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Abstract. The main focus of the paper is on the asymptotic behaviour of linear discrete-time positive systems. Emphasis is
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1. Introduction

This paper is concerned with the positive linear discrete-
time systems (PLDS) represented by the homogeneous
system

z(t+1) = Az(t) (1)

and the non-homogeneous system
x(t+1) = Ax(t) + bu(t) (2)

where x(t) € R is the state vector, A € R}*" is the
transition matrix, u(t) € 4 is the scalar input control
for which b € R" is the corresponding control vector,
and t =0,1,2,... denotes the time index. In the case of
single input—single output PDLS equation (2) is coupled
with the output equation

y(t) = clx(t) 3)

where y(t) € R, is the output and c € 7.

A number of models with positive linear system be-
haviour can be found in engineering, management science,
economics, social sciences, compartmental analysis in bi-
ology and medicine, genetics and other areas (see [1-7]
and references cited there) so (1) and (2) seem to repre-
sent important classes of systems. As indicated by Lu-
enberger [5], the theory of positive systems is deep and
elegant and simply the knowledge that a system is pos-
itive allows one to make some fairly strong statements
about its behaviour; these statements being true no mat-
ter what values the parameters may happen to take. The
most fundamental property of positive systems, resulting
from the Perron-Frobenius theorems formulated at the be-
ginning of the 20*" century (see, for example, [8]), relates
to the existence of a dominant eigenvalue and its asso-
ciated eigenvector (which determines the system’s long
term behaviour). Another important feature of positive
systems is the relationship between stability and positiv-
ity and it is this that is the main focus of this paper. The
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two texts [9] and [10] provide a good introduction to the
theory of positive systems.

The paper has been structured to be as self-contained
as possible with emphasis on the bringing together of key
results, with references to various sources for associated
proofs. First some relevant background material is pro-
vided in Section 2. Section 3 deals with equilibrium points
whilst Section 4 considers the asymptotic stability prob-
lem, with the relationship between null-controllability and
asymptotic stability being developed. The important
problem of localizing the value of the dominant eigenvalue
is considered in Section 5, whilst Section 6 highlights the
importance of the sub-dominant eigenvalue when consid-
ering system convergence. Section 7 extends the discus-
sion to time-variant positive systems.

2. Preliminaries

In this section some of the relevant basic definitions and
results associated with positive matrices and the PLDS
given in (1) and (2) are presented.

DEFINITION 1. A non-zero matrix A with real ele-
ments a;; is called

(1) non-negative (notation A > 0) if all the elements of
A are non-negative (a;; > 0 for all i, j);

(2) positive (notation A > 0) if all the elements of A
are positive (a;; > 0 for all 7, j).

Similar definitions and notations apply to vectors.

A common property of positive systems is that if the
initial condition (0) is positive (or at least non-negative)
then the whole trajectory is entirely in the non-negative
orthant 7. Many of the structural properties of PDLS
relate to the zero-nonzero pattern of the elements in the
system matrix A, and are not dependent on the actual
values of its non-zero entries. Consequently in the study
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of such a system frequent use is made of the incidence
matrix [11] (or associate matrix [10]).

DEFINITION 2. The matrix A = (&;;) is called the in-
cidence matrix of A = (a;;) if
a;;j = 1if a;;j > 0 and a;; = 0if a;; = 0, for 4,5 =
1,2,...,n.

Clearly A is a common incidence matrix for all non-
negative matrices having the same zero-nonzero pattern
as A.

The structure of the system matrix A = [a;;]nxn can
be represented by a digraph (directed graph) G(A) =
(N,A), where N = {1,2,...,n} is the set of all ver-
tices (or nodes) and A is the set of arcs; that is, ordered
pairs (i,7) of elements taken from N. The vertices cor-
respond to the rows and columns of A, and there is an
arc (i,j) € A,i,j € N, if and only if a;; > 0 (that is,
arcs correspond to non-zero entries and indicate that the
state variable x;(t) influences the state variable x;(t+1).
Let 41, i9,...,%s be a sequence of distinct vertices of a
directed graph such that (ix,ix41) is an arc, for each
k=1,...,8s — 1. Then the sequence of distinct vertices
and arcs i1, (i1, %2), %2,...,(is—1,1s), @5 is called a di-
rected path which leads from 47 to i5. A digraph is called
strongly connected if for any two vertices ¢ and j,4,7 € N,
there exists a directed path that leads from ¢ to j. For
PDLS system (2) the positive elements of the vector b are
identified with the corresponding vertices of G(A) and an
additional vertex labelled 0 is introduced to represent the
scalar input. If the output equation (3) is also associated
with (2) then a further vertex labelled n+1 is introduced.
Note that, according to the definition given above, the di-
graphs of any two n X n non-negative matrices A and A,
which have the same zero-nonzero pattern are the same,
ie. G(A) = G(A;1) = (N,A). (Note: This digraph rep-
resentation of the system is sometimes referred to as an
influence graph [10]).

DEFINITION 3. If A1, Aa, ..., A\, are the eigenvalues of
the matrix A € R™*" than o(A) = {A1,Aa,..., A} is
called the spectrum of A. If

p(A) = max{|Ail, A € 7(A)}

then p(A) is called the spectral radius (dominant or max-
imal eigenvalue) of the matrix A

DEFINITION 4. A non-negative matrix A is called re-
ducible if there exists a permutation matrix S such that

A e (1

STAS =
[Am Az

where A1; and Agsy are square matrices and 0 is the zero
matrix. Otherwise A is called irreducible. The corre-
sponding systems (1) and (2) are called reducible and ir-
reducible systems respectively.

It is possible that either or both of the matrices A1
and Ay in (4) are themselves reducible, so that further

decomposition can be performed. Indeed, if A is a non-
negative reducible matrix then there exists a permutation
matrix P such that

Ay O 0
Az Az --- 0 k
PTAP: ,Aiieﬁfxm,Zni:n
: ' e ' i=1
Apr Apa -+ Agg
where each block A;;,i=1,2,...,k, is square and either

irreducible or a 1 x 1 matrix. Consequently, when con-
sidering non-negative systems attention may be focused
on irreducible systems, which enjoy interesting proper-
ties. Tests for establishing irreducibility are given in The-
orem 1.

THEOREM 1. The non-negative matrix A, of order n,
is irreducible if and only if

(a) its digraph G(A) is strongly connected, or equiva-
lently,
(b) the matrix (I + A)"~! is positive; that is

(IT+A" '=T+A+A>+ ...+ A" >0

Theorem 1 also holds if the incidence matrix A re-
places the matrix A in the expansion for the sum. It
readily follows from the theorem that if A > 0 then it is
irreducible.

Irreducible non-negative matrices can be further sub-
divided into primitive or cyclic (called imprimitive by
some authors). The following simple definitions of cyclic
and primitive non-negative matrices, based on their spec-
tra, can be found in [12].

DEFINITION 5. Let A > 0 be irreducible. The number
h of eigenvalues of A of modulus p(A) is called the index
of cyclicity (imprimitivity index) of A. If A =1 then the
matrix A is termed primitive. If A > 1 then the matrix
A is said to be cyclic of index h.

Definition 5 is itself a test for classifying an irreducible
non-negative matrix as primitive or cyclic. Other charac-
terizations of primitivity are given in Theorem 2.

THEOREM 2. An irreducible non-negative matrix A €
RT™ is primitive if and only if

(a) there exists a positive integer m such that A™ > 0
or, equivalently,

(b) there exist paths of the same length m between each
pair of vertices in the digraph G(A).

It readily follows from Theorem 2 that the class of real
positive matrices A > 0 is primitive; that is h = 1 or, in
other words, the moduli of all eigenvalues are strictly less
than the dominant eigenvalue. The proof of Theorem 3
below can be found in [11].

THEOREM 3. Let

det(AM — A) = A" + a1 A" 4+ aA™ + ...+ g A"
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where n > n; > ng > ... > ng > 0 and a; # 0 for all 7,
be the characteristic polynomial of an irreducible matrix
A > 0 which is cyclic of index h. Then h is the greatest
common divisor of the differences n —n;, j =1,2,...,q.

The result given in Theorem 4 is due to Wieland [13].

THEOREM 4. For any two nonnegative matrices A
and B such that A > B > 0 the corresponding dom-
inant eigenvalues p(A) and p(B) satisfy the inequality
p(A) > p(B). Moreover, if the matrix A is irreducible
but A # B, this inequality holds as a strong inequality
p(A) > p(B).

The Perron—Frobenius theorems [8] are key to the
study of positive systems. The basic results associated
with these theorems, relevant to this paper, are summa-
rized in Theorem 5.

THEOREM 5.
then:

(1) If a matrix A € R}*" is positive

(a) there exists a real positive dominant eigenvalue
p(A) and a corresponding positive right eigen-
vector f,; that is, Af, = p(A)f,,p(A) >
0,f,>0. (p(A) and f, are frequently referred
to as the Frobenius eigenvalue and eigenvector
repectively);

(b) if A # p(A) is another eigenvalue of A then
|A| < p(A); that is p(A) is unique ;

(¢) p(A) is an eigenvalue of algebraic and geomet-
ric multiplicity 1.

(2) A non-negative matrix A € R}*" always has a real
non-negative dominant eigenvalue p(A) > 0 and a
corresponding non-negative eigenvalue f, > 0 such
that the moduli of all the eigenvalues of A are not
greater than p(A) and f, # 0.

(3) If the non-negative matrix A is also irreducible then

(a) the dominant eigenvalue p(A) and the corre-
sponding eigenvector f, are both positive, that
is p(A) > 0 and F,>0;

(b) if X # p(A) is another eigenvalue of A then
Al < p(A);

(c¢) p(A) is an eigenvalue of algebraic multiplic-
ity 1.

(4) If the non-negative matrix A is irreducible and
cyclic with cyclicity index h > 1, then there are
h and only h, eigenvalues A1, Ag,... Ap(h > 1) of A
such that |A\;| = p(A), j =1,2,...,h. In this case
Aj, 3 = 1,2,...,h, are the roots of the equation
A — ph = 0 (that is, the eigenvalues are regularly
distributed on the circle of radius p(A)).

(5) If the non-negative A € R}*" is irreducible and
primitive then h = 1 and the dominant eigenvalue
p(A) is unique.

DEFINITION 6. The PDLS (2), and the non-negative
pair (A, b) > 0, is said to be null-controllable (or control-
lable to the origin) [14] if for any state x(t) € R’} and
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some finite ¢ there exists a non-negative control sequence
{u(s),s = 0,1,...,t — 1} that transfers the system from
the state * = x(0) into the origin. Since the transition
time is finite this is sometimes referred as finite time null-
controllability.

Muratori and Rinaldi [15] introduce the classes of
PDLS called excitable and transparent systems. These
have specific structural properties, which will be exploited
in Section 4 when considering the positivity of equilibrium
points.

DEFINITION 7. The PLDS system (2) is said to be
excitable if and only if each state variable can be made
positive by applying an appropriate control u* > 0 to the
system initially at rest.

DEFINITION 8. The PDLS given in (2) with (3) is said
to be transparent if and only if its free output y (that is,
output with u(t) = 0) is positive for every xy > 0.

Conditions for excitability and transparency are also
developed in [15] and are summarized in Theorem 6.
These are quite weak properties that are usually met in
applications.

THEOREM 6. (a) The PDLS (2) is excitable if and only
if there exists at least one path from the input node 0 to
each node 7« = 1,2...n of the digraph G(A), or equiva-
lently, if and only if

b+ A b+ (A )2b+...+(A ) b>0

(b) The PDLS given by (2) and (3) is transparent if
and only if there exists at least one path from each node
i =1,2...n of the digraph G(A) to the output node n+1
or equivalently, if and only if

~ =2 ~n—1
E+Ai+Ae+.. . +A T E>0

DEFINITION 9. A square matrix C € R"*" is an M-

matrix if there exists a non-negative matrix A € R}*"

with dominant eigenvalue p(A) > 0 such that C = cI—A,
where ¢ > p(A) and I is the n X n identity matrix.

Clearly an M-matrix is non-singular if ¢ > p(A) and
singular if ¢ = p(A). Properties of non-singular M-
matrices that are useful for considering the positivity of
equilibrium points are contained in Theorem 7.

THEOREM 7. Let C = cI — A with A >0 and ¢ > 0,
then

(a) C is non-singular and C~' > 0 if and only if
c>p(A)

(b) C is non-singular and C~' > 0 if and only if
¢ > p(A) and A is irreducible.

3. Equilibrium points

A point x. is called an equilibrium point of the PDLS
(2), subject to a constant input u* > 0, if and only if it
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satisfies the condition
x, = Az, + bu* (5)

or equivalently
(I—-A)x, =bu" (6)

If unity is not an eigenvalue of A then I — A is non-
singular and there is a unique solution

x.=[I - A 'bu* (7)

If unity is an eigenvalue of A then there may be no
equilibrium point or an infinity of such points depend-
ing on whether or not (6) represent a consistent set of
equations. In most cases of interest there is a unique
equilibrium point given by (7). In the case of the homo-
geneous PLDS (1) @, is an equilibrium point if and only
if it satisfies the condition

x, = Ax..

Clearly if unity is not an eigenvalue of A the origin
(z. = 0) is the only equilibrium point of the system. If
unity is an eigenvalue of A, with algebraic multiplicity
equal to geometric multiplicity, then any point on the ray
generated by the corresponding eigenvector is an equilib-
rium point.

However, the equilibrium point . may not in itself be
a non-negative vector, which is a desirable requirement in
practice. It follows from Theorem 7 that if p(A) < 1
then (I — A) is a non-singular M-matrix having a non-
negative inverse so (I—A)~! > 0. Since b > 0 and u* > 0
it follows from (7) that in this case &, > 0. If p(A) =1
then (I — A) is a singular M-matrix which is generalized
left inverse-positive; that is, there exists a non-negative
matrix § > 0 such that S(I — A)**! = (I — A)* for
some k > I [12]. Moreover, it can be proved that ev-
ery generalized inverse S of C' = (I — A) is non-negative

o]

on Vo = [ QC™), were Q(T) is the range or column

m=0

space of T'; that is® > 0 and x € Vo — x > 0.

4. Asymptotic stability

The homogeneous PLDS (1) may be solved recursively,
once an initial state &y has been specified, to give

x(t)=Alzg, t=0,1,2,... (8)

DEFINITION 10. The homogeneous PLDS (1) is called
asymptotically stable (a.s) if and only if the solution in
equation (8) satisfies the condition

tlim x(t) =0 for any x € RN

The system is said to be unstable if there exists an xg
such that lim A'x is unbounded and marginally stable

t—oo

otherwise.

A condition for a.s is given in Theorem 8.

THEOREM 8. The homogeneous PDLS (1) is a.s. if
and only if the dominant eigenvalue p(A) < 1. If p(A) >
1 then the system is unstable and if p(A) = 1,(h = 1)
then the system is said to be marginally stable.

If x. as specified in (7) is the equilibrium point of the
non-homogeneous PDLS (2), subject to a constant input
u* then denoting z(t) = x(t) — x. enables (2) to be re-
duced to the homogeneous form

z(t+1)=Az(t) (9)

The perturbed system (9) is not necessarily positive since
z(t) = x(t) — x, can be greater, equal or less than zero.
However the matrix A is non-negative since system (2) is
positive and this simplifies the stability analysis.

Clearly the condition for tlg(r)lo x(t) = x. is identical to

that for lim z(¢) = 0 in the homogeneous equation. Thus

t—o0

the conditions for the non-homogeneous PDLS (2) to be
a.s are as given in Theorem 8. It is clear from Theorem 8
that the conditions for a.s of general linear discrete-time
systems hold for PDLS. However, many of the necessary
and /or sufficient conditions for a.s of general discrete-time
linear systems become simpler in the case of PDLS. Exam-
ples are given in Theorem 9, and are proved in references

[9,10].

THEOREM 9. (1) The PLDS (1) is a.s if and only if
either
(a) the coeflicients of the characteristic polynomial

Aq (A =det[IN— A +T]

are positive, or
(b) all the leading principal minors of the matrix (I — A)
are positive.

(2) The PDLS (1) is unstable if at least one diagonal
entry of the matrix A is greater than 1, that is

) n}

It is also of interest to expose the relation between
null-controllability and a.s. It is shown in [14] that the
PLDS is null-controllable (in finite time) if and only if the
system matrix A is nil-potent (that is, A® = 0 for some
integer s < m). A nil-potent matrix has all of its eigen-
values equal to zero so (finite time) null-controllability
implies a.s. The converse is not true for PLDS, since
a.s. does not imply finite time null-controllability. The
concept of null-controllability can be extended to include
infinite transition time to the origin [14]. Positive sys-
tems in which the trajectory of free motion converges to
the origin as t — oo are called weakly (asymptotically)
null-controllable. Thus, it is clear that a.s. implies weak
null-controllability.

Consider the open-loop PLDS (2) and the associated
closed-loop system

z(t+1)=Acx(t)

a; > 1 for some i€ {1,2,...

(10)

where A, = A + bk is the closed-loop system matrix,
k = (k1,...,ky), is the constant feedback gain row-vector,
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and the linear state-feedback law is

u(t) = kx(t)
The closed-loop system (10) is positive if and only if
A, > 0. The result contained in Theorem 10 is proved in
[16].

THEOREM 10. The controls in the closed-loop PLDS
(10) satisfy the constraints

u(t) = 0,
if and only if the feedback gains satisfy the condition
k= (ki,....,kn) >0

independently of whether the open-loop system is positive
or non-positive.

t=0,1,2,... (11)

(12)

The negative but rather important result given in The-
orem 11 is a direct consequence of Theorems 4 and 10.

THEOREM 11. An unstable PLDS cannot be stabilised
by linear state-feedback if the restriction on nonnegativity
of controls (11) in the closed loop is to be respected.

If the non-homogeneous PDLS (2) is a.s then p(A) < 1
and it follows from Section 3 that the equilibrium point
x. determined by (7), is non-negative. The converse is
also true for if there exists an @, > 0 satisfying (7) then
the PLDS (2) is a.s.. No similar statement holds for gen-
eral linear time-invariant systems. In many applications
a question of interest is whether or not the state of the
system tends towards a non-negative (x. > 0) or positive
(z > 0) equilibrium point x., determined by (7), when a
constant input v* > 0 is applied. For a general PLDS the
best response that can be given is that stated in Theorem
12.

THEOREM 12. The equilibrium point x. of an a.s
PLDS (2), with a constant input v* > 0, is non-negative
if b > 0 and positive if b > 0.

As shown in [9] the statement in Theorem 12 can be
strengthened if the PDLS is excitable, as indicated in The-
orem 13.

THEOREM 13. The equilibrium point x. of an a.s and
excitable PLDS (2), with a constant input u* > 0, is pos-
itive.

In the case of excitable systems (as in Theorem 13)
asymptotic stability is a necessary and sufficient condi-
tion for x, > 0.

We conclude this section by noting that the asymp-
totic behaviour of PLDS (1) and (2) can also be ascer-
tained using Liapunov theory. First we recall that a gen-
eral discrete-time linear system, having the structure of
(1) but not necessary positive, is a.s if and only if there
exists a positive definite matrix P such that AT PA — P
is negative definite. That is, if and only if there exist posi-
tive definite matrices P and @ which satisfy the Liapunov
equation

ATPA-P=-Q
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In the case of PDLS one can restrict attention to P being
a diagonal matrix with all its diagonal elements positive
(that is, P is a positive diagonal matrix) [9]. Then the
condition for a.s is as given in Theorem 14.

THEOREM 14. A PDLS (1) or (2) is a.s if and only if
there exists a positive diagonal matrix P such that the
matrix AT PA — P is negative definite.

5. Bounds on dominant eigenvalue

An obvious important use of the Perron-Frobenious re-
sults, summarized in Theorem 5, in stability analysis
arises from the guarantee that the transition matrix A of
a PDLS always has a non-negative dominant eigenvalue
p(A). Clearly, it follows from Theorem 8 that the PLDS
(1) and (2) are a.s if and only if p(A) < 1. Localizing the
value of p(A) is very important in practice, both for the-
oretical work and computation, where iterative processes
require initial estimates of its value. Having tight theo-
retical bounds on the value of p(A) can also be of value
in the design of positive dynamical systems.

The most frequently used bounds for the dominant
eigenvalue p(A) of a non-negative matrix A = (a;;) are
those due to Frobenius [8-10]. Denote by

r; = E a;; and c¢; = E aij

j=1
the sum of the i* row and j** column, i,j = 1,2,...,n,
respectively of A Then the following evaluations for p(A)
hold
minr; < p(A) < maxr; (13a)

mine; < p(A) < maxc; (13b)
J J

or, more compactly,
max{minr;, min¢;} < p(A) < min{maxr;, maxc;}
i J ? J

(13c¢)

If A is also irreducible then equality holds on both

sides in (13a) if and only if all the row sums are equal and

holds in (13b) if and only if all the column sums are equal.

Sharper bounds on the dominant eigenvalue are provided
in Theorem 15.

THEOREM 15. Let A be a non-negative matrix with
non- zero row sums 7;, (¢ = 1,2,...,n), and dominant
eigenvalue p(A). Then

mln ( Za”rj> <p(A) < max ( Zamr])

If A = (a;;) is a positive matrix with dominant eigen-
value p(A) and maximum row sum R and minimum row
sum r and if r < R then, from (13a), r < p(A) < R.
Lederman proposed the problem of determining positive
numbers p; and py such that

r+p1 < p(A) <R —po
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His result, together with later improvements by first Os-
trowsky and then Brauer [8], is given below, with n =

min a;;.
i,
Lederman:

1
r+77<\/5—1> < p(A) < R—n(1 - V0),

where ¢ = max(r;/r;).
Ti=Tj

Ostrowsky:
1
T+n(—1> < p(A) < R—n(1-0),
o

where o =+/(r—n)/(R—n).

Brauer:
r+n(h—1) <p(A) <R-n(l-1/9g),
where
R—2n++/R?>—4n(R —
g =

2(r —mn)
— 2 214 _
and he =T n+\/2pn+ n(R—r)

6. Subdominant eigenvalues and conver-
gence

It is clear from Section 4 that the asymptotic behaviour,
as t — oo, of PLDS (1) and (2) is dependent on the
asymptotic behaviour of A’ as t — co. Using the spectral
representation

A =S Nfg! (14)
i=1
where A;,i = 1,2,...,n are the eigenvalues of A and f;
and g, are the corresponding right and left eigenvectors re-
spectively, defined by Af, = \;f, and g7 A = \igl, i =
1,2,...,n. These sets of eigenvectors are bi-orthogonal
and can be assumed to be mutually normalized, so that
gF f; = 0;j, where §;; is the Kronecker delta, &;; = 1 for
i=jand d;; =0fori#j IfA>0 orif A>0is
primitive, then from Theorem 5 p(A) > 0 and is unique
so, taking |A1| < [Aa] < ... < | An—1| < p(A), (14) can be

written in the form
M >t T
— | fi91 +.-.
(p(A) e

)\n—l ’
+ (p(A)) .fn—lg;l;—l‘| .

lim (p(A)"'A) = f,q7, £, >0,

t—o00

(n(A)A) = F,97 +

(15)

Thus

g, >0 and ffgp =1.

Defining the sub-dominant eigenvalue of a matrix A €
%TLXTL by

p_(A) = max{|\i|/A; € o(A), [\ # p(A)}

then in (15) |[An—1] = p_(A) but it may not be unique.
However it is clear that the asymptotic behaviour of
A' is determined by the rate of convergence to zero of
tlirgo [p_(A)/p(A)]". Even if p(A) is known or easily es-
timated it may be difficult or impossible to compute an
estimate of the sub-dominant eigenvalue p_(A) in order
to get an useful bound on the ratio p_ (A)/p(A). In such
cases the following easily computed bound, due to Hopf
[17] and holds for any positive matrix A = (a;;), may be

used.
p_(A) _A—p
p(A) ~ A+p

where A = max(a;; 14,7 =1,2,...

<1

,n) and p = min(a,; :
i,j=1,2,...,n).

A number of other bounds have been proposed in the
literature and references [18-21] are indicative.

7. Time variant plds
Consider the time-variant PLDS

x(t+1)=AM@)=z({) +bt)u(t), t=0,1,2,... (16)
and the associated homogeneous system
xz(t+1)=Alt)x(t) (17)

with A(t) € R*", b(t) € R and u(t) € R4 for all ¢ and
an initial state (0) = zo € N7

It is not difficult to see that the trajectory of the sys-
tem (16), respectively (17), is non-negative. As was shown
in Section 4 the stability properties of time-invariant sys-
tems are determined by the stability properties of the as-
sociated homogeneous system. The trajectory of homoge-
neous system for any initial state (0) = ¢ > 0 is given
by

o(t) = &()mo, t=0,1,2,...

where
Pt)=At-1)At-2)...A1)A(0) = i:[ A(k),
k=0

with ®(0) =1
is the fundamental (transition) matrix of the system (16).

Clearly, ®(t) is transitive so for any two positive integers
s and t such that s < ¢

B(t) = B(t — 5)B(s).

In line with Definition 7 the positive system (16) (and
the non-negative pair (A(t),b(t)) > 0) is said to be null-
controllable if for any state z € R’ and some finite s
there exists a non-negative control sequence {u(t),t =
0,1,2,...,s—1} that transfers the system from the state
x = x(0) to the origin x(s) = 0. Likewise, the system
(16) is said to be weakly null-controllable if x(t) — 0 as
t — oo. It is not difficult to see that since the system
(16) is positive the control sequence does not contribute
to reaching the origin [14]. Thus, the null-controllability
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property, respectively weak null-controllability property,
depends entirely on the properties of the system matrix
A(t) and, consequently, on the properties of fundamental
matrix @(t). The result given in Theorem 16 is proved
in [22].

THEOREM 16. The positive system (16) is null-
controllable if and only if there exists a finite time s > 0
such that the transition matrix @(s) = 0.

Since A(t) > 0 for all ¢ > 0 and ®(s) = A(s — 1)
A(s —2) ... A(1)A(0) Theorem 16 tells us that null-
controllability of the system (16) is an entirely structural
property, which depends only on the zero-nonzero pattern
of the system matrix A(t) or its incidence matrix A(t).
The time needed to reach the origin can be less, equal or
greater than the dimension of the system [22]. This phe-
nomenon has no equivalent in the case of time-invariant
positive linear systems, where the time of reaching the
origin is always less than or equal to the dimension of
the system [10]. It readily follows from the transitivity
property of @(t) that if the system reaches the origin it
can stay there forever, since @(t) = &(t — s)®P(s) =0
for any ¢ > s when ®(s) = 0. That is, the time-variant
PLDS is null-controllable. Thus, null-controllability im-
plies asymptotic stability.

Let D(A) = (N,U) be a digraph of an n x n matrix
A >0, where N = {1,2,...n} is the set of all vertices and
U is the set of all arcs. The digraph being constructed so
that there is an arc (i,j) € U, (i,j) € N, if and only if
ai; > 0. To associate a matrix A > 0 with this digraph
the adjacency matrix A is introduced [17]. The entries of
A being defined as

G — {lif (i,j) € D(A)
9=\ 0if (i, ) ¢ D(A)

The matrix A is a binary matrix. It is clear that A>0
and D(A) = D(A), where A is any non-negative matrix
having the same zero-nonzero pattern as A.(Note that
the adjacency matrix of the digraph D(A) has the same
0-1 pattern as the incidence matrix of (A) given in Def-
inition 2. Note also that the adjacency matrix of G(A),
introduced in Section 2, is the transpose of the adjacency
matrix of D(A) and vice-versa, so that G(A) and D(A)
have different structures).

Let Dy = (N1,Uy) and Dy = (N3,Usy) be any two
digraphs then the operation union D; U Dy produces
the digraph (N7 U No,U; U Us). Thus, if the vertex
sets are the same then the union of two digraphs is
just the superposition of their arcs. Given m n X n
nonnegative matrices A1, As, ..., A,,, the joint digraph
D(A,,As,..., A,,) is defined as D(A;1) UD(A2)U... U
D(A,,), in which each arc is labelled (coloured) with a
subset of {1,2,...,m} depending upon which of the di-
graphs D(A;), D(As),...,D(A,,) includes that arc. A
simple characterisation of null-controllability in terms of
the joint digraph, and presented in Theorem 17, is devel-
oped in [22].
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THEOREM 17. The system (16) is null-controllable if
and only if for some finite s > 0 there exists no path
of length s in the joint diagraph D(A(s — 1),..., A(0))
coloured with 1,2,...,s in the order of the matrices in
the product from the left to the right.

For many reasons, it is important to determine classes
of time-variant PDLS that are null-controllable and the
time of reaching the origin is less than or at most equal to
the dimension of the system. Theorems 18 and 19, proved
in [22], define such classes of systems.

THEOREM 18. Let the adjacency matrix A(t) = A >
0 be a constant matrix for 0 < j <t < j +n and let A
be a nil-potent matrix. Then the positive system (16) is
null-controllable and the time ¢ of reaching the origin is
t < j+n. In particular, if j = 0 the origin is reachable in
t < n steps.

THEOREM 19. Let A(¢) > 0 be a nil-potent matrix
for k = 0,1,2,...,n — 1 and let A(t) < A(t+ 1) for at
least t = 0,1,2,...,n — 2. Then the positive system is
null-controllable and the origin can be reached in s < n
steps.

Since null-controllability implies asymptotic stability
the characterisations of null-controllability provided in
Theorems 18 — 19 can be used as tests for asymptotic
stability of time invariant PLDS. Consider the (homoge-
neous) time-invariant PLDS

z(t+1) = Pz(t) with 2(0) =x¢g >0and t =0,1,2,...
(18)
having the following properties
(i) P> A(t)>0fort=0,1,2,..., and
(ii) p(P) < 1 (that is, P is an asymptotically stable
non-negative matrix).
As a consequence of property (ii), the trajectory of (18)
2(t) = P'xy >0
is convergent to the origin as ¢t approaches infinity, that is
(19)

so the time-invariant PLDS (16) corresponding to (18) is
weakly null-controllable. On the other hand, as a conse-
quence of property (i), the trajectory of the system (18)
dominates the trajectory of the system (17); that is

0<z(t) <=z(t) forany t.
It readily follows from (19) and (20) that

z(t) — 0 as t — oo,

z(t) =0 as t — o0

(20)

and, therefore, the system (17), respectively (16), is
asymptotically stable.

8. Conclusions

The dominant eigenvalue p(A) of the system matrix
A > 0 determines entirely the stability property of PLDS
namely the system is asymptotically stable if p(A) < 1,
marginally stable if p(A) = 1 and unstable when p(A) >
1. Since there are a variety of estimates for the dominant
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eigenvalue, this eigenvalue being real and positive for pos-
itive matrices and real and nonnegative for nonnegative
matrices can be easily evaluated.

Not any equilibrium point of a non-homogeneous
PLDS is nonnegative but the nonnegative equilibrium
points are of interest for the applications. As it is shown
in Section 4 there is a remarkable connection between
asymptotic stability and the non-negativity (positivity)
of the equilibria; namely: the equilibrium points of an
asymptotically stable PLDS are non-negative and if there
exists a non-negative equilibrium point for the PLDS then
it is asymptotically stable.

For PLDS the relationship between asymptotic stabil-
ity and null-controllability is quite appealing. It is shown
in the paper that (positive) null-controllability implies
asymptotic stability whilst asymptotic stability implies
weak null-controllability, in general. These results hold
for time-invariant as well as for time-variant PLDS.
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