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Robust fault detection using analytical and soft computing methods
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Abstract. The paper focuses on the problem of robust fault detection using analytical methods and soft computing. Taking into account the
model-based approach to Fault Detection and Isolation (FDI), possible applications of analytical models, and first of all observers with unknown
inputs, are considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty of soft computing
models (neural networks and neuro-fuzzy networks). It is shown that based on soft computing models uncertainty defined as a confidence range
for the model output, adaptive thresholds can be described. The paper contains a numerical example that illustrates the effectiveness of the
proposed approach for increasing the reliability of fault detection. A comprehensive simulation study regarding the DAMADICS benchmark
problem is performed in the final part.
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1. Introduction

All systems known in nature (physical, biological, and engi-
neering ones) can malfunction and fail due to faults in their
components. The possibilities of failures increase with sys-
tems’ complexity, which is typical for modern engineering sys-
tems. The growing complexity of industrial installations, i.e.,
in chemical, petrochemical and power industries creates seri-
ous problems for process control by operators and, moreover,
the degree of automation increases as well. From this point of
view, more attention has to be paid to realiability, safety and
fault tolerance in the design and operation of industrial instal-
lations.

In automatic control systems, defects may occur in sensors,
actuators, components of the controlled process, or within the
hardware or/and software of the control framework. Moreover,
faults in a component may develop into failures of the whole
system and this effect can easily be amplified by the closed
loop. Therefore, fault tolerance of automatic control systems
has gained more and more importance in the last decade [1].

The tolerance to faults can be achieved by different strate-
gies, but the most important and difficult problem is early di-
agnosis of faults. Therefore, fault diagnosis has become an
important issue in modern control theory and practice. Dur-
ing the last two and half decades, a huge amount of research
has been conducted in this field and a great variety of methods
increasingly accepted in practice have been proposed.

The most efficient fault-diagnostic strategy is the so-called
model-based approach [2–6], in which either analytical or arti-
ficial intelligence models or a combination of both along with
analytical or heuristic reasoning is applied. The main difficulty
with applying analytical models is the fact that imprecise math-
ematical models are generally available. Therefore, the most
essential requirement for analytical model-based fault detec-

tion and isolation is to provide robustness to different kinds
of unmodelled disturbances and modelling errors. At present,
different efficient robust FDI techniques [7–9] are proposed.
Undoubtedly, the most common one is to use robust observers,
such as the Unknown Input Oserver (UIO) [7,10,11], which
can tolerate a degree of model uncertainty and hence increase
the reliability of fault diagnosis.

There are, of course, many different observers which can
be applied to non-linear, and especially non-linear determinis-
tic systems. Logically, the number of “real world” applications
(not only simulated examples) should proliferate, yet this is not
the case. It seems that there are two main reasons why strong
formal methods are not accepted in engineering practice. First,
the design complexity of most observers for non-linear systems
[7, 12] does not encourage engineers to apply them in practice.
Second, the application of observers is limited by the need for
non-linear state-space models of the system being considered,
which is usually a serious problem in complex industrial sys-
tems.

To overcome these problems, the so-called soft comput-
ing methods (neural networks, neuro-fuzzy models, etc.) are
being investigated, which can model a much wider classes of
non-linear systems. Mathematical models used in the tradi-
tional FDI methods are potentially sensitive to modelling er-
rors, parameter variation, noise and disturbances [8,13]. Pro-
cess modelling has limiations, especially when the system is
uncertain and the data are ambiguous. Soft computing (SC)
methods (e.g., neural networks, fuzzy logic, and evolutionary
algorithms) are known to overcome these problems to some
extent [3,14,15]. Neural networks [16] are known for their ap-
proximation, generalization and adaptive capabilities and they
can be very useful when analytical models are not available.
However, the neural network operates as a black box with no
qualitative information available. Fuzzy logic systems, on the
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other hand, have the ability to model a non-linear system and
to express it in the form of linguistic rules making it more
transparent (i.e., easier to interprent). They also have inherent
abilities to deal with imprecise or noisy data. A Neuro-Fuzzy
(NF) model [17,18] can be used as a powerful combination of
neural-networks and fuzzy logic techniques.

In this paper, we briefly review the fundamentals of model-
based FDI and then focus our attention on some analytical and
soft computing models used in diagnostic systems. As for
analaytical methods, the main focus is on observers, includ-
ing observers with unknown inputs. Then the adaptive thresh-
old technique is employed to implement robust neural or nero-
fuzzy model-based fault detection systems. This technique is
based on the uncertainty of models defined as a confidence
range for model outputs. The main attention will be paid to the
modification and adaptation of the Bounded-Error Approach
(BEA) for determinig the uncertainty of Group Method of
Data Handling (GMDH) neural networks and Takagi-Sugeno
NF systems. The main advantage of this approach is that it
does not consider strong assumptions about the kind of noise
like, for example, statistical methods [19]. It assumes only that
bounds on the noise are available [20,21]. Experimental results
presented in the final part of the paper confirm the effective-
ness of the proposed approach for robust FDI using neural or
neuro-fuzzy models. The DAMADICS benchmark problem is
considered in this part.

2. Structure of a diagnosis system
The basic idea of the model-based approach to FDI is to com-
pare the behaviour of the actual system with that of a functional
system model. The traditional approach is to use analytical
models and to check the model outputs for consistency with
the measured outputs of the actual system. In general, the FDI
task is accomplished by a two-step procedure (Fig. 1), which
consists of residual generation and evaluation.

Fig. 1. Two-step procedure of the diagnosis process

In other words, three phases are distinguished in the pro-
cess diagnosis [2,4,5,22]: detection, isolation and identifica-
tion. The task of detection is to infer the occurrence of faults
from residuals, and that of isolation – to define their location
and time. Then the task of identification is to define the type,
size and case of faults.

The general model-based diagnosis system is shown in
Fig. 2. Note that the core of model-based FDI is a process
model which has to be accurate. Otherwise, false alarms oc-
cur that falsify the results and make the FDI system useless.
Residual evaluation is a logical decision-making process which
transforms quantitative knowledge (residuals) into qualitative
statements of the yes or no type.

Fig. 2. General scheme of the model-based FDI system

3. Analytical models in fault detection systems
Analytical models most often used in FDI systems are given in
the input-output (continuous or discrete transfer matrices) or
the state space format. The dynamic linear continuous system
can be given by the following state space equations [2,5]:

ẋxx(t) = AAAxxx(t) + BBBuuu(t) + RRR1fff(t), (1)

yyy(t) = CCCxxx(t) + DDDuuu(t) + RRR2fff(t), (2)

wheret is the continuous time,xxx(t) ∈ Rn is the system state
vector,AAA is the system matrix,uuu(t) ∈ Rp is the known input
vector,BBB is the input distribution matrix,fff(t) ∈ Rs is the vec-
tor of faults which can occur in actuators, sensors and compo-
nents of the plant. The matricesRRR1 andRRR2 are known and de-
note the corresponding fault distribution matrices,yyy(t) ∈ Rm

is the measurement vector,CCC andDDD are the known output ma-
trices. The state space description (1)–(2) can be given for
discrete time systems as well as by applying difference equa-
tions.

The corresponding multi-dimensional input-output model
in the frequency domain is given by [23]:

yyy(s) = GGGu(s)uuu(s) + GGGf (s)fff(s), (3)

where s is the differential or shift operator, depending on
whether the system is continuous or discrete,Gu(s) is the
transfer matrix operator fromu(s) to y(s), andGf (s) is the
fault transfer matrix operator fromf(s) to y(s).

In Equations (1)–(3) it was assumed that the state space
and input-output models are accurate, which is a very strong
assumption from the practical point of view. Therefore, it is
important to take into account in such models different mod-
elling uncertainties such as parameter deviations, unmodelled
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dynamics and non-linearities as well as omitted inputs and dif-
ferent instances noise [8,23]. All of the mentioned uncertain-
ties are the so-called unknown inputsd(t) ∈ Rr and can be
included in the model Eqs. (1)–(2) or (3). From the modelling
point of view, full identification of unknown inputsd(t) is not
needed, but they do have to be distinguished from faults. This
is needed to avoid false alarms.

Taking into account modelling uncertainties given by un-
known inputs and parameters deviations, the complete state
space model used for residual generation can be described by

ẋ(t) = (A+∆A)x(t)+(B+∆B)u(t)+Q1d(t)+R1f(t),
(4)

y(t) = (C+∆C)x(t)+(D+∆D)u(t)+Q2d(t)+R2f(t),
(5)

whered(t) is an unknown input vector with known distribu-
tion matricesQ1 andQ2, ∆A, ∆B, ∆C and∆D represent
modelling errors caused by parameter errors or deviations and
appear as multiplicative unknown inputs.

The corresponding input-output model with modelling un-
certaities is given by the Eq.

y(s) =
(
G(s) + ∆Gu(s)

)
u(s) + Gd(s)d(s) + Gf (s)f(s),

(6)
whereGd(s) denotes the transfer matrix operator fromd(s) to
y(s), and∆Gu(s) is the transfer matrix operator which com-
prises both parametric faults and parameter errors of the model.

3.1. Residual generators.The core module of the model-
based FDI system is the generation of residuals. In general,
the structure of a residual generator can be given by [23]:

r(s) = Hu(s)u(s) + Hy(s)y(s), (7)

whereHu(s) andHy(s) are realizable transfer matrices. Ac-
cording to this assumption, the residualr(t) should be equal to
zero for the fault-free case, and different from zero otherwise,
i.e.,

r(t) 6= 0 iff fi(t) 6= 0, i = 1, 2, . . . , q. (8)

To satisfy the condition (8), two transfer matrices in (7) should
be governed by [7]:

Hu(s) + Hy(s)Gu(s) = 0. (9)

Different forms of the residual generator can be obtained in a
simple way by a proper choice of the transfer matricesHu(s)
and Hy(s). Taking into account the condition (9) and the
model (6), the general form of the residual generator can be
given by the relation

r(s) = Hy(s)
[
∆Gu(s)u(s) + Gd(s)d(s) + Gf (s)f(s)

]
,

(10)
which includes all kinds of model uncertainties, i.e.,∆Gu and
∆Gd. From (10) it follows that both faults and modelling
uncertainty affect the residual, and hence there is a need to de-
velop robust FDI algorithms. The essence of robust FDI is to

discriminate between faults and uncertainties, i.e., a robust sys-
tem should be sensitive to faults and insensitive to uncertainty
[7,8]. Below the main classical methods that can be applied
for the purpose of fault diagnosis are considered. The atten-
tion is restricted to two groups of approaches, i.e., observers
and parameter estimation.

3.2. State observers.In the case of the application of state
observers of the Luenberger type [10,23] (the deterministic
case) or Kalman filters [24–27] (the stochastic case), residuals
are generated using the estimate of system outputs. The es-
timated outputs are compared with the measured outputs and
the residual is equal to the difference between them (Fig. 3).
In the stochastic case applying the Kalman filter, the inno-
vation process is used as a residual [25,28]. The application
of observer approach for FDI purposes differs from the stan-
dard observer applications in control, where the state vector is
estimated [24]. Here only output estimation is required. An
effective application of observers in control and FDI systems
[24,25,29] needs accurate models, which is very diffult to sat-
isfy in practice (model uncertainty). To solve this problem, the
theory of observers and filters with unknown inputs for the lin-
ear and non-linear dynamical system has been developed [7,9].

Fig. 3. Observer-based residual generator

Unknown input observers. Consider the linear, discrete sys-
tem described by the state Eqs. [7,9]:

x(k + 1) = A(k)x(k) + B(k)u(k) + Qd(k)
+ R1(k)f(k),

(11)

y(k + 1) = C(k)x(k + 1) + R2(k)f(k + 1), (12)

whereA, B, Q andC are known matrices, and the other
notations are the same as in Eqs. (4)–(5). The termQd(k)
represents model uncertainty as well as disturbances acting on
the system.

The design problem of an unknown input observer consists
in ensuring asymptotic convergence of the estimation error in-
dependly of the unknown inputd(k). The general structure of
an UIO can be given as [7,9,26]:

z(k + 1) = F (k + 1)z(k) + T (k + 1)B(k)u(k)
+ K(k + 1)y(k),

(13)

x̂(k + 1) = z(k) + H(k + 1)y(k + 1), (14)

Bull. Pol. Ac.: Tech. 54(1) 2006 77



J. Korbicz

wherex̂(k) ∈ Rn is the state estimate vector,z ∈ Rn is the
state vector of the full rank observer,F , T , K andH are
matrices which should satisfy some condition for decoupling
the residual from the unknown inputd(k).

Taking into account some assumptions, to decouple the un-
known input from the state estimation error the following rela-
tion should be satisfied [23]:

(
I −H(k + 1)C(k + 1)

)
Q(k) = 0. (15)

The necessary condition for the existence of the solution (15)
is rank(Q(k)) = rank(C(k)Q(k)), and a special solution is
given by:

H∗(k + 1) = Q(k)
[(

C(k + 1)Q(k)
)T ×C(k + 1)Q(k)

]−1

× (
C(k + 1)Q(k)

)T
.

(16)
The unknown matrixK1(k+1) can be defined in the same

way as for the standard observer [10]. Finally, the state estima-
tion errore(k + 1) and the residualr(k + 1) are described by
the relations

e(k + 1) = F (k + 1)e(k) + T (k + 1)R1(k)f(k)
−H(k + 1)R2(k + 1)f(k + 1)
−K1(k + 1)R2f(k),

(17)

r(k + 1) = C(k + 1)e(k + 1) + R2(k + 1)f(k + 1), (18)

wherer(k + 1) = y(k + 1)− ŷ(k + 1) is the residual which
depends only on the faultsf(k), and is independent of the un-
known inputsd(k).

In a pretty simple way the design problem of the Kalman
filter with an unknown input for a linear system can be solved
[9]. Moreover, for the non-linear case the problem is how to
define an accurated model. The difficulty of system modelling
consists in the necessity of approximating both the structure
and the parameters. To overcome this problem, a modified ge-
netic programing approach [30] for model structure selection
combined with the classical techniques for parameter estima-
tion was proposed in [31].

3.3. Parameter estimation. Another approach to model-
based generation of residuals is based on parameter estimation
techniques [5,32]. The structure of the parameter estimation-
based fault detection system is shown in Fig. 4, wherer(k) =
θ(k)− θ̂(k), and k = 1, 2, is a discrete time.

Fig. 4. Scheme of the parameter estimation-based fault detection sys-
tem

The task consists in detecting faults in a system by mea-
suring the inputuk and the outputyk, and then estimating the

parameters of the model of the system [31]. In discrete time
non-linear input/output dynamics can be generally described
by:

y(k) = g (φ(k), θ(k)) , (19)

whereφ(k) may contain the previous or current system input
u(k), the previous system or model output(y(k), ŷ(k)), and
the previous prediction error. The model (19) can also be ex-
pressed in the state-space form; however, this does not change
the general framework. If a fault now occurs in the system,
this causes a change∆θ(k) (residual) in the parameter vector
θ(k). Such a residual can then be used to detect and isolate
faults.

Model parameters should have physical meaning, i.e., they
should correspond to the parameters of the system and if this
is not the case the approach is severely limited. When model
parameters replicate those of their physical counterparts, the
detection and isolation of faults is very straightforward. In a
practical situation it can be difficult to distinguish a fault from
a change in the parameter vectorθ(k) resulting from time-
varying properties of the system. Moreover, the process of
fault isolation may become extremely diflicult because model
parameters do not uniquely correspond to those of the system.
Apart from the above-mentioned difficulties, there are many
classes of systems for which it is possible to derive models
whose parameters have physical meaning. Distributed param-
eter systems [33] constitute such an important class. In or-
der to increase the accuracy of parameter estimation and, con-
sequently, the reliability of fault diagnosis, Uciński [33] pro-
posed and developed various procecdures that can be utilised
for the development of an experimental design that facilitates
high-accuracy parameter estimation.

It should also be pointed out that the detection of faults in
sensors and actuators is possible but rather complicated [5,32]
with the parameter estimation approach. Robustness with re-
spect to model uncertainty can be tackled relatively easily (es-
pecially for linear systems) by employing robust parameter es-
timation techniques, e.g., the bounded-error approach [20].

4. Uncertainty of soft computing models
A common disadvantage of analytical approaches to the FDI
system is the fact that a precise mathematical model of the
diagnosed plant is required. An alternative solution can be
obtained using soft computing techniques, i.e., artificial neu-
ral networks, fuzzy logic, expert systems and evolutionary al-
gorithms [14,15,34,35] or their combination as neuro-fuzzy
networks [17,18,36,37]. To apply soft computing modelling,
empirical data, principles and rules which describe the diag-
nosed process and other accessible qualitative and quantitative
knowledge are required [38].

Below we focus on the problem of designing GMDH net-
works and Takagi-Sugeno NF systems as well as describing
their uncertaity. Knowing such soft computing models’ struc-
ture and possessing the knowledge regarding their uncertainty
it is possible to design robust fault detection schemes by defin-
ing adaptive thresholds.
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4.1. Dynamic GMDH networks and their uncertainty.
A disadvantage of most known neural networks is the fact that
their architecture is arbitrarily defined [16,39,40,41]. An alter-
native approach is based on the integration of process training
with the choice of the network optimal architecture. Such a
design procedure can be obtained by the group method of data
handling [39,42,43,44].

The idea of the GMDH is based on replacing the complex
model of the process with partial models (neurons) by using
the rules of variable selection. As usual, partial models have
a small number of inputsui(k), i = 1, 2, . . . ,m, and are im-
plemented by GMDH neurons. The synthesis process of the
GMDH network [44] is based on iterative processing of a se-
quence of operations. This process leads to the evolution of
the resulting model structure in such a way so as to obtain an
approximation of the optimal degree of model complexity.

The resulting GMDH neural network is constructed
through the connection of a given number of neurons, as shown
in Fig. 5.

Fig. 5. Principle of the GMDH algorithm

Fig. 6. Final structure of the GMDH neural network

The GMDH neuron has the following structure:

ỹ(l)
n (k) = ξ

((
z(l)

n (k)
)T

θ(l)
n

)
, (20)

whereỹ
(l)
n (k) stands for the neuron output (l is the layer num-

ber, n is the neuron number in thel-th layer), correspond-
ing to the k-th measurement of the inputu(k) ∈ Rnu of
the system, whilstξ(·) denotes a non-linear invertible activa-
tion function, i.e., there existsξ−1(·). Moreover,z(l)

n (k) =
f

(
[u(l)

i (k), u(l)
j (k)]T

)
, i, j = 1, . . . , nu and θ

(l)
n ∈ Rnp

are the regressor and the parameter vectors, respectively, and

f(·) is an arbitrary bivariate vector function, e.g.,f(x) =
[x2

1, x
2
2, x1x2, x1, x2, 1]T which corresponds to the bivariate

polynomial of the second degree.
An outline of the GMDH algorithm can be as follows [44,

45]:

Step 1: Determine all neurons in the first layer (estimate their
parameter vectorsθ(l)

n with the training data setT )
whose inputs consist of all possible couples of input
variables, i.e.,(nu − 1)nu/2 couples (neurons).

Step 2: Using a validation data setV, not employed during
the parameter estimation phase, select several neurons
which are best-fitted in terms of the chosen criterion.

Step 3: If the termination condition is fulfilled (the network
fits the data with desired accuracy or the introduction of
new neurons did not induce a significant increase in ap-
proximation abilities of the neural network), then Stop,
otherwise use the outputs of the best-fitted neurons (se-
lected in Step 2) to form the input vector for the next
layer, and then go to Step 1.

To obtain the final structure of the network (Fig. 6), all un-
necessary neurons are removed, leaving only those which are
relevant to the computation of the model output. The proce-
dure of removing unnecessary neurons is the last stage of the
synthesis of the GMDH neural network. The feature of the
above algorithm is that the techniques for parameter estimation
of linear-in-parameter models can be used during the realisa-
tion of Step 1. Indeed, sinceξ(·) is invertible, the neuron (20)
can relatively easily be transformed into a linear-in-parameter
one.

The objective of structure and parameter identification is
to obtain a mathematical description of a real system based on
input-output measurements. Irrespective of the identification
method used, there is always the problem of model uncertainty,
i.e., the model-reality mismatch. Even though the application
of the GMDH approach to model structure selection can im-
prove the quality of the model, the resulting structure is not the
same as that of the system. It can be shown [45] that the appli-
cation of the classical evaluation criteria like the Akaike Infor-
mation Criterion and the Final Prediction Error [46] can lead
to the selection of inappropriate neurons and, consequently, to
unnecessary structural errors.

Apart from the model structure selection stage, inaccuracy
in parameter estimates also contributes to modelling uncer-
tainty. Indeed, while applying the least-square method to pa-
rameter estimation of neurons (20), a set of restrictive assump-
tions has to be satisfied. The first, and the most controversial,
assumption is that the structure of the neuron is the same as that
of the system (no structural errors). In case of the GMDH neu-
ral network, this condition is extremely difficult to satisfy. In-
deed, neurons are created based on two input variables selected
from u and hence it is impossible to eliminate the structural er-
ror. Another assumption concerns transformation withξ−1(·).
The usual statistical parameter estimation methods, i.e., the
least-square method or other methods considered in [21,47] as-
sume that data are corrupted by errors which can be modelled
as realisations of independent random variables, with a known
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or parameterised distribution. A more realistic approach is to
assume that errors lie between given prior bounds.

Let us consider the following system:

y(k) =
(
z(l)

n (k)
)T

θ(l)
n + ε(l)

n (k). (21)

The problem is to obtain the parameter estimate vectorθ̂
(l)
n (k),

as well as associated parameter uncertainty required to design
a robust fault detection system. In order to simplify the no-
tation, the index(l)n is omitted. The knowledge regarding the
set of admissible parameter values allows obtaining the confi-
dence region of the model output which satisfies:

ỹm(k) ≤ y(k) ≤ ỹM (k), (22)

whereỹm(k) andỹM (k) are the minimum and maximum ad-
missible values of the model output that are consistent with the
input-output measurements of the system.

Moreover, it is assumed thatε(k) is bounded as follows:

εm(k) ≤ ε(k) ≤ εM (k), (23)

where the boundsεm(k) and εM (k) (εm(k) < εM (k)) are
known a priori. The idea underlying the bounded-error ap-
proach is to obtain a feasible parameter set [45]. This set can
be defined as

P =
{
θ ∈ Rnθ | y(k)− εM (k) ≤ zT (k)θ

≤ y(k)− εm(k) , k = 1, . . . , nT } ,
(24)

wherenT is the number of input-output measurements. This
set can be perceived as a region of parameter space that is de-
termined bynT pairs of hyperplanes:

P =
nT⋂

k

S(k), (25)

where each pair defines the parameter strip:

S(k) =
{
θ ∈ Rnθ | y(k)− εM (k) ≤ zT (k)θ

≤ y(k)− εm(k)
}
.

(26)

Any parameter vector contained inP is a valid estimate ofθ. In
practice, the centre (in some geometrical sense) ofP is chosen
as the parameter estimateθ̂, e.g.,

θ̂i =
θm

i + θM
i

2
, i = 1, . . . , nθ, (27)

where
θm

i = arg min
θ∈P

θi, i = 1, . . . , nθ, (28)

θM
i = arg max

θ∈P
θi, i = 1, . . . , nθ. (29)

The problem (28) and (29) can be solved with the well-known
linear programming techniques [20,48], but whennT and/or
nθ are large, the computational cost may be significant. This
constitutes the main drawback of the approach. In our case,
GMDH neurons represent a relatively small dimension and
therefore the BEA can be employed. On the other hand,
the main difficulty associated with the BEA concernsa pri-
ori knowledge regarding the error boundsεm(k) andεM (k).

However, these bounds can also be estimated [20] by assuming
thatεm(k) = εm, εM (k) = εM , and then suitably extending
the unknown parameter vectorθ by εm andεM . Determining
the bounds can now be formulated as follows:

(εm, εM ) = arg min
εM≥0, εm≤0

(εM − εm), (30)

with respect to the following constraints:

y(k)− εM ≤ zT (k)θ ≤ y(k)− εm , k = 1, . . . , nT . (31)

To solve the problem (30), the well-known simplex method
along with the strategy presented in [49] can be applied.

Using the methodology described above it is possible to
obtain the parameter estimateθ̂ and the associated feasible pa-
rameter setP. However, from the practical point of view, it is
more convenient to obtain model output uncertainty, i.e., the
interval in which the “true” model output̃y(k) can be found.
This kind of knowledge makes it possible to obtain an adaptive
threshold [10], and hence to develop a fault diagnosis scheme
that is robust to model uncertainty.

If there is no error in the regressor, then the problem of de-
termining model output uncertainty can be solved as follows:

zT (k)θm(k) ≤ zT (k)θ ≤ zT (k)θM (k), (32)

where
θm(k) = arg min

θ∈V
zT (k)θ, (33)

θM (k) = arg max
θ∈V

zT (k)θ. (34)

The computation of (33) and (34) is realised by multiplying
parameter vectors corresponding to all vertices belonging toV
by zT (k). Since (32) describes neuron output uncertainty, the
system output will satisfy:

zT (k)θm(k)+εm(k) ≤ y(k) ≤ zT (k)θM (k)+εM (k). (35)

The neuron output uncertainty defined by (32) and the corre-
sponding system output uncertainty (35) are presented in Figs.
7 and 8, respectively. According to the GMDH network struc-
ture, the neurons in thel-th (l > 1) layer are fed with the
outputs of the neurons from the(l − 1)-th layer. Since (32)
describes model output uncertainty, the parameters of the neu-
rons in layers have to be obtained with an approach that solves
the problem of an uncertain regressor [20].

Fig. 7. Model output uncertainty for the error-free regressor
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Fig. 8. System output uncertainty for the error-free regressor

Taking into account an error in the regressor, it was shown
[50,51] that model output uncertainty has the following form:

ỹm (k)
(
θ′m (k) ,θ′′m (k)

) ≤ zT
n θ

≤ ỹM (k)
(
θ′M (k) , θ′′M (k)

)
,

(36)
where

ỹm (k)
(
θ′m (k) , θ′′m (k)

)
=

(
z (k)− eM (k)

)T
θ′m (k)

+ (em (k)− z (k))T
θ′′m (k) ,

(37)

ỹM (k)
(
θ′M (k) , θ′′M (k)

)
= (z (k)− em (k))T

θ′M (k)

+
(
eM (k)− z (k)

)T
θ′′M (k) ,

(38)
and

(
θ′m (k) ,θ′′m (k)

)
= arg min

(θ′,θ′′)∈V
ỹm (k) (θ′,θ′′ (k)) ,

(39)(
θ′M (k) , θ′′M (k)

)
= arg max

(θ′,θ′′)∈V
ỹM (k) (θ′,θ′′ (k)) .

(40)
Moreover,e(k) denotes the error in the regressorz(k), and
it was assumed that each parameterθi can be replaced by
θi = θ′i − θ′′i , θ′i, θ

′′
i ≥ 0, i = 1, . . . , nθ.

Using (36) it is possible to obtain system output uncer-
tainty:

ỹm (k)
(
θ′m (k) ,θ′′m (k)

)
+ εm (k) ≤ y (k) ≤ ỹM (k)

×
(
θ′M (k) , θ′′M (k)

)

+ εM (k) .
(41)

The presented bounded-error approach has been applied to
the synthesis of GMDH networks [45].

4.2. Takagi-Sugeno neuro-fuzzy networks.For the last few
years an increasing number of authors [15,18,36,37,52] have
been using integrated neural-fuzzy models in order to benefit
from advantages of both. The neuro-fuzzy model combines, in
a single framework, both numerical and symbolic knowledge.
Automatic linguistic rule extraction is a useful aspect of NF,
especially when little or no prior knowledge about the process

is available [36,52]. For example, an NF model of a non-linear
dynamical system can be identified using empirical data. This
model may give us some insight about the non-linearity and
dynamical properties of the system [34]. From the mentioned
literature it follows that NF-based FDI is advantageous when
[38]:

— enough certain system information is not available,
— physical or semi-physical models are difficult to obtain,
— sensor measurements are incomplete, assumed or missing,
— training data are difficult to obtain because of a lack of

control of some input variable,
— the system exhibits strong non-linear static and dynamic

behaviour,
— during the normal operation, frequency components of the

input signal are not complete enough to build a model that
can be reliable for all possible frequencies.

Two types of NF networks are commonly used for the
modelling purpose: the Mamdani NF network and the Takagi-
Sugeno NF network. Generally, Takagi-Sugeno structures ex-
press better performance in modelling than other structures due
to their possibility to decompose non-linear systems into a col-
lection of local linear models, and therefore the paper concen-
trates on such structures. The main problem which arises dur-
ing designing Takagi-Sugeno networks is the question about a
suitable number of rules which ensure modelling accuracy.

This is usually a trade-off between the complexity of the
network and its accuracy. The existing methods for determin-
ing the structure of NF network are time consuming (genetic
algorithms [53,54], clustering algorithms [55], partitioning al-
gorithms [56]) and do not assure the accuracy of the designed
model. Below an effective method [57,58] for structure deter-
mination based on the bounded-error approach will be consid-
ered.

The structure of the Takagi-Sugeno system could be pre-
sented in the form of a layered topology similar to the neural
network [36,37]. However, knowledge coded in this structure
could be viewed in the form of fuzzy rules [59,60]:

Ri : IF x is Ai THENyi = zT
i θi, (42)

wherex is the vector of global network inputs,Ai is the mul-
tivariate fuzzy set,yi is the scalar output of the rule,zi is the
vector of local linear system inputs,θi is the vector of local
linear system parameters, andi is the index of the rule. Fuzzy
sets usually have Gaussian membership functions. The global
output of the NF network is a composition of the responses of
all rules:

y =
∑n

i=1 µkyi∑n
i=1 µi

, (43)

wherey is the global output of the network,µi is the mem-
bership degree achieved fori-th rule, yi is the output of the
i-th rule (local linear system),n is the number of rules. It is
worth to noticing that the number of rules determines the num-
ber of local linear models, which are responsible for piecewise
local linear approximation of the non-linear system. It could
be shown that the number of rules has a strong influence on the
accuracy of the global model and its complexity [57,61].
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Fig. 9. Sample dynamic Takagi-Sugeno network, where AP is logical
conjunction, W – inference operation, and AW – conclusion aggrega-

tion

It is very important to include dynamics [61,62] in the NF
network because real processes are usually dynamic. It could
be done by introducing into the input vectorzi the delayed in-
putsui of the local model and the delayed output of the local
outputyi, i.e.,zi = [ui(k), ui(k − 1), . . . , ui(k − na), yi(k −
1), yi(k−2), . . . , yi(k−nb)]. The sample layered structure of
the dynamic Takagi-Sugeno network is presented in Fig. 9.

To apply the bounded-error approach for determining the
uncertainty of the NF network considered, we need to assume
that such network is linear in parameters [20]. In this case a
model uncertainty will be characterized by a feasible set of pa-
rameters defined by the BEA.

Let us consider the following Takagi-Sugeno NF model:

ỹ(k) =
n∑

i=1

φi(k)ỹi(k), (44)

where,ỹi(k) is the output of thei-th rule and

φi(k) =
µi(k)∑n

j=1 µj(k)
. (45)

The model described by Eq. (44) could be viewed as a
system linear in parameters:

ỹ = xT (k)θ, (46)

where

x(k) =




φ1(k)z1(k)
φ2(k)z2(k)

...
φn(k)zn(k)


 , θ =




θ1

θ2

...
θn


 ,

if the parameters of fuzzy sets are treated like constant values.
Let us define the output errorε(k):

ε(k) = y(k)− xT (k)θ, (47)

wherey(k) is the output of the system. The usual statistical pa-
rameter estimation approaches assume that data are corrupted
by errors which can be modelled as realizations of independent
random variables, with a known or parameterized distribution
[56]. The bounded-error approach is more realistic because it
assumes that errors lie between given priori bounds [11, 20]:

εm(k) ≤ ε(k) ≤ εM (k). (48)

Let us assume that

εM (k) = ε, εm(k) = −ε. (49)

Thus the feasible set of parameters forN data points is:

P =
{
θ ∈ Rnθ | y (k) + ε ≤ xT (k)θ ≤ y (k)− ε;

k = 1, . . . , N
}
. (50)

Then the confidence interval for the system output is given by:

xT (k)θm (k) ε ≤ y (k) ≤ xT (k) θM (k) + ε, (51)

where
θM (k) = arg max

θ∈P
xT (k)θ, (52)

θm (k) = arg min
θ∈P

xT (k) θ. (53)

This algorithm requires to determine the set of all vertices
W of the convex polyhedronP. This process is so time con-
suming that it is hard to employ the described algorithm for
models with more then 6 parameters. Fortunately, the recur-
sive Outer-Bounding Ellipsoid (OBE) algorithm [9,20] is able
to approximate the areaP by enclosing it by the ellipsoidE and
is not so time consuming [21]. The data in this algorithm are
taken into account one after another to construct a succession
of ellipsoids containing all values parameters consistent with
all previous measurements.

Using the OBE algorithm, the confidence interval for the
system output can be given by [57,61]:

xT (k)θ̂ −
√

xT (k)Mx(k)− ε ≤ y(k)

≤ xT (k)θ̂ +
√

xT (k)Mx(k) + ε, (54)

whereθ̂ is the center of the ellipsoid,M is the positive define
matrix, which specifies the size and orientation of the ellipsoid.

5. Robust fault detection systems
As was mentioned, the ideal of model-based FDI is to gener-
ate signals that reflect inconsistences between the nominal and
faulty system operation. On the other hand, the uncertainty of
the model could dramatically decrease the reliability of fault
detection if it is not taken into consideration. Two main ap-
proaches have been proposed to overcome the described prob-
lem [1,7]: the active approach, which is usually based on
robust observers, and the passive approach, which is usually
based on the adaptive threshold computed for the residual.
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In the threshold test, the residualr(k) = y(k) − ỹ(k) has
to be checked against thresholds, which traditionally are con-
stant. In this case, the decision is significantly affected by
model uncertainty. If the threshold chosen is too small, un-
certainties cause false alarms, if opposite – small faults can-
not be detected. A more effective solution can be obtained if
the threshold is adapted to the time evolution of the residual
in the fault-free case [12]. The idea of threshold adaptation is
shown in Fig. 10. It is clear that if a fixed threshold (the dashed
lines) is used, a false alarm occurs at the timeTfa, and, on the
other hand, the fault atTf cannot be detected. If an adaptive
threshold is used (the dashed lines) which follows in some way
the residual caused by the input in the fault-free case, both the
false alarm can be avoided and the fault atTf be detected. In
a simple way the shape of the adaptive threshold can be found
empirically by the inspection of the shape of the residual under
fault-free operation [34] or using the analytical approach [8].

Fig. 10. Illustration of the concept of the adaptive threshold

5.1. Adaptive threshold with the GMDH model. To show
how to develop an adaptive threshold with the GMDH model,
the confidence range of the output system (41) is considered.
Since the residual is given by [4,5]:

r(k) = y(k)− ỹ(k), (55)

then as a result of substituting (55) into (41), an adaptive
threshold can be described as [50]:

ỹm (k)
(
θ′m (k) ,θ′′m (k)

)− ỹ (k) + εm (k) ≤ r (k)

≤ ỹM (k)
(
θ′M (k) ,θ′′M (k)

)
− ỹ (k) + εM (k) . (56)

The principle of fault detection with the developed adap-
tive threshold is shown in Fig. 11. At the timeTf the residual
crosses the upper bound of the confidence range of the adaptive
threshold, and this moment is indicated as fault appearance.

5.2. Adaptive threshold with the NF model.Using the
same approach as for the GMDH network, an adaptive thresh-
old with the Takagi-Sugeno network can be directly defined by
applying the confidence range of the output system (54). After
substituting (55) into (54), the adaptive threshold can be put in
the following form [61]:

xT (k)θ̂ −
√

xT (k)Mx(k)− ε− ỹ(k) ≤ r(k)

≤ xT (k)θ̂ +
√

xT (k)Mx(k) + ε− ỹ(k).
(57)

It has to be pointed out that the presented approach for
computing the adaptive threshold for the neuro-fuzzy model
assumes that the input vectorx is not corrupted by errors. In
real situations sometimes this assumption may not be fulfilled.

Fig. 11. Adaptive threshold with the uncertainty GMDH model

6. Experimental results
During the realization (2001–2004) of the Research Train-
ing Network on theDevelopment and Application of Meth-
ods for Actuator Diagnosis in Industrial Control Systems
(DAMADICS)[63], analytical and soft computing approaches
to on-line diagnosis of a 5-stage evaporisation plant of the
sugar factory in Lublin (Poland) were studied and developed.
One of the subtasks of this project was to develop robust fault
detection methods using soft computing models with an adap-
tive decision threshold.

6.1. Process description. One of the most important compo-
nents of each evaporation station is an actuator consisting of
three parts: a control value, a pneumatic spring-and-diaphragm
actuator and a positioner. Actuators are installed mainly in a
harsh environment such as high temperature and presure, low
or high humidity, dusty pollutants, chemical solvents, aggres-
sive media, vibrations, etc. These conditions (external and in-
ternal) have a crucial influence on the actuator’s predicted life-
time and, moreover, cause different malfunctions or failures.
To avoid the damage caused by incipient and sudden faults,
on-line diagnosis of actuators is needed [64,65].

The scheme of the actuator with an intelligent positioner is
given in Fig. 12. The following notations are used:V1, V2 and
V3 are cut-off valves,ACQ is a data acquisition unit,CPU
is a positioner central processing unit,E/P is an electro-
pneumatic transducer, andDT , PT andFT denote displace-
ment, pressure and volume flow tranducers, respectively. For
remote on-line diagnostics, the following measured variables
are accessible: the flow rate of juice after the control valve
(F ), the actuator’s rod displacement (X), the input set-point
(CV ), juice temperature at the input of the control valve (T1),
and juice pressures at the input and outlet of the control valve,
respectively (P1 andP2).
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Fig. 12. Scheme of the intelligent actuator

6.2. GMDH network modelling and detection. Based on
the actuator benchmark definition [63], two structural models
can be defined [64]:

F = fF (X, P1, P2, T1), (58)

X = fX(CV , P1, P2, T1), (59)

wherefF (·) andfX(·) denote unknown non-linear functions
of the flow rate and displacement, respectively. Using these
functional relations, GMDH neural dynamic models were de-
veloped. For the research purpose, 19 faults(f1, f2, . . . , f19)
were selected and grouped in four sets [63]: the faults of the
control value, the pneumatic actuator, and the positioner. The
general/external faults create the fourth set.

For the purpose of fault detection, two GMDH neural mod-
els corresponding to the relations (58) and (59) were built.
During the synthesis process of these networks, the so-called
selection method was employed [45,66], and the final struc-
tures are shown in Fig. 13.

Fig. 13. Final structures of GMDH models: forF = fF (·) (a) and
for X = fX(·) (b)

Fig. 14. The model and the system outputs with corresponding uncer-
tainly range

Fig. 15. Residual and adptive threshold for the faultf18

Figures 14(a) and 14(b) present the modelling abilities of
the obtained modelsF = fF (·) andX = fX(·) as well the
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corresponding system output uncertainty. The thick solid line
represents the real system output, the thin solid lines corre-
spond to system output uncertainty, and the dashed line de-
notes the model response. From Fig. 14, it is clear that the
system response is contained within the system output bounds,
which were designed with the estimated output errors bounds
[45].

The main objective of this application study was to develop
a fault detection scheme for the valve actuator. Employing the
modelsF = fF (·) and X = fX(·) for robust fault detec-
tion with the approach proposed in [45], the selected results
are shown in Figs. 15 and 16. These figures present residuals
(the solid lines) and their bounds given by adaptive thresholds
(the dashed lines). It is clear that both faultsf18 andf19 are
detected.

Fig. 16. Residual and adaptive threshold for the faultf19

Fig. 17. Model and system output with system output bounds (big
fault)

6.3. Takagi-Sugeno network modelling and detection.
Consider the same actuator benchmark and two structural mod-
els given by (57)–(58). Applying the method for structure gen-
eration of NF models [57,61] and the results presented in Sub-
section 4.2, two NF models can be defined. The obtained struc-
tures are described in Table 1.

Table 1
Neuro-fuzzy models

quantity fF fX

global inputs X CV

local inputs X, P1, P2, T1 CV , P1, P2, T1

no. of rules 7 3

The parametres of fuzzy sets were estimated from the re-
sults obtained during structure generation and the parameters
of the consequents were estimated using the OBE algorithm.

The first step of the experimental study was to present the
modelling abilities of the obtained NF models and, additionaly,
their system output uncertainty. Figure 17 presents the mod-
elling abilities of the obtained model along with corresponding
system output bounds. At the timeTf = 250 the big fault (the
valve was blocked) occured.

From Fig. 18, which shows the residual and its bounds
given by the adaptive threshold, follows that this fault is de-
tected very fast, with a small delay, approximately 5 units.

The developed fault detection scheme with NF models us-
ing the available data containing 44 faulty scenarios gener-
ated by the actuar simulator [63] was tested as well. The
faults were divided into two main groups: abrupt and incipi-
ent faults. Then abrupt faults were divided into three groups:
small, medium and big faults.

Fig. 18. Residual and adaptive threshold (big fault)

The fault detection results obtained for all scenarios are
shown in Table 2, where the following notations are intro-
duced: Y indicates the fault detected using the designed NF
models, N indicates the fault that was not detected by the de-
signed NF models.
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From Table 2 it follows that most faults can be detected,
however, there are a few faults that cannot. The reason for
such a situation was that the system output bounds obtained
by the OBE algorithm were too large and hence sensitivity to
faults was not high enough. This means that it is necessary to
employ a more accurate technique than the OBE algorithm.

Table 2
Fault detection results

No. Description S M B I
Control valve faults

f1 Valve clogging Y Y Y
f2 Sedimentation Y Y
f3 Seat erosion Y
f4 Bushing frictions Y
f5 External leakage N
f6 Internal leakage Y
f7 Medium evaporation Y Y Y

Servo-motor faults
f8 Twisted piston rod N N Y
f9 Housing N
f10 Diaphragm perforation Y Y Y
f11 Spring fault Y Y

Positioner faults
f12 E/P transducer fault N N N
f13 Rod displ. sensor fault Y Y Y Y
f14 Pressure sensor fault N N N
f15 Feedback fault Y

External faults
f16 Pressure drop Y Y Y
f17 Unexpected pressure change Y Y
f18 Opened bypass valves Y Y Y Y
f19 Flow rate sensor faultF Y Y Y

(S – small, M – medium, B – big, I – incipient)

7. Conclusions
The main purpose of this paper was to consider a robust model-
based fault detection system applying analytical and soft com-
puting models. Special attention was paid to the uncertainty of
such models [67] and their usefulness in fault diagnosis. In par-
ticular, uncertainties of GMDH neural networks and Takagi-
Sugeno NF networks were considered. The proposed approach
was based on the bounded-error approach, which is superior to
the celebrated least-square method in many practical applica-
tions. It was shown that the defined confidence interval for
the system output of the GMDH and Takagi–Sugeno networks
can be used to develop an adaptive threshold that permits ro-
bust fault detection. In the last part, an experimental study
performed with the DAMADICS benchmark problem showed
the effectiveness of such robust fault detection based on the
uncertainty of soft computing models.
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[64] J.M. Kościelny and M. Bartýs, “Application of information
system theory for actuator diagnosis”,Proc. 4th IFAC Symp.
Fault Detection, Supervision and Safety for Technical Pro-
cesses, SAFEPROCESS, Budapest2, 949–954 (2000).

[65] J.C. Yang and D.W. Clarke, “The self-validating actuator”,
Contr. Eng. Practice7, 249–260 (1999).

Bull. Pol. Ac.: Tech. 54(1) 2006 87



J. Korbicz

[66] M. Mrugalski, J. Korbicz, and R.J. Patton, “Robust fault detec-
tion via GMDH neural networks”,Proc. IFAC World Congress,
Prague, Czech Republic, (CD ROM).

[67] Z. Bubnicki, Analysis and Decision Making in Uncertain Sys-
tems, London: Springer-Verlag, 2004.

88 Bull. Pol. Ac.: Tech. 54(1) 2006


