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Abstract. A complete parametric approach is proposed for the design of the Luenberger type function Kz observers for de-
scriptor linear systems. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, parametric
expressions for all the coefficient matrices of the observer are derived. The approach provides all the degrees of design freedom,
which can be utilized to achieve some additional design requirements. An illustrative example shows the effect of the proposed

approach.
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1. Introduction

Since Luenberger observer theory was proposed in [1], it
has attracted much attention of many investigators not
only in the field of normal linear systems ([2] and [3])
but also in the field of descriptor linear systems (|4-6]).
The Luenberger observers with the function of decoupling
the unknown inputs in descriptor linear systems is inves-
tigated in [7] and [8]. For the solution of the Luenberger
function Kx observers for descriptor linear systems, the
method of singular value decompositions is adopted in
[9], the technique of the generalized inverse of matrix is
applied in [8] and [10]. However, the parametric expres-
sions of all the coefficients matrices of the observer have
not been established. Moreover, the restriction that the
controlled plant is C-observable is required in the afore-
mentioned references. In this note, under the condition
that the considered system is R-observable, based on the
explicit general solution to a type of generalized Sylvester
matrix equations investigated in [11,12], a parametric ap-
proach is proposed for the design of the Luenberger func-
tion Kz observers for descriptor linear systems and the
design algorithm is proposed. The proposed method gives
the parameterizations of all the gain matrices of the ob-
server. The approach offers all the degrees of design free-
dom by a group of free parameters which can be utilized to
meet additional desired performances and specifications.
An illustrative example shows the effect of the proposed
approach.

2. Problem formulation

Consider the following descriptor linear system

{
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Fi = Ax + Bu

y=Cx ’ (1)
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where z(t) € R™,u(t) € R" and y(t) € R™ are the state,
the control input, and the measured output, respectively;
E,A,B and C are constant matrices of appropriate di-
mensions. For this system, the Luenberger type normal
function observers take the following form:

{

where z € RP is the observer state vector. The design
purpose is to seek the parameter matrices F, .S, L, M and
N such that

2=Fz+ Su+ Ly

(3)

holds for some matrix K € R?*™ and arbitrarily given

initial values z(0), z(0) and control input u(t).
Regarding conditions for the Luenberger type function

observers in the form of (2), the following result holds [8].

Jim (K(t) —w(t) = 0

THEOREM 1. Assume that the regular system (1) is
R-controllable, that is,

[sE— A
C

rank ] =n, for any s € C

and system (2) is observable, that is,

[sT— F

rank M

] =n, for any s € C.
Then system (2) is a normal Kz observer for system (1)
if and only if there exists a matrix T' € RP*"™ satisfying

S=TB

TA—-FTE =LC

K=MTE+ NC

All the eigenvalues of matrix F' are in the left of com-
plex plane.
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Due to the above theorem, design of the Luenberger
observer (2) is converted into the problem of seeking the
parameter matrices F, S, L, M and N satisfying the four
conditions in the above theorem.

3. Parametric approach

In this section, we propose, based on the parametric solu-
tion to a type of generalized Sylvester matrix equation, a
parametric approach to the design of the Luenberger type
function Kz observers in the form of (2). Relevant work
can be found in [11-16].

In order to derive the general parametric form of the
Luenberger type function Kx observers for system (1), we
introduce the following assumptions on system (1).

ASSUMPTION 1. rank B = r,rank C = m.

ASSUMPTION 2. The matrix triple (E,A4,C) is R-
observable.

3.1. Parametric expression for matrix F'. The only
requirement on the coefficient matrix F' of the Luenberger
function Kz observer (2) is that it has eigenvalues with
negative real parts. For convenience and simplicity, let us
restrict the matrix F' to nondefective, it thus has a di-
agonal Jordan matrix. Therefore, a general form for the
matrix F' can be given, based on the Jordan form decom-
position theory, as

F=Q 'AQ, A = diag [51 Sg - sp] , (4)

where s;,7 =1,2,--- ,p are clearly the eigenvalues of the
matrix F. They are self-conjugate and satisfy the follow-
ing constraint.

CONSTRAINT 1. Res; < 0,i=1,2,--- ,p.
The matrix

Q=[q1 g2 q] € CP*?, (5)

is obviously the left eigenvector matrix of the matrix F,
which satisfies

CONSTRAINT 2. det@ # 0 and ¢; = q.
In the case of p = 1, this matrix Q may be chosen to
be 1 without loss of generality.

3.2. Parametric expressions for the matrices T
and L. The matrices T and L are determined by the
second condition in Theorem 1, that is, the matrix equa-
tion

TA—-FTE =LC. (6)

Equation (6) is a generalized Sylvester matrix equation. It
is in the dual form of the one considered in [11| and [12].
By applying the complete parametric solution proposed
in [11,12] for generalized Sylvester matrix equations, the
parametric expressions for the matrices T and L satisfying
(6) can be readily obtained as

T=QV,L=-QW, (7)
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with
T v = N(si) fi, 8)

T
} , Wi :D(Sl)fh (9)
where N(s) and D(s) are a pair of right coprime polyno-
mial matrices satisfying the following right coprime fac-
torization:

V:[vlvg--~ vp]

W = [wl Wy - Wp

(sET — ATY7ICT = N(s)D*(s), (10)

and f; e C™ i=1,2,--- pis a group of design parame-
ters satisfying the following constraint.

CONSTRAINT 3. f; = f1if s, = §

REMARK 1. The right coprime factorization (10) per-
forms an important role in the parameterization of the
matrices T and L. For solution of the right coprime fac-
torization (10), refer to [11,12].

REMARK 2. When there are complex eigenvalues cho-
sen for the matrix F', the matrices T and L are com-
plex. This can be prevented by a well-known technique
which can convert, at the same time, all the three matri-
ces A, T, L into real ones. This technique is demonstrated
as follows. Without loss of generality, let us assume that
s1 and s9 = §1 = o + 3 are a pair of conjugate eigenval-
ues, all the other ones are real. In this case, there holds
v1 = U and wyq = ws, and the real substitutions of these
three matrices can be taken as

a f
76(1
A= 83 :

Sp
and .
T=0Q [Re(vl) Im(vy) vg - vp] ,
T
wp |,
where the matrix @ is taken, in this case, a non-singular
real matrix.

L =Q [Re(w:) Im(wy) ws - -

3.3. Parametric expressions for the matrices N
and M. The matrices N and M are determined by the
third condition in Theorem 1, that is, the matrix equation

K=MTFE + NC, (11)
which can be equivalently written as
TE
C ] . (12)

From (12), it follows that there exist a pair of matrices
M and N satisfying (11) if and only if the following con-
straint is met.

K:[MN][

TE TE
CONSTRAINT 4. rank [ } =rank | C
C
K
Under the above constraint, the parametric solutions
to the observer gain matrices M and N can be presented.
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LEMMA 1. Let Assumptions 1 and 2 be met, the ma-
trix T be given by (7) and (8). Then when Constraint 4
is met, there exist a matrix Ky € R"™*" and nonsingular
matrices P and @, satisfying

P [gE] Q1= BO 8] JKQ1=[Ko0], (13)

where Ty € R™ *"" is nonsingular, r* is the common rank
in Constraint 4. In this case, the matrices N and M are
given by
[M N]|=[Ky," N']P, (14)
with N/ € R (m+p—r7) being an arbitrary real parameter
matrix.
Proof. Under the condition of Constraint 4, there ex-
ist nonsingular matrices P and @ satisfying (13). Post-
multiplying both sides of (12) by @1, and using (13), gives

1 |To 0
(0] =[] [P0 a9
which is equivalent to
Ko=[M N] P! [gb} : (16)
Let
[M NP~ =[M N'|,N € R>m=")  (17)
then (16) becomes
Ko = M'T,. (18)

Combining the above relation with (17) gives the para-
metric expression (14) for the matrices N and M.

By summarizing the above, the following theorem
about the parametric solution of the Luenberger function
Kz observers in the form of (2) can be given as follows.

THEOREM 2. Let Assumptions 1 and 2 be met, then
(a) A Luenberger-type observer in the form of (2) with
the matrix F' € RP*P nondefective, exists for system (1)
if there exist parameters s;,q;, fi,© = 1,2,--+ ,p and N’
satisfying Constraints 1-4.
(b) When the above condition (a) is met, all the Luen-
berger observers in the form of (2) for system (1), with
the matrix F' nondefective, are parameterized by (4)—(9)
and (13)- (14) with s;, 4, fi,1 = 1,2,--- ,p and N’ satis-
fying Constraints 1—4.

Based on the above theorem, we have the following
algorithm for design of the Luenberger type of normal
observers in the form of (2) for system (1).

Algorithm 1. Luenberger observer design
Step 1. Solve the pair of right coprime polynomial ma-
trices N(s) and D(s) satisfying the right coprime factor-
ization (10).

Step 2. Specify the observer order p,and obtain the spe-
cific forms for Constraints 1-4.

Step 3. Solve the matrices T, Ky and P satisfying (13).
Step 4. Find a set of parameters s;, fi,q;,i = 1,2, ,p
satisfying Constraint 1-4.
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Step 5. Calculate the coefficient matrices F,T, L, N and
M according to (4),(7)—(9) and (13)—(14).

REMARK 3. In the case that the parameters
SivQis fi,1=1,2,--- ,p and N’ satisfying Constraints 1-4
do not exist, the order of the observer may be increased
to provide sufficient design freedom for a solution to exist.

REMARK 4. An important advantage of the above al-
gorithm is that it provides all the design freedom. These
degrees of freedom can be further utilized to achieve ad-
ditional system specifications.

4. An illustrate example

Consider a linear system in the form of (1) with the fol-
lowing parameters

100 ~500 0 L00
E=1]001|,A=|0 10|,B=|1 ,C_[Olo].
000 0 01 0

We will design a Luenberger observer which tracks asymp-
totically the function Kz, with

K=[111],

which can stabilize the given system.

In the following, we will obtain the observer gain ma-
trices using Algorithm 1
Step 1. By using a method given by ([11] [12]), the so-
lution to the right coprime factorization (10) can be ob-
tained as follows:

N(s) = gé ,D(s) = {_01533}

Step 2. For this example, a first-order observer in the
form of (2) is considered. In this case, the matrix @ can
be chosen to be 1 without loss of generality. In order that
Constraint C1 is met, the observer pole is restricted to be
a negative real scalar, then the matrix F' = s. Choosing

f= [041 042]T7

then Constraint 3 holds automatically, and the matrices
T,V and L are given, in view of (7)-(9), as

T = [a1 Qs sal} L =— [(5+s)a2 —Ozd.

With this matrix 7', it is obvious that Constraint 4 is
aj # 0 and r* = 3.

Step 3. Under the condition a; # 0, the matrices P and
(1 can both be chosen to be identity matrices when the
matrices Ty and K are expressed as follows:

o (X1 SQp
1 00
010

Ty = JKo=[111].

Step 4. Summing up the above, the design freedom in-
volved in this design is composed of the closed-loop eigen-
values s and parameters a; and as.
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Step 5. The matrices M and N can be obtained as
—1

Qg (X1 SQ1
[MN]=[111]|1 0 0
010
- [ g1t
This gives
1 « 1
Specially choosing s = —1,a;7 = as = 1 gives the

following specific solution

F=1,T=[11-1],L=[-41],

M=1,N=[22].

5. Conclusion

Based on a parametric solution to a type of general-
ized Sylvester matrix equations, a parametric approach is
proposed for the design of the Luenberger function Kz
observer in descriptor linear systems under the condi-
tion that the considered descriptor linear system is R-
observable. The proposed approach offers all the degrees
of freedom which can be utilized to achieve additional
performances and specifications.
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