another

approach would be to make the bit processor initiate the fol-

lowing three byte instructions once. This allows for shortening

of an instruction execution time. The same optimisation may

be applied to the next two byte instructions. The proposed

modification results in shortening of main program. Execu-

tion time of byte instruction group is also reduced, as they

are now stored in the byte processor memory. Overall exe-

cution time of program loop is also reduced. Additionally it

can be noticed that the first two byte instructions of Fig. 10

are independent of the following bit instructions. As those

instructions are independent from each other they can be ex-

ecuted concurrently with these bit instructions. As expected,

the execution of program loop was reduced by concurrent op-

eration of bit and byte processors. When above description is

considered operation speed of processors must be taken into

account. Bit processor is able to perform its operations much

faster than byte processor (a few dozen times). There are al-

so operations the result of which influences the operation of

the other processor. This is a very important problem of data

exchange between processors.

Fig. 10. Instruction allocation case 2

In a single processor unit a condition flip-flop is used to

calculate logic functions that determine execution of subse-

quent operations. A simple two processor CPU is equipped

with only one condition flip-flop too that is available for both

processors. The above arrangement is correct only when serial

program execution is considered. A single condition flip-flop

limits parallel operation of the CPU. In the case of the con-

sidered architecture bit and byte processor must be able to

process and exchange logic conditions without interrupting

the operation of the other processor. This requires implemen-

tation of two logic condition flip-flops, one for each processor.

This allows for execution of program parts that require logic

function execution in each processor while the operation of

the other processor is not influenced. As a result both proces-

sors will be able to execute program blocks that don’t contain

information exchange between processors.

Let condition flip-flops be called FB and Fb for byte and

bit processor respectively. Information stored in flip-flops must

be transferred to the appropriate processor. It can be done by

transferring value from FB to Fb and also from Fb to FB.

This data transfer doesn’t require additional hardware over-

head. There is serious limitation in the described architecture

whenever the processor that wants to access the condition flip-

flop of the other processor has to wait until access is granted.

Bull. Pol. Ac.: Tech. 56(3) 2008 233



M. Chmiel

Fig. 11. Block diagram of parallel CPU structure

Whereas those problems are not very important for serial

program execution, they become an object of interest in the

case of concurrent program execution. In order to reduce the

number of synchronisation wait states a modified architecture

of condition registers may be proposed, that is introduction

of specific buffered condition flip-flops that are available not

only for the host but also for the other processor. The con-

tent of the internal condition flip-flop may then be transferred

to an additional (buffer) condition flip-flop in order to make

it available for the other processor. There are two additional

condition flip-flops that store a copy of the main condition

flip-flop – one for each processor. Each processor transferring

condition flip-flop content to the buffer flip-flop is able to

continue program execution until the next condition flip-flop

update. New information can be written to buffer flip-flop on-

ly if the previous content was read out by the other processor.

When buffer flip-flop is empty (doesn’t contain valid condi-

tion data) condition data can be transferred and processor can

immediately resume its operation. This requires appropriate

compiler that is able to insert synchronisation instructions in-

to compiled code while program designer is concentrated on

problem solving.

A schematic diagram of the proposed architecture is pre-

sented in Fig. 11. Condition buffer flip-flops are called FBb

(transfer from byte to bit processor) and FbB (transfer from

bit to byte processor).

Let us come back again to the previously considered pro-

gram presented in Fig. 5. In this new situation the program

may be split into two independent parts. The first part gen-

erates signal Start up while the second controls signal Out

depending on the value of Start up. The first part of the pro-

gram begins with 5 instructions for the bit processor that use

flip-flop Fb. Instructions 6 and 7 are executed by the byte pro-

cessor. A critical part of the program is instruction 13. The

instruction performs a logical AND on the result of a com-

parison executed by the and the logic result obtained by the

bit processor. Finally logic condition is obtained for Start up

output. Operation of both processors is required in the pre-

sented part. The obtained results influence the operation of

the other processor. The bit processor executes its part of the

program and finally performs logic-AND with the contents

of FBb flip-flop. Byte processor performs load and compari-

son operations. The result of comparison is transferred to FB

flip-flop.

Fig. 12. Program 2 in instruction list

Program listing for dual processor CPU is presented in

Fig. 12. There are two additional instructions (6, 7) that are

responsible for transferring the state of Flag - the bit pro-

cessor controls this value – finally to FB flip-flop. Based on

the state of FbB flip-flop the byte processor is able to trig-

ger timer operation. Two additional instructions are inserted

in the program allowing Flag value to be exchanged between

processors. There is one additional point of inter-processor

234 Bull. Pol. Ac.: Tech. 56(3) 2008



On reducing PLC response time

data transfer. The status of the timer (counting the delay of

the output Start Up) is required by the bit processor while

timer procedures are performed by the byte processor. Using

the presented programming mechanism dedicated for timers,

discussed in Section 3, modified timer construction changes

operation of LD Timer instruction that is now executed only

by the bit processor. It tests the state of appropriate timer bit.

Dual processor CPU introduces little overhead in instruc-

tions. In the presented program fragment two additional in-

structions appear. On the other hand this overhead allows for

parallel and concurrent operation. The first six instructions for

bit processor can be executed with the next load instruction

for byte processor almost in parallel way (serial instruction

fetching). Synchronisation point is located in the 7th instruc-

tion. At this instruction bit processor will wait until the status

of FBb flip-flop will be read-out.

Further analysis of the considered program reveals two ad-

ditional instructions that are responsible for transferring com-

parison result to FBb and logic-AND operation on the content

of this flip-flop. The state of Start up output must be trans-

ferred to FbB flip-flop. Two additional instructions are inserted

in the program for the value of Start up bit value to be ex-

changed between processors (Fig. 12). There is one additional

point of inter-processor data transfer (instructions 16 and 17).

The bit processor requires the status of the compare operation

while the byte processor performs the main operation. Using

the programming mechanism presented above it is necessary

to place two additional instructions for exchanging logic con-

ditions between processors.

Fig. 13. Program 3 in instruction list

After all modification in the hardware structure of the con-

troller the program consists of 18 instructions while 4 of them

transfer logic conditions and synchronise processor operation.

It is important that all those instructions belong to the basic

set of instructions and their execution is relatively short. Of

course the extra instructions would extend program execution

time up to 6.3 µs, if the program was processed fully serial-

ly. But in this case the program is partitioned into two parts,

so as to enable assigning each part to one of the processing

units: the bit-processor, and the byte-processor. A program

that is split in two columns for bit and byte processor with

additional transfer and synchronisation instructions is present-

ed in Fig. 13. The discussed case requires condition transfer

in both directions between processors. This simple example

allows one to become acquainted with the method of simulta-

neous concurrent operation of processors in a hybrid bit-byte

PLC CPU. As the bit processor can operate much faster than

the byte processor both processors could start operation imme-

diately. Synchronisation point should be placed for instruction

– A FBb, which requires updated value of speed comparison.

It may be noticed that total execution time in this program

fragment was reduced. Execution time is determined mainly

by the byte processor and its program consists of seven in-

structions (five word and two binary instructions).

After the partitioning, the program consists of two parts:

the bit-part, and the word-part. The program execution time

is now not so easy to determine. We can calculate program

execution times separately for each processor. Thus for the

bit-processor the execution time is 1.1 µs, and for the byte-

processor – 5.2 µs. Bearing in mind high discrepancy between

the times we can state that the bit processor executes its in-

structions almost in the background of the byte processor op-

eration. Its operation doesn’t extend program loop execution

time.

The conclusion is that the total program execution time,

for a CPU working according to the presented principle, is

equal to the execution time of the word-part of the program

in the byte-processor, i.e. 5.2 µs. We save 0.7 µs, and this

makes several percent of the total execution time. It should

be also stated that adding to the program even 40 extra bi-

nary instructions, in practice will not extend the scan time,

because the mechanism explained in Fig. 10 will work. The

extra instructions will be executed while the byte-processor is

busy executing its own program, and the bit-processor would

have to wait for updating the state of the condition flip-flop.

The observable result of the operation is hiding bit operations

under byte operations. Execution time isn’t the sum of all in-

struction execution times since byte instructions are executed

concurrently with bit one.

If the same mechanism is applied to other instructions

the effect of concurrent operation may be achieved. A pro-

cessor waits for the other unit when synchronisation data ex-

change point is achieved. It may be noticed that synchronisa-

tion mechanism doesn’t require passing instructions from bit

processor to byte processor.

The program is also free from additional operations con-

nected with instruction passing. Additional instructions are in-

serted for synchronisation and logic condition exchange. The

total program execution time is equal to the maximum val-

ue of byte processor instruction execution time. Usually byte

instructions are executed longer than bit instructions so the

execution time is dominated mainly by the byte processor.

4.3. Concurrent operation in bit-byte CPU. Let us consid-

er the block diagram of the CPU from Fig. 11 in which the

instruction buffer was removed while each processor owns in-

struction memory. Processors are synchronised by the state

of condition flip-flops FBb and FbB (empty/full). Instructions

are delivered to the processors from their local memories so

that they don’t have to wait until the instruction is delivered

from common program memory. Processors enter wait state

Bull. Pol. Ac.: Tech. 56(3) 2008 235



M. Chmiel

only when they attempt to read empty condition register or

overwrite not read condition in register. Program execution is

synchronised by conditional execution of program part that

depends on the result delivered by the other processor. In or-

der to avoid long wait states the program should be written

and compiled in such a way that the load of both proces-

sors is equally distributed in operation time. Further optimi-

sation may be achieved by increasing the number of flip-flops

that pass logic condition between processors or implementing

a common memory area used for information exchange. In

that case registers or cells have to be assigned to given tasks.

Figure 14 shows an example of application program,

which is an extended version of the program presented in

Fig. 5. The extension consists in additional Error output sets

when Motor Start up procedure didn’t work properly.

Fig. 14. Example of program in instruction list

As it can be seen, the program consists of two parts, that

will be able to work completely independently, provided that

the circuit is equipped with two condition flip-flops. This way

we obtain an effect equivalent to two smaller programs pro-

cessed in a quasi-concurrent manner. From the point of view

of the condition flip-flops, such an operation of the PLC would

be fully parallel. If required, however, operation of any of the

processors could be suspended to wait for the other unit, but

only within a specific task – the second task could be further

processed. The idea is schematically explained in Fig. 15.

The diagram shows a case, in which we have n tasks, mutu-

ally independent with respect to data exchange between the

processor units. Thus every unit processes n tasks that re-

quire mutual data exchange. Besides, every unit can process

any number of additional tasks that don’t require information

exchange.

Fig. 15. CPU block diagram for multitasks control program

The mechanism incurs of course additional hardware and

software costs, because instead of using one condition flip-

flop, it requires applying a great, and furthermore unknown,

number of them. The number of condition flip-flops can how-

ever be appointed based on the size of the program memory,

and thus a possibility of assigning subsequent flip-flops to

subsequent tasks requiring data exchange can be provided.

The problem can also be handled in a more intelligent way,

by using reconfigurable circuits, from the resources of which

the condition flip flops can be freely configured, while the

spare resources can be utilised to implement ordinary flags.

Now the problem should be considered, whether the hand-

shaking mechanism applied in the presented solution of state

exchange between condition flip-flops is really indispensable.

Preserving serial program execution by each processor

causes that conditions are generated in the same order. That

allows for designing specific hardware with extremely fast ac-

cess to condition bits. The solution is based on a set of D

flip-flops. Their content is written by one of the processors

while the second reads its contents. The discussed approach

eliminates conflicts and reduces access time. An ordinary FI-

FO memory cannot however be used, because of freely run-

ning processor units, for which program execution times will

be different, the FIFO would lose synchronisation, and the

processors would read states of wrong condition flip-flops. To

avoid this a modified circuit presented in Fig. 16 ought to be

built. Two flip-flop registers must be implemented – one for

each direction of condition transfer. Registers are connected

to one processor with write access while the other one has

read access to them. Position that is currently written to is

pointed to by a pointer that is incremented by processor after

write operation. After reading data from register read point-

er is also incremented. The presented register forms queues

where conditions are written-in and read-out in order they are

appearing. There is possible danger of queue overlapped in the

case where one processor is executing tasks much faster than

the other one and generates large number of synchronisation

flags [10]. The presented architecture is extremely fast since

accessing information takes no longer than one clock cycle

236 Bull. Pol. Ac.: Tech. 56(3) 2008



On reducing PLC response time

for bit processor and port write operation for byte processor.

This solution is unfortunately more expensive and complicat-

ed than using RAM. If RAM is used for conditions storing,

apart from access time, which is longer for memory than for

flip-flop, there is also the problem of access organising.

Fig. 16. Block diagram of the two-processor CPU with a flip-flop

register unit

The problem may be solved by dual port RAM. This al-

lows for simultaneous access to data without using arbitration

circuitry. In order to protect the system against violation of

possible write operation to the same cell from both ports, sep-

arate marker regions are assigned for bit and byte processors.

The described memory access technology ensures that actual

states of condition registers from one processor are available

to the other like I/O signal states – in the following scans at

the very latest.

It may be noticed that the presented solution allows for

unconstrained operation of both processors that don’t have to

wait for condition passing. In the case of disproportion of

program execution time between the processors some flags

are updated and examined more frequently than other ones

[11, 12].

At this moment the following question may be expressed.

May the presented execution method lead to improper oper-

ation of the entire CPU? In general it cannot disturb the op-

eration of the controller. In the presented structure common

information is processed like other information delivered from

sensors. The other processor is seen as a set of flip-flops that

are being examined and based on their states proper actions

are triggered. This approach has shorter response time while

both processors can operate with maximal operation speed

instead of waiting for calculation completing.

It seems, that the problems, if they could ever happens,

would concern situations of large discrepancies between pro-

cessor scan times – one of the units reads and writes back

flip-flop states several times faster, than the other. It can be

noticed that during control program loop executed by one pro-

cessor the other may change a state of its condition flip-flop

for a few times. As a result, certain parts of the control pro-

gram executed by the first processor utilise different states of

the condition flip-flop. The rule of serial program execution

is violated. Both processors operate asynchronously with re-

spect to each other. They are seeing the marker area as an

I/O space – in order to execute suitable actions in response to

changing markers.

Fig. 17. CPU block diagram for multitasks control program with

auxiliary buffer

From the point of view of the CPU I/O devices work

slowly. It is however possible that during one program scan

a state of input changes several times. In such a case the input

changes will not be registered. Now similar problems arise in-

side our CPU, with data exchange between the processor units.

To avoid the situation where one of the units processes differ-

ent tasks on different states of the same condition flip-flops,

additional buffering should be applied. The additional buffer-

ing consists in organising condition bit data exchange in such

a way, that each processor performs writes to its own con-

dition register at random moments, while the other decides,

when the data should be copied to its own memory. The copy-

ing would be organised in a similar manner, as input scanning

and output updating. Such a mechanism would cause, that the

data stored in the additional register would constitute for both

processors the same set of signals (with respect to the da-

ta access mechanism), as ordinary I/O-s. I/O states can also

change during a program scan, but the processor is capable of

acquiring this information only before the next program scan

or, alternatively, the information is lost, if the changes last

too short. Each processor unit would refresh from its side the

data stored in the condition flip-flops, while the other unit,

after completing a program scan, by generating an “update”

signal, would initiate copying of the condition flip-flop states

to its own image memory. The copying would be performed

together with input scanning and PII updating. The idea of the

Bull. Pol. Ac.: Tech. 56(3) 2008 237



M. Chmiel

condition flip-flop register with auxiliary buffer is presented

in Fig. 17.

The presented CPU structures and the method of CPU

operation reduce overall access time to input-output signals

– during program execution (not considered as a single ma-

chine cycle). The processors are able to respond much faster to

alarm and exception signals. Continued execution of program

instead o waiting until an entire task of the other processor

has been completed allows for much faster operation.

5. Conclusions

Solutions proposed in the paper enable to significantly speed

up operation of a bit-byte central unit of the microcontroller.

In consequence, time the central unit requires to access pe-

ripheral signals is also reduced. Particularly large gains are

achieved when bit data is processed. Owing to the use of

two separate buses and dedicated software-hardware timer and

counter servicing circuit, as well as data exchange during ex-

ecution of program loops, the bit processor may operate in-

dependently and in undisturbed way. The byte processor, in

the case of the majority of its commands, requires relatively

long time to complete the execution. Thus, during its normal

operation the byte processor does not need to communicate

with the bit processor as well as its operation is not disturbed

by the latter. Fast access to peripheral signals and the fact

that bit and byte microprocessors treat each other as periph-

eral devices resulted in the design of the central unit with

independently operating components.

Table 1

Comparison of a few PLCs

PLC
Number

of bit inst.

Number

of byte inst.

Execution time

[ms]

S5-100U 1030 140 9.0

S5-115U 1030 140 1.9

S7-224 780 50 2.8

S7-313 1000 115 2.7

S7-315-2DP 1000 115 1.5

Modicon A984 – – 8.0

80C320 – serial mode 1050 280 1.7

80C320 – parallel mode 850 140 1.1

In Table 1 is presented comparison of a program execution

time for a part of a practical application – the control system

for a metal sheet pickling line at a Columbus Stainless iron-

works (South Africa) [13]. The comparison was performed for

the circuit that contained only the CPU, to avoid the influence

of the time necessary for communication with I/O modules.

The scan times don’t contain the “empty” loop scan time, ei-

ther. This enabled avoiding the influence of system-function

execution time.

REFERENCES

[1] G. Michel, Programmable Logic Controllers – Architecture and

Applications, John Willey & Sons, London, 1992.

[2] J.W. Webb and R.A. Reis, Programmable Logic Controllers:

Principles and Applications, Prentice-Hall, Engelwood Cliffs,

NJ, 1999.

[3] H. Berger, Automating with STEP 7 in LAD and FBD –

SIMATIC S7-300/400 Programmable Controllers, Siemens

AG, Monachium, 2001.

[4] M. Chmiel and E. Hrynkiewicz, “Remarks on parallel bit-byte

CPU structures of programmable logic controllers”, Int. Work-

shop on Discrete Event System Design, DESDes 1, 147–152

(2001).

[5] N. Aramaki, Y. Shimokawa, S. Kuno, T. Saitoh, and H.

Hashimoto, “A new architecture for high-performance pro-

grammable logic controller”, Proc. IECON’97 23rd Int. Conf.

on Industrial Electronics, Control and Instrumentation, IEEE

1, 187–190 (1997).

[6] Siemens AG, Simatic S7-200 Programmable Controller – Sys-

tem Manual, Siemens AG, Monachium, 2002.

[7] Z. Getko, “Programmable systems of binary control”, Elek-

tronizacja 18, 5–13 (1983), (in Polish).

[8] J. Donandt, “Improving response time of programmable logic

controllers by use of a Boolean coprocessor”, IEEE Comput.

Soc. Press. 4, 167–169 (1989).

[9] M. Chmiel and E. Hrynkiewicz, “Remarks on parallel bit-byte

CPU structures of programmable logic controllers”, in: De-

sign of Embedded Control Systems, ed. M. A. Adamski, A.

Karatkevich, and M. Węgrzyn, pp. 231–242, Springer Science

+ Business Media, Inc., Berlin, 2005.

[10] M. Chmiel and E. Hrynkiewicz, “Concurrent operation of the

processors in bit-byte CPU of industrial PLC”, Int. Work-

shop on Programmable Devices and Systems, PDS’04 1, 15–20

(2004).

[11] M. Chmiel, E. Hrynkiewicz, and A. Milik, “Concurrent oper-

ation of the processors in bit-byte CPU of a PLC”, Preprints

of the IFAC World Congress D, 44–49 (2005).

[12] M. Chmiel and E. Hrynkiewicz, “Improving of concurrent op-

eration of the bit-byte PLC CPU”, Int. Conf. on Programmable

Devices and Systems, PDS’06 1, 132–137, (2006).

[13] M. Chmiel, A. Malcher, and A. Nowara, ”A control system for

a metal sheet pickling line”, Machine Technologies and Mate-

rials, 20–21 (1997), (in Polish).

238 Bull. Pol. Ac.: Tech. 56(3) 2008


