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Phase transitions in confined lamellar phases
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Abstract. Effects of confinement on mechanical, structural and thermodynamic properties of uniform fluids are very well
understood. In contrast, a general theory based on statistical thermodynamics for confined nonuniform and non-isotropic
phases, such as the lamellar phase, is in its infancy. In this review we focus on the lamellar phase confined in a slit or in a pipe
in order to illustrate various effects of confinement. We limit ourselves to the results obtained by M. Tasinkevych, V. Babin
and the author for lamellar phases in oil-water-surfactant mixtures within a generic semi-microscopic model, using a mean-field
approximation. We show that compared to isotropic fluids the excess grand potential contains additional terms associated with
structural deformations. These terms depend on the type of the confining walls, the shape of the container and on the thickness
of the lamella. As a result of the dependence of the structure of the confined lamellar phase on the shape of the container,
capillary lamellarization and capillary delamellarization is found in slits and in pipes respectively.
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1. Introduction

Amphiphilic molecules self-assemble into mono- or bilay-
ers, which surround mesoscopic liquid domains of a size
λ ∼ 10−100 nm. In certain conditions the liquid domains
and the amphiphilic membranes surrounding them form
a pattern inside a unit cell, and this pattern is periodi-
cally repeated in space. The resulting ordered phases can
be periodic in one-, two-, or in three dimensions. Such
phases are soft, because the shape of the mesoscopic liq-
uid domains can be deformed, when an external stress is
applied. On the other hand, the response to the external
stress depends on the direction of the applied force with
respect to the symmetry elements (axes and/or planes) of
the ordered phase. Due to anisotropy and periodic order
of these phases on the one hand, and their softness and
liquid nature inside the domains on the other hand, their
response to expansion or compression is much more com-
plex, and much less studied than in liquids and solids.
Only recently confined self-assembling systems draw in-
creasing attention [1–12]. The experimental studies fo-
cused mainly on the mechanical properties of the confined
self-assembling systems and on the structure of thin films
formed on solid substrates. The effect of a confinement
on phase transitions between the lyotropic liquid crystals
and uniform phases was studied in Refs. [10–12]. In Refs.
[13,14] similar effects in termotropic liquid crystals were
considered. In this mini-review we restrict our attention
to the most frequently found lamellar phases, and for con-
creteness we choose ternary oil-water-surfactant mixtures.
Based on the theoretical results obtained in Refs. [9–12],
general properties of nonuniform and non-isotropic phases
in confinement are summarized. Features that are absent
in confined uniform fluids are emphasized.

A wall of a container disturbs the structure of the
fluid in the near-surface layer of a thickness comparable
to a bulk correlation length ξ. Far from phase transitions
ξ ∼ R, where R is the molecular diameter. For this rea-
son confinement plays a significant role when the size of
the fluid system is up to about 10R. The domains sur-
rounded by mono- or bilayers in the self-assembling sys-
tems resemble soft particles. Thus, the confinement plays
a significant role at least for the wall separation ∼ 10λ,
therefore properties of the confined system may be signif-
icantly different than in the bulk on the nanometer scale.
In particular, biologically relevant self-assembled systems
are confined in organelle whose size is ∼ 10λ, and the
whole cell is surrounded by the cell membrane, whose size
is about two orders of magnitude larger than the domain
size λ. The confinement may also play a very important
role in systems relevant for nanotechnology.

Because of the broken translational and rotational
symmetries of the lamellar phase, its structure in con-
finement may depend on the geometry of the container
and on the hydrophilicity of surfaces. The structural de-
formations expected in the confined system are associated
with stress, i.e. with additional contributions to the grand
potential. As a consequence, the phase equilibria between
lamellar and disordered phases may be significantly af-
fected by confinement, and this effect may depend on the
shape of the container. To verify whether the shape of the
container may indeed influence the phase transitions, we
consider phase equilibria between lamellar and uniform
phases in a slit and in a channel of square cross-section.
We shall use the word ‘pipe’ in the latter case for the sake
of brevity. The two cases are shown in Fig. 1.

Determination of the large-scale properties of self-
assembled systems from a microscopic Hamiltonian is
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not feasible, since thousands of complex molecules are
involved. However, remarkable similarity between many
such systems can be observed. For example, elastic prop-
erties of the lamellar phases depend on λ/`, where ` is the
bare thickness of the mono-layer which is comparable to
the length of amphiphilic molecules. The precise chemical
structure of amphiphilic molecules is less important for
elastic properties of the lamellar phase with given λ/`.

Fig. 1. The slit (up panel) and the pipe (down panel) geometry.
The systems inside the slit and inside the pipe are in contact
with reservoirs, and T and µ are fixed. f is the force applied

externally in order to fix the desired wall separation L

The features common for a family of systems can be
described by a highly simplified, effective coarse-grained
Hamiltonian, in which the irrelevant details of the in-
teractions are just disregarded. We choose the lattice
CHS model [15], which predicts stability of the lamellar
phases in the bulk. Most of our general results, however,
should be valid also for other systems forming the lamel-
lar phases. When the distance between the confining sur-
faces, L, is much larger that the size of amphiphiles `,
then compression/expansion should not lead to deforma-
tions of the shape of molecules, since the energy required

for such deformations is larger than the energy associated
with rearrangement of the positions of molecules inside
the liquid domains. Hence, we can assume that the bulk
and confined systems can be described by the same generic
model.

In the next section the CHS model and the methods
of obtaining the thermodynamic and mechanical quanti-
ties are briefly described. Next we present the results for
phase coexistence in the slit and in the pipe. In the last
section we summarize the contributions to the grand po-
tential associated with different structural deformations
of the confined lamellar phase.

2. CHS model and calculation methods
2.1. The model. The CHS model was introduced by
Ciach, Høye and Stell [15] to describe universal proper-
ties of oil–water–surfactant solutions. We assume that the
space can be divided into cells of a simple cubic lattice,
and that the cells are occupied by clusters of molecules
of the same type. The clusters of surfactant molecules are
oriented, and can be described by a unit vector showing
an average direction from a head to a tail of amphiphiles.
For a detailed description see [10,11,15]. For determina-
tion of the excess grand potential and the corresponding
structure of the confined system we use a mean-field ap-
proximation and for the grand thermodynamic potential
we assume the following expression

Ω = HMF [ρi(r)] − TS, (1)

where

HMF [ρ̂i(r)] =
1
2

∑
r∈V

∑
i

φi(r)ρ̂i(r)

− µ
∑
r∈V

(ρ̂1(r) + ρ̂2(r)) +
∑
r∈∂V

∑
i

hiρ̂i(r)

(2)
is the Hamiltonian in the mean-field approximation, V is
the system-volume, ∂V is the system boundary, the lattice
constant is a ∼ ` ∼ 2 nm,

φi(r) =
∑
r′

∑
j

uij (r − r′) ρj(r′) (3)

is the mean-field acting on the specie i, µ is the
water-surfactant chemical-potential difference, S =
−kb

∑
r ρi(r) ln ρi(r) is the ideal entropy of mixing and

ρi(r) = 〈ρ̂i(r)〉MF (4)

is the mean-field average of the microscopic densities
ρ̂i(r), i.e. the Boltzmann factor is ∝ exp(−βΩ[ρ̂i(r)]). Mi-
croscopic densities are defined such that ρ̂i(r) = 1(0) if the
site r is (is not) occupied by the specie i, where i refers to
water, oil and surfactant particles in different orientations.
Different orientations of the latter are treated as different
components having the same chemical potential. Density
fluctuations are neglected (close packing is assumed), and∑

i ρ̂i(r) = 1. Due to the close packing there is only one
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independent chemical potential. The uij(r− r′) is the in-
teraction energy between the specie i at r and the specie
j at r′. Recall that in the generic model representing a
wide class of physical systems we consider effective inter-
actions between clusters of molecules; in particular cases
the physical origin of the effective interactions can be dif-
ferent, including (screened) electrostatic interactions, H-
bond formation and entropic effects. We only take into
account three features of the inteaction potentials: (i) oil
and water do not mix (except for T → ∞) (ii) one end
of the amphiphilic molecule is preferably oriented toward
water-, while the other end is preferably oriented toward
oil molecule (iii) amphiphiles preferably form monolayers
where they are parallel to each other.

Such a semi-phenomenological theory is suitable only
for a description of collective phenomena in which a large
number of molecules is involved, such as phase equilib-
ria, response to an external stress or correlations at dis-
tances substantially larger than `. There is some analogy
between the level of description in our theory (and our
parameters), and in the van der Waals theory (and its
famous parameters).

Based on the above features we construct a mini-
mal model of effective interactions. We assume oil-water
symmetry and nearest-neighbor interactions: the water-
water (oil-oil) interaction −b, the water-amphiphile (oil-
amphiphile) interaction −c∆r · û (+c∆r · û), with û de-
scribing the orientation of the amphiphile located at the
distance ∆r from the water (oil) particle, and finally the
amphiphile-amphiphile interaction g[(û× (r′ − r)) · (û′ ×
(r−r′))], where û (û′) is the orientation of the amphiphile
located at r (r′). The latter interaction supports forma-
tion of flat monolayers (vanishing spontaneous curvature).
Because of the oil-water symmetry the model is designed
for a description of balanced systems. We require that û
is reduced to ±êi, i = 1, 2, 3, where êi are the unit lattice
vectors. Finally, hi is the surface contact field, correspond-
ing to the interaction with water particles located at the
surface. We will also consider decreased or increased hy-
drophilicity of the external surfaces. In such a case the
interactions between the wall and any component of the
mixture are uniformly decreased or increased (multiplied
by 0 < hs < 1 or by hs > 1) compared to the interactions
between the clusters of molecules of water and the chosen
specie.

2.2. The method. The natural physical length is the
bare thickness of the monolayer, ` ∼ a. As the energy unit
we can choose the water-water (oil-oil) interaction energy
b, representing the oil-water surface tension for T → 0.
The dimensionless temperature is defined as kT/b, and
similarly the dimensionless chemical potential is µ/b.

Local minima of (1) correspond to self-consistent so-
lutions of the equations (4). Comparing the values of Ω
obtained for different local minima we can find the global
minimum, identified with the stable phase. At coexistence
between two phases Ω assumes the same values at the two

corresponding minima, and the value of Ω at the remain-
ing minima is larger. Because of the assumed symmetry
of the interaction potentials, the uniform water- and oil
rich phases coexist.

In confinement the grand potential can be written in
the form

Ω = ωbV + Ωex, (5)

where V is the volume, and ωb = −p is the density of the
grand potential in the bulk. The form of Ωex depends on
both the confined phase and the properties of the con-
tainer. In order to calculate ωb we consider one unit cell
of the periodic phase and impose periodic boundary con-
ditions. In any semi-infinite system Ωex contains a contri-
bution from the wall-fluid surface energy. The effect of a
single wall is determined from a slit with identical surfaces
of area A separated by a distance LN > LN0 , correspond-
ing to N undeformed lamellas, such that Ω − ωbALN is
independent of N for N > N0; the surface energy σ is
2σA = Ω − ωbALN . The lamellas are undeformed, when
the structure of the confined system far from the bound-
aries is the same as in the bulk. The wall-fluid surface en-
ergy depends on orientation of the external surface with
respect to symmetry elements of the phase whose rota-
tional symmetry is broken.

Let us consider

Ωs = Ω − ωbV −
∑

i

σiAi, (6)

where σi and Ai denote the surface tension and area of
the i-th surface respectively, and the summation runs over
all external surfaces. Eq.(6) represents the contribution to
the grand potential associated with mutual effects of dif-
ferent walls. The dependence on the shape of the container
is included in this term.

3. Lamellar phases in slits
3.1. Mechanical properties. There are two distin-
guished orientations of the lamellas with respect to the
confining surfaces: perpendicular, ⊥, and parallel, ‖. The
corresponding surface energies are denoted by σ⊥ and σ‖
respectively (Fig. 2).

If the lamellas are perpendicular to the confining walls,
there is no constrain on the period of the lamellar phase,
which can be equal to the bulk value λ, and in this case

Ωex
⊥ /A ≈ 2σ⊥ (7)

independently of L, provided that L is sufficiently large,
L > 3λ [10]. Hence, Ωs ≈ 0 for sufficiently large slits.

For the parallel orientation Ωs(L) assumes minima for
L = LN , where LN corresponds to a slit containing N
undeformed layers, and for such separations no stress is
present in the system. When the slit is expanded (com-
pressed) compared to L = LN , and |L−LN | is sufficiently
large, a new lamellar layer is introduced into (removed
from) the system, and N → N + 1 (N → N − 1).

The large-period phases are soft, and the short-period
phases are stiff. It is well known from experiments that
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the same external pressure induces large and small defor-
mation in the first and in the second case respectively.

Deformations of the stiff, short-period phases for L 6=
LN were studied in Ref. [10]. Far from phase coexistence
with the uniform phases these deformations are shown in
Fig. 3.

Fig. 2. Two orientations of the lamellas with respect to the
external wall, associated with different values of the surface

energy σ

Fig. 3. Cross-section of the slit for kT/b = 2.5, µ/b = 1,
c/b = 2.5, g/b = 1 and hs = 1 (far from the coexistence
with the uniform phase), obtained by numerical minimization
of Eq.(1) with respect to concentration profiles in Ref. [10].
Shaded regions represent oil-rich domains and white regions
represent water-rich domains. Thick lines represent the local
interfaces ρw(x, z) − ρo(x, z) = 0, where ρw, ρo are the MF
averaged densities of water and oil respectively. The distance
between the walls is equal to 25a and to 26a in the left- and

in the right panel respectively

For sufficiently large λ/a, and for large separations be-
tween surfaces, (L ≥ 4λ), quite different deformations are
found. Namely, the lamellar layers swell or shrink respec-
tively [1,2,9]. The subsequent minima of Ωs(L) are well
approximated by parabolic curves, even for quite large
deviations from L = LN , i.e.

Ωex
‖ /A ≈ σ‖ +

B

2LN
(L − LN )2, (8)

where |L − LN | ≤ λ/2. Hence, the response of the sys-
tem to compression or expansion is analogous to the be-
havior of a series of N identical joined springs. For the

case considered in Ref. [9], B = 0.003(kbT/a3). The com-
pressibility modulus measured in Ref.[1] ranges for dif-
ferent substances from 0.003 to 0.027, when expressed in
units of kbT/`3, where the small value of B corresponds
to λ/` ∼ 10, as in Ref. [9]. For decreasing λ/` a rapid
increase of B was found in the CHS model [9]. Our de-
scription gives thus results consistent with experiments.

In the case of hydrophilic walls deviations from the
elastic response were found in Ref.[9], and were also ob-
served in experiments [1] for L < 4λ. Sufficiently close to
the phase coexistence the associated structural deforma-
tions correspond to swelling of the central water- or oil-
rich layer, whose composition is the same as in the corre-
sponding metastable uniform phase. The N near-surface
lamellas have the same thickness as in the bulk. Thus, the
inelastic response to expansion or compression is associ-
ated with a different form of Ωs, namely

Ωs/A = ∆ωb(L − Nλ) + 2σ`w, (9)

where ∆ωb is the difference between the grand potential
densities in the metastable uniform and the stable lamel-
lar phases, and σ`w is the surface tension between the
lamellar phase at the walls and the water (or oil) rich
phase in the center of the slit.

In the slit the globally stable orientation of the lamel-
las is determined by the sign of the difference Ωex

‖ −Ωex
⊥ . In

the case of hydrophilic surfaces the energy is lower in the
parallel orientation. However, only in the parallel orienta-
tion there is a translational entropy loss, and in addition
the elastic contribution to Ω occurs for L 6= LN . It is not
possible to predict apriori the sign of Ωex

‖ − Ωex
⊥ in par-

ticular conditions. In Ref.[9,10] it was found by numerical
minimization of Eq.(1) that in the case of the swollen
lamellar phases the parallel orientation is globally stable
for any kind of confining surfaces, and for any value of
L > 4λ. In contrast, the perpendicular orientation is glob-
ally stable in the case of the short-period phases (λ/` ≈ 4)
even between surfaces that are weakly hydrophilic. When
the hydrophilicity of the surfaces is suitably adjusted to
the period of the lamellar phase, then expansion of the
slit leads to a switch between the parallel and the per-
pendicular orientations, provided that λ/` ≤ 6. Similar
switch has been predicted [4–7] and observed [3] in block
co-polymers.

3.2. Capillary lamellarization in slits. In the case of
uniform fluids the confinement-induced shift of the phase
coexistence is given by the Kelvin equation [16]. Let us fo-
cus on the phase transition between the uniform and the
lamellar phases in a slit. Because in the confined lamel-
lar phase the external stress is not released even for large
L 6= LN , the assumptions leading to the Kelvin equation
(negligible stress) are not satisfied. For the chemical po-
tential µcoex and the temperature T corresponding to the
bulk coexistence, the bulk densities of the grand thermo-
dynamic potential Ω for the two phases are equal,

ω
(1)
b (µcoex, T ) = ω

(2)
b (µcoex, T ). (10)
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In the slit of the width L and fixed T the coexistence be-
tween phases 1 and 2 occurs for µcc = µcoex + ∆µ such
that

Ω(1)(µcc, T, L) = Ω(2)(µcc, T, L). (11)

Let us assume that the phase stable in the bulk is uniform,
and the phase condensing in the slit responds elastically to
the compression/expansion (see Eq. (8)). For the uniform
phase the stress can be neglected, and for sufficiently small
∆µ we can expand Ω(1,2)(µcoex + ∆µ, T, L) about µcoex.
The resulting modified Kelvin equation has the form

∆µ =
2∆σ

∆ρL
− B(L − LN )2

2∆ρLLN
, (12)

where ∆ρ = ρ(1) − ρ(2), and ρ(1,2) are thermodynamic
densities at the bulk coexistence between phases 1 and
2, satisfying the relation

(
∂ω
∂µ

)
T,N

= ρ. In ordered phases

containing surfactants or lipids ρ(1,2) correspond to space-
averaged solute densities. For L = LN Eq. (12) reduces
to the usual Kelvin equation. For fixed µ we obtain in a
similar way a shift of temperature at the transition in the
slit

∆T =
2∆σ

∆sL
− B(L − LN )2

2∆sLLN
, (13)

where ∆s is the difference between entropy per unit vol-
ume in the two phases at their bulk coexistence.

Fig. 4. Shift of the first-order transition between water-rich and
lamellar phases as a function of the wall separation L/a, where
a is the lattice constant. The solid line is the curve given by
(12) with L replaced by L−2ls. The optimal value of the fitting
parameter ls/a is 6.205. ∆σ = 0.000527b/a2, ∆ρ = 0.003124
have been obtained by independent calculations of the surface
tensions and the space-averaged densities at the bulk phase-
coexistence. The temperature of the system is kbT/b = 2.7
and the material constants are c/b = 2.4, g/b = 0.15. The

bulk first-order transition is at µcoex/b = 4.1541978

When the water-rich phase is stable in the slit, a sin-
gle lamella of thickness ls is adsorbed at the hydrophilic
surface. In this case the region which can be filled with
water is effectively thinner than the whole slit. The sim-
ple thermodynamic prediction agrees quite well with the

numerical results obtained in the CHS model [12] (see
Fig. 4), provided that L is sufficiently large, L > 4λ, and
is replaced by L − 2ls in (12).

4. Lamellar phases in pipes
There is only one distinguished orientation in slits – the
one perpendicular to the confining surfaces. This is no
longer the case for pipes. For the square-base pipes two
perpendicular orientations, corresponding to two pairs of
the walls, are equivalent. Thus, for identical hydrophilic
surfaces two orientations of the lamellas are equally prob-
able. If the surface energy of the lamellar phase perpen-
dicular to the hydrophilic surface is large, then the lamel-
lar structure may not be stable in the square-base capil-
lary. On the other hand, when near all surfaces the par-
allel lamellas are formed, deformations of the structure
inside the pore must be present for all wall separations
(see Fig. 5).

Fig. 5. Cross-sections through the pipe with water-covered
walls far from the coexistence with the uniform phase for (a)
L/d = 82, b) L/d = 84 and c) L/d = 90, obtained in Ref.
[11] by numerical minimization of Eq. (1) with respect to con-
centration profiles. Light and dark regions correspond to the
water- and oil-rich layers respectively. Note different domain-
walls, where lamellas with different orientations are in con-
tact. No stress is present in the case (c). (d) Cross-sections
through the pipe with neutral walls for L/d = 82. The ther-
modynamic variables kT/b = 2.65, µ/b = 4.6 and material
constants c/b = 2.5, g/b = 1 correspond to a stable lamellar
phase with the period λ/d = 12, far from the coexistence with
the uniform phase. In the case of the swollen phases the unit
vector normal to the lamellas is n̂ = 1√

2
(ê1 + ê2), where the

unit lattice vectors êi are shown in the panel (a). As a conse-
quence, in this case l∼d = a/

√
2
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The results obtained in Ref. [11] for the CHS model
show that the morphology in the pipe depends on ther-
modynamic conditions. Far from the coexistence with the
uniform phases the lamellar structure is stable for neutral
walls, and Ωs has a similar form as in the slits. For hy-
drophilic walls the structures are more complex, as shown
in Fig. 5, and additional contribution to Ωs appears. This
new contribution is associated with the domain-walls sur-
face energy.

Because different structures occur for different L, the
ratio between the area of the domain walls and the area
of the external wall is different in different cases. More-
over, the angle between the vectors normal to the lamel-
las and to the domain wall is different in Fig. 5a and in
Fig. 5b, and the associated domain wall energy is also dif-
ferent. The corresponding contribution to Ωs has the form∑

j σj
dwAj

dw, where all domain-walls are included (Fig. 5).
For µ and T sufficiently close to the bulk coexistence of

the uniform water/oil-rich and lamellar phases, the struc-
ture of the lamellar phase in the pipe is quite different
than off coexistence. For hydrophilic as well as for neutral
surfaces the onion-like structure (Fig. 5b) stabilizes for all
values of L À λ. When L and λ are not compatible, the
central part of the pipe is occupied by the uniform phase.
The cross-section densities, ρw − ρo, as functions of x for
y = L/2 are shown in Figs. 6 and 7.

Fig. 6. The difference between densities of water and oil,
ρw − ρo, as a function of x for y = L/2. (a) L/d = 106,
and b) L/d = 120. There are four lamellar layers (oil and
water-rich domains) absorbed at the walls, and the thick-
ness of the central uniform oil-rich tube is Lu ≈ L − 4λ.
The walls are water-covered, the thermodynamic variables
kT/b = 2.65, µ = µcoex(1 − 0.0016) and material constants
c/b = 2.5, g/b = 1 are close to the bulk coexistence of the
lamellar phase with the period λ/d = 16, and the uniform, oil-

and water rich phases

The thickness Lu = L−Nλ of the central uniform do-
main, or equivalently the number of lamellar layers at the
walls, N , is a function of the distance to the phase transi-

tion between the lamellar and water/oil-rich phases in the
bulk. At fixed L, Lu increases discontinuously (the num-
ber of absorbed lamellar layers decreases) by approaching
the coexistence, i.e. for µ → µcoex (see Fig. 8). The water
or oil densities in the center of the pore are close to those
in the bulk uniform phases.

Fig. 7. The difference between densities of the water and oil,
ρw − ρo, as a function of x for y = L/2 in the onion phase
with a) five and b) six lamellar layers absorbed at the walls
at the capillary delamellarization transition given by kT/b =
2.65, µcc = µcoex(1 − 0.0045). The pore size L/d = 106 and
the walls are water-covered. Note that in the CHS model the
water- and oil-rich phases coexist, therefore the core part can
be filled either with water or with oil. The values of the thermo-
dynamic variables and material constants c/b = 2.5, g/b = 1
correspond to the stability of the lamellar phase with the pe-

riod λ/d = 16

Fig. 8. Structural transitions between onion phases with differ-
ent number of lamellar layers at the walls in the square-base
capillary for kT/b = 2.65. The walls of the pore are water
covered. The lines separate the stability region of the onion
structures with N layers (above) from the stability region of
the structures with N +1 layers (below in ∆µ/µcoex). The case

of 1 ≤ N ≤ 5 is shown
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The phase equilibria in square-base pipes are just op-
posite to the phenomenon of capillary lamellarization pre-
dicted for slits [12]. Capillary delamellarization is ob-
served in all cases, as a result of the domain-wall energy
associated with formation of quasi-onion structures. We
have also checked that the hydrophilicity of the external
walls influences the shift of the phase coexistence in the
pipes very weakly.

5. Summary

The presence of the structure on the nanometer length
scale influences the effects of confinement in a very sig-
nificant way. The strong dependence of the stress on the
orientation and the thickness of the sample, and on ther-
modynamic conditions, is of crucial importance for the
structure of the confined system even for L ∼ 102λ or
larger. For given shape of the container slight changes of
L may lead to abrupt changes of the structure, resulting
from the tendency of the system to minimize the thermo-
dynamic potential Ωex. In the case of broken translational
and rotational symmetries Ωex contains additional terms,
and these terms depend on: (i) the chemistry of the con-
fining walls (ii) the period of the lamellar phase, because it
determines the elastic modulus B (iii) the thermodynamic
state (iv) the geometry of the container.

(i) The chemistry of the confining surface determines
the wall-fluid surface energy. For different orientations of
the lamellas the wall-fluid surface tension is different.

(ii) Theoretical studies confirm that the large-period
phases respond elastically to the external stress. The elas-
tic response is associated with uniform swelling (shrink-
ing) of the lamellas under expansion (compression) of the
sample. In the short-period phases the inelastic response
is found. The inelastic response is associated with local-
ized deformations of the structure, such as formation of
domains with different orientation of the symmetry ele-
ments, or stabilization of the phase that is metastable in
the bulk in some part of the confined system. The thick-
ness of the lamellas is the same as in the bulk.

(iii) The effects of confinement are qualitatively dif-
ferent far from and close to the phase coexistence with
uniform phases. Near the coexistence the difference be-
tween the grand potential density in the stable and the
metastable phases, ∆ωb, is small, and a part of the con-
fined system may be filled with the uniform phase if the
interface tension between the two phases is low.

(iv) When the symmetries of the container and of
the bulk lyotropic liquid crystal are not compatible, do-
mains of differently oriented lamellar phases, associated
with domain-wall surface energy, may be formed in some
thermodynamic states. Close to the phase coexistence we
have observed formation of domain walls in the lamellar
phase confined in square-base pipes for all kinds of exter-
nal walls.

The above observations lead to the following form of

Ωex near the coexistence with a uniform phase

Ωex =
∑

i

σiAi +
∑

j

σj
dwAj

dw + σw`s + ∆ωbv + Ωel (14)

where
∑

i σiAi is the sum of wall-fluid surface tension con-
tributions associated with all external walls; σdwAdw is
the sum of all domain-wall surface energies and σw` is the
interface tension between the water and lamellar phases
coexisting in the confined system, and s is the area of the
interface. ∆ωbv is the contribution associated with the re-
gion of volume v occupied by the uniform phase. Finally,
Ωel is the elastic contribution in the case of the swollen
phases, and in the case of the slit it has the form given
in Eq. (8). In particular cases some of the above terms
may vanish. In slits with L > 4λ only the first and the
last terms are present in the case of the swollen phases.
In square-base pipes the last term vanishes (the confined
lamellar phase has the same period as in the bulk). Note
that σdw > 0, ∆ωb > 0 and σw`s > 0. However, the de-
formations of the lamellar phase (and Ωel > 0) and/or
the large wall-fluid surface tensions σ⊥ can be avoided
when these terms are present, resulting in the lowest value
of Ωex.

Let us stress at the end that in periodic structures the
geometry of the confining walls may play a more signifi-
cant role than the hydrophilicity, or, in general, wall-fluid
interaction potentials. For the same kind of walls quite
opposite phenomena may occur in different geometries,
as we have shown for phase equilibria. This property re-
sults from broken symmetry of the periodic phases, and
we expect that other physical systems may exhibit similar
behavior.
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