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Analytical electromagnetic field and forces calculation for
linear, cylindrical and spherical electromechanical converters
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Abstract. The paper deals with the problem of force and torque calculation for linear, cylindrical and spherical electromechanical converter.
The electromagnetic field is determined analytically with the help of separation method for each problem. The results obtained can be used as
test tasks for electromagnetic field, force and torque numerical calculations. The analytical relations for torque and forces are also convenient
for analysis of material parameters influence on electromechanical converter work.
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1. Introduction

The determination of forces induced by electromagnetic
field in electromechanical converter is an important prob-
lem. For electromechanical converters the acting force or
torque values play deciding role for users. Modern tech-
nologies enable us to construct electromechanical convert-
ers with parts having wide range of properties between
them anisotropic. Especially, the induction motors — lin-
ear, cylindrical and spherically shaped have got often
magnetically anisotropic parts. The magnetic anisotropy
could increase the value of forces and torques arising in
electromechanical converter. The intention of this paper
is to present the analytical solutions for linear, cylindrical
and spherical induction motor problems. Basing on the
main equation for electromagnetic forces density there are
presented and discussed forces and torques values acting
in electromechanical converters. The analytical relations
for force and torque are the base for material parame-
ters influence analysis. The presented below solutions for
anisotropic and isotropic cases for magnetic circuit of in-
duction motor can be used as a test-task for numerical
packages, too.

2. Force and torques in electromagnetic
field

The first pair of Maxwell equations [1–3] take the well-
known form

curl �E = − �̇B ∧ div �B = 0. (1)

The second pair of Maxwell equations can be presented
in vector notation as follows

div �D = ρ ∧ curl �H = �j + �̇D. (2)

The constitutive relation for electromagnetic field vectors
for non-hysteresis medium are

Hu = νuvBv, (3)

Du = εuvEv, (4)
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where εuv denote dielectric permittivity, νuv are magnetic
reluctivity, u, v, w are curvilinear system co-ordinates
(summation due to twice appearing indices is accepted).

The volume density of the total force [4, 5] can be
written in the form of (Appendix)

�f = �fL + �N + �M, (5)

that point out the physical reasons for arising of the
electromagnetic force component and is widely used for
calculation of forces that appear in electromagnetic field
region [6–9]. On the right hand side of Eq. 5 there are
three components of electromagnetic force as follows

— acting on external currents/charges — the Lorentz
force equals to

�fL = ρ �E +�j × �B, (6)

— originated by change of magnetic reluctivity and
electric permittivity [10] — the so-called nonhomogenous
component �N

�N =
1
2
BuBw grad(νuw) − 1

2
EuEw grad(εuw), (7)

and asymmetry component M. (Eq. 66).
The forces/torques described mathematically by Lo-

rentz formula are called Lorentz forces/torques. The
forces/torques given by non-homogeneous and asymmetry
components are called material forces/torques.

The tensor notation — presented in Appendix — is
convenient for forces components evaluation in curvilinear
co-ordinate systems e.g. cylindrical and spherical. The
total force density can be also presented with the help of
Maxwell stress tensor in vector notation as follows

div(−e�σu) = efLu + eNu + eMu, (8)

where

�σu = − �BHu +�iueV , (9)

fLu = jvBw − jwBv, (10)

Nu =
1
2
∂νu
e∂u

B2
u +

1
2
∂νuv
e∂u

BuBv +
1
2
∂νwv
e∂u

BvBw

+
1
2
∂νv
e∂u

B2
v , (11)
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Mu =
1
2
(νuv − νvu)Bu

∂Bv

e∂u
+

1
2
(νvu − νuv)Bv

∂Bu

e∂u
. (12)

For Cartesian co-ordinate system e = 1, u = x (Section 3);
for cylindrical e = r, u = α (Section 4) and spherical
system e = r2 sinϑ, u = ϕ (Section 5), subsequently.
So, the virtue of tensor notation is evident: it leads to
the vector notation easily. Moreover, the tensor notation
can be easily implemented in any programming language.
The components of tensors —- presented in matrix form
—- are very convenient in use for any loop algorithms,
especially.

3. Linear electromechanical converter
(1 — dimensional field)

The simplest linear electromechanical converter [11] for
analytical analysis of electromagnetic field and force cal-
culation is presented. For describing Lorentz FL and
anisotropy forces FFe the main Eq. (5) will be applied.
The model of the electromechanical converter consid-
ered is an induction linear motor with conducting and
anisotropic carriage (Fig. 1). The model can represent
linear motor used in traction. The motor carriage is
smooth and magnetically homogeneous. The conducting
rotor carriage has the width a, and the air-gap width is
g = const.

Fig. 1. Model of linear induction motor

For the linear induction motor the analytical solution
for the electromagnetic field distribution and forces can
be found. The correctness of the analytical analysis gives
the possibility to demand for the highest accuracy of
force values. Additionally, the solutions obtained for forces
decomposition confirm the form of Eq. (5) mathematically
proved (in Appendix) . The total force decomposition for
components called is satisfied as shown in this paragraph.

The electromagnetic field calculation will be provided
under the following assumptions
a) electric displacement current vanishes due to the small

field frequency [11],
b) Maxwell’s stress tensor part connected with the elec-

tric field can be omitted due to considered range of
the frequency DuEv � HuBv,

c) rail windings induce the sinusoidal mmf (magnetomo-

tive force [10], [12])

Θs(x) = Θs cos(ky − 2πft), (13)

where Θs stands for magnitude of mmf, y is the
position on the infinitely long carriage towards move
direction, k propagation constant, f means stator
supply frequency,

d) reluctivities for motor carriage, are as follows[
νx νxy
νyx νy

]
,

e) conductivity of motor carriage is γ (isotropic parame-
ter).
The assumed symmetry of linear motor leads to the

one-dimensional analysis. Field change in perpendicular
direction to the move direction is neglected. The magnetic
flux density of vertical component of magnetic potential
Az can be presented as follows

�B =�ix
∂Az

∂y
−�iy

∂Az

∂x
. (14)

The magnetic field strength components for the anisotro-
pic region can be shown in the form of

Hx = νxBx + νxyBy, Hy = νyxBx + νyBy. (15)

The Maxwell equation

curl( �H) = �j = γ �E = −γ �̇A (16)

and Eqs. (14)–(16) lead to the main equation in the form
of

νy
∂2Az

∂x2 − (νxy + νyx)
∂2Az

∂x∂y
+ νx

∂2Az

∂y2 = γȦz. (17)

The time-partial derivative of Az as a multiplication of
the operand iω and the complex magnetic potential A at
the steady state could be represented as follows

�̇A → iω �A, (18)

where ω means carriage currents pulsation.
Equation (17) leads to either generalized Helmholtz

differential equation for conducting carriage

νy
∂2A

∂x2 − (νxy + νyx)
∂2A

∂x∂y
+ νx

∂2A

∂y2 = iωγA, (19)

or the Laplace differential equation for the air-gap region

∂2A

∂x2 +
∂2A

∂y2 = 0. (20)

Equations (19) and (20) will be solved by the separation
of the variables in the form

A = X(x)Y (y) = XY. (21)

At the steady-state function Y (y) for monoharmonic
stator mmf has the given below form

Y (y) = exp(−iky). (22)

Rearranging the Eq. (19) with due to separation scheme
for X(x) and Y (y) leads to differential equation for the
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layer

d2X

dx2 + ik
νxy + νyx

νy

dX

dx
−

(
νxk

2

νy
+ β2

)
X = 0, (23)

and for the air-gap Eq. (20) takes the form given below:

d2X

dx2 − k2X = 0. (24)

The solutions of the Eqs. (23) and (24) are given in
Table 1. The four unknown constants aa, ba, aδ, bδ can
be evaluated by formulating the boundary conditions and
there are grouped in Table 2.

The evaluation of magnetic field potential distribution
is followed by the electromagnetic torque components
analytical calculations. The Maxwell stress tensor leads
to the total electromagnetic torque by means of the
well-known formula

F = νo

∫
∂V

BαBrdS. (25)

The electromagnetic torque component forced by machine

rotor currents can be evaluated by the Lorentz’s force
density as follows

FL =
∫
V

jzBrdV . (26)

The equation shows the total torque decomposition, which
can be written in the shortened form of

F = FL + FFe, (27)

where FFe denotes the so-called material torque. This
component is calculated with the help of the Eq. (12) as
follows (u = x)

FFe =
∫
V

MxdV. (28)

All torques are calculated for chosen linear motor. The
accuracy of the calculation provided with MathcadTM

equals to 10−15 (data shown in Fig. 2 are for SI Unit
System).

Table 1
Solution of the differential equations

Region anisotropic carriage — Eq. (23)
(index a)

air-gap — Eq. (24)
(index δ)

Solutions X(x) X(x) = aa exp(λ1x) + ba exp(λ2x) X(x) = aδ exp(kx) + bδ exp(−kx)

constants aa, ba aδ , bδ

Table 2
The boundary conditions for magnetic field

Boundary condition Field excited by stator currents Constants for solutions

Rail mmf y = a + g νoBδy = −∂Θs
∂y aa = Θsν−1

o {Ueλ1(a+g) − Weλ2(a+g)}−1

Carriage surface y = a Bδx = Bax
νoBδy = νyBay + νyxBax

a1 = ik
νxy + νyx

2νy

a0 =

√
k2 νx

νy
+

iγω

νy

λ1,2 = −a1 ±
√

a2
1 + a2

0

ba = −aaS, aδ = aaU, bδ = aaW

Inner layer surface y = 0 νyBy + νyxBx = 0 where

S =
νyλ1 + ikνyx

νyλ2 + ikνyx

P =
νy
kνo

(λ1eλ1a − Sλ2eλ2a) +
iνyx
νo

(eλ1a − Seλ2a)

Q = eλ1a − Seλ2a

U = 1
2 (P + Q)e−ka

W = 1
2 (Q − P )eka
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Linear induction machine – anisotropic carriage (SI unit system)

νo := 4−1 · π−1 · 107

νx :=
νo

3
νy :=

νo

1.5
νxy := 0.5 · νy + 0.0 · νy νyx := 0.0 · νy − 0.0 · νy · i

γ := 7 · 106

a1 :=
νyx + νxy

2 · νy · k · i s := 2 · π · i · 10 a0 :=

√
k2 · νx

νy
+

γ · s + s2 · ε
νy

k := 0.70

g := 0.005 l := 10 a := 0.1 θs := 2000 λ1 := −a1 − √
a12 + a02 λ2 := −a1 +

√
a12 + a02

FORCE COMPONENTS
Maxwell method x := a + 0.3 · g Lorentz and material force
F := 1 · Re(Hyδ(x) · Bxδ(x)) F = 1.234 F L := Im(s) · γ · k · l · C F L = 1.244

F Fe := l · k · Im


 a∫

0

(νyx − νxy) · (Bxa(x) · Bya(x))dx




Forces ratio

F L

F
= 1.008

F Fe

F
= −0.008

F L + F Fe

F
= 1.000

Fig. 2. Torque calculations for anisotropic rotor — MathcadTM program

4. Cylindrical electromechanical converter
(2 – dimensional field)
For describing Lorentz TeL and anisotropy TeFe torques
the proved method for induction motor with solid rotor
will be applied [12–15]. Let us consider the model of the
induction motor with conducting and anisotropic rotor
presented in Fig. 3. The model can represent the 2-phase
ferrite induction machine widely used in the industry.
The motor rotor is magnetically homogeneous, so the
tangential component of non-homogeneous component
vanishes Nα = 0. The magnetic rotor does not exhibit
hysteresis phenomenon. The machine rotor is cylindrical.
Its outer radius is R. The conducting rotor layer has the
width a, and the air-gap width is g = const.

Fig. 3. Model of induction motor with solid rotor

For the simplified model of the induction motor the
analytical solution for the electromagnetic field distri-
bution can be found. The correctness of the provided
analysis gives the possibility to demand for the accuracy

almost of 100% for torque components values. The nu-
merical analysis does not ensure such the level of torque
calculations. The electromagnetic torque decomposition
balance is satisfied, too.

Fig. 4. Induction motor model — the cross-section and dimensions

The electromagnetic field calculation will be provided
under the following assumptions
a) electric displacement current vanishes,
b) Maxwell’s stress tensor part connected with the elec-

tric field can be omitted due to considered range of
the frequency,

c) stator windings induce the sinusoidal 2p-pole mmf

Θs(α) = Θs cos(pα − 2πft), (29)

where Θs stands for the magnitude of mmf, α is the
position angle, f means the stator supply frequency,

d) reluctivities for motor rotor, are given by the reluctiv-
ity matrix generally [

νr νrα
ναr να

]
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e) conductivity of machine rotor is γ (isotropic parame-
ter).
The assumed symmetry of motor geometry and mmf

source lead to the two-dimensional analysis. The magnetic
flux density in terms of an axial component of magnetic
potential Az (z is symmetry axis of solid rotor) can be
presented as follows

�B =�ir
1
r

∂Az

∂α
−�iα

∂Az

∂r
. (30)

The magnetic field strength components for the anisotro-
pic region can be shown in the general form of

Hr = νrBr + νrαBα, Hα = ναrBr + ναBα. (31)

Combining the Maxwell equation with the Eqs. (30)
and (31) one obtains for steady-state the differential
Helmholtz equation for the anisotropic solid rotor

να
r

∂

∂r
(r
∂A

∂r
) − νrα + ναr

r

∂2A

∂r∂α
+

νr
r2

∂2A

∂α2 = iωγA, (32)

and Laplace differential equation for the air-gap

1
r

∂

∂r
(r
∂A

∂r
) +

1
r2

∂2A

∂α2 = 0. (33)

The Eqs. (32) and (33) will be solved by the separation
of the variables in the following form

A = R(r)S(α) = RS, (34)

at the steady-state when the function S(α) for monohar-
monic stator mmf takes the form

d2R

dr2 +
[1 − 2c]

r

dR

dr
−

[
νrp

2

ναr2 + β2
]
R = 0, (35)

where p is a pair-pole number for stator windings.

Equation (32) with respect to the given above sepa-
ration scheme for the functions R(r) and S(α) gives the
differential equation for the layer

d2R

dr2 +
[1 − 2c]

r

dR

dr
−

[
νrp

2

ναr2 + β2
]
R = 0, (36)

and for the air-gap

r

R

d

dr

(
r
dR

dr

)
= p2. (37)

The solutions of the Eqs. (36) and (37) [16] are grouped
in Table 3. The four unknown constants aa, ba, aδ, bδ can
be evaluated by formulating the boundary conditions and
there are grouped in Table 4.

Table 3
Solution of the differential equations

Region anisotropic layer — Eq. (36)
(index a)

air-gap — Eq. (37)
(index δ)

Solutions
for R(z),
z = βr.

R(z) = aazcIpB(z)

+ bazcKpB(z)

c = − ip(ναr + νrα)/2να

pB =
√

c2 + p2νr/να

R(r) = aδrp + bδr−p

constants aa, ba aδ , bδ

Table 4
The boundary conditions for magnetic field

Boundary condition Field excited by stator currents Constants for solutions

Stator current mmf r = R + g = Rg νoBδα = − 1
Rs

∂Θs
∂α

aa = Θsν−1
o {UR

p
s − WR

−p
s }−1

ba = −aaS, aδ = aaU, bδ = aaW

where

Rotor outer surface r = R Bδr = Bar, νoBδα = ναBaα + ναrBar S =
I′

pB(βRa)
K′

pB(βRa) , β =
√

iωγ/να

Inner layer surface r = R − a = Ra ναBα + ναrBr = 0

P =
βνα
pνo

(
I′
pB(βR) − SK′

pB(βR)
)

Q = IpB(βR) − SKpB(βR)

U = 0.5
(

PR−p+1 + QR−p)
W = 0.5

(
−PRp+1 + QRp

)

After evaluating the magnetic field potential distri-
bution both the magnetic flux density components and
the electromagnetic torque components can be evaluated,
analytically. The Maxwell stress tensor leads to the to-
tal electromagnetic torque by means of the well-known
formula

Te = νor
∫
∂V

BαBrdS. (38)

The electromagnetic torque component forced by machine
rotor currents can be evaluated by Lorentz’s force density

as follows

TeL =
∫
V

rjzBrdV . (39)

There is a question: whether the both torques are equal
for electromechanical converter which rotor exhibits the
magnetic anisotropy features? According to Eq. (5) —
after applying the Gaussian theorem [17] — for a cylin-
drical surface ∂V which is situated in the air-gap it is
satisfied

Te = TeL + TeFe. (40)
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The equation shows the total torque decomposition (non-
homogeneous component vanishes), where TeFe denotes
the so-called material torque. The material torque can
be physically interpreted as a part of total torque that
can be exerted only if either directional nonhomogenity

or forced magnetic anisotropy appears. The electromag-
netic torques at the steady state are calculated exemplary
electromechanical converter. The considered cases of the
anisotropy are grouped in Table 5.

Table 5
Rotor magnetic anisotropy cases and results of calculations for the induction motor

l = 0.3, R = 0.1, a = 0.07, Θs = 500, p = 2, γ = 7 · 105, g = 0.001, s = 2π · 3.0i

The case The reluctivities
νo = (4π10−7 H/m)−1

The current torque ratio
Te,L/Te [%]

The material torque ratio
Te,Fe/Te [%]

The total torque value
Te [Nm]

a) νr = να = 0.04νo
νrα = ναr = 0

100,0 0,0 4,29

b) να = 0.04νo νr = 0.05νo
νrα = ναr = 0

100,0 0,0 3,46

c) νr = να = 0.04νo
νrα = ναr = 0.1νr

100,0 0,0 4,34

d) να = 0.04νo νr = 0.05νo
νrα = ναr = 0.1νr

100,0 0,0 3,50

e) να = 0.04νo νr = 0.05νo
νrα = 0.10νr
ναr = 0.15νr

91,4 8,6 3,83

f) να = 0.04νo νr = 0.05νo
νrα = −0.10iνr
ναr = +0.10iνr

100,0 0,0 4,01

g) να = 0.04νo νr = 0.05νo
νrα = {0.10 − i0.10}νr
ναr = {0.15 + i0.10}νr

91,3 8,7 4,44

Induction motor with solid anisotropic rotor

νr :=
νo

30
να :=

νo

35
νrδ := νo ναδ := νo νrxα := 0.1 · να ναr := 0.2 · να

c := −ναr + νrα

2 · να · p · i s := 2 · π · i · 5 pB :=
√
p2 · νr

να
+ c2 pδ := p ·

√
νrδ

ναδ
p := 2

g := 0.0015 l := 0.35 R := 0.1 a := 0.07 θs := 800 γ := 9 · 106

c = −0.3i pB = 2.139 β =
√

(s · γ + s2 · ε) · να−1 β :=
√
s · γ · να−1

Torque components r := R + 0.4g
Maxwell method Lorentz and material torques

Te := r2 · π · l · Re(Hαδ(r) · Brδ(r)) Te = 12.612

TeL := p · π · l · Im(s) · γ ·
R∫

Ra

(|Aa(r)|)2 · rdr T eL = 12.451

TeFe := p · π · l · Im


 R∫
Ra

(ναr − νrα) ·
(
Bra(r) − Bαa(r)

)
· rdr


 TeFe = 0.161

Torques ratios

TeL

Te
= 0.98723

TeFe

Te
= 0.01277

TeL+ TeFe

Te
= 1.00000

Fig. 5. Torque calculations for anisotropic rotor — MathcadTM program
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From the analyses carried out and grouped in Table 5
it is apparent, that the material torque component can
appear for induction motor with round, homogeneous and
non-hysteresis rotor if the matrix of magnetic reluctivities
is not Hermitan conjugate.

For the electromechanical converter the electromag-
netic torque components have been evaluated — Fig. 5. It
is significant that for induced anisotropy (the cases e) and
g)) appears the material torque TeFe. For Hermitian con-
jugate reluctivity matrix — case f) (or for symmetrical
matrix particularly) the material torque vanishes.

Hence, there is possible to express the total torque Te
(calculated by Maxwell stress surface integral) caused by
Lorentz force in the form of surface integral for Hermitian
conjugate reluctivity matrix (e.g. symmetrical matrix).

For the analysis of influence of normal magnetic
anisotropy (µrα = µar = 0) on the torque-slip curve
shape there are considered three cases of rotor magnetic
anisotropy

with radial-dominate magnetic reluctivity — Tr and
µr > µa,

with angular-dominate magnetic reluctivity — Tα and
µa > µr,
compared with the case of isotropic rotor – T0.

For the three specified above cases (at the condition
µr + µα = const = 30 · µo, γ = 7 · 106 S/m, R = 0.05 m,
a = 0.03 m, g = 0.001 m, Θ = 500 A, p = 1, l = 0.3 m,
f1 = 50 Hz) the electromagnetic steady-state torque-slip
curve (s = (f1 −np)/f1) have been obtained with the help
of the presented magnetic field distribution — Fig. 6.

Fig. 6. Torque-slip curves for different anisotropy: Tr for µr > µα
— solid line, T for µr = µα — dot line (isotropic rotor), Tα µr >
µα — dash-dot line (for all cases µr + µa = const, µrα = µαr = 0)

The analyses carried for cylindrically shaped elec-
tromechanical converter have brought out to the issues,
such as

— For the electromechanical converter with round
rotor, which does not exhibit both the nonhomogenity of
magnetic reluctivity and the hysteresis phenomenon only
the anisotropy of the magnetic reluctivity may cause the
material torque. Indeed, the material torque appears for
the cylindrical-shaped electromechanical converter in the

case

νrα 	= ναr

— For the electrical machine rotor with radial-
dominate magnetic reluctivity the electromagnetic torque
is the greatest one for stable (‘arising’) part of torque-slip
curve.

— The obtained results enable one to state that
the electromagnetic torque of electromechanical converter
can be represented by the surface integral for both the
isotropic and the normal magnetic anisotropy of rotor.

5. Spherical electromechanical converter
(3 – dimensional field)

For the electromechanical converter with spherical rotor
— Fig. 7 (e.g. spherical motor [18–22]) the electromag-
netic field could be determined with the help of separation
of variable method. The book [20] presents the main solu-
tions for spherical converter by means of circuit analysis.
The further works present the field analysis of the prob-
lem in theoretical form [18, 19] or numerical [21, 22].

Fig. 7. Spherically shaped electromechanical converter-view

The non-standard separation proposed leads to the
analytical solution for the spherical symmetry problem
for anisotropic region. The solution obtained can be
applied for analysis of electromechanical converters with
spherically shaped moving part. The magnetic flux density
for spherical co-ordinate can be presented in the form

�B =
�1r

r sin θ

{
∂Aθ

∂ϕ
− ∂Aϕ sin θ

∂θ

}
−

�1ϕ
r

{
∂rAθ

∂r
− ∂Ar

∂θ

}

+
�1θ

r sin θ

{
∂

∂r
rAϕ sin θ − ∂Ar

∂ϕ

}
. (41)

For simple case �A = �Aθ = Aθ
�1θ = A�1θ (is motivated

physically by the construction of the spherical motor —
Figs. 7 and 8) it is satisfied

�B =
�1r

r sin θ

{
∂Aθ

∂ϕ

}
−
�1ϕ
r

{
∂rAθ

∂r

}
. (42)
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Fig. 8. Spherical co-ordinate system

The Maxwell’s Eq. (16) and constitutive relation for
field (42) in the form of

 Hr

Hϕ

Hθ


 =


 νrrBr + νrϕBϕ

νϕrBr + νϕϕBϕ

0


 (43)

lead for θ-component to the relation given below

1
r

∂

∂r
r

(
νϕr

r sin θ

{
∂Aθ

∂ϕ

}
− νϕϕ

r

{
∂rAθ

∂r

})

− 1
r sin θ

∂

∂ϕ

(
νrr

r sin θ

{
∂Aθ

∂ϕ

}
− νrϕ

r

{
∂rAθ

∂r

})
= jθ. (44)

The standard separation method in the well-known form
of

A = Aθ = R(r)Θ(θ)Φ(ϕ) = R · Θ · Φ, (45)
does not lead to the easily solvable equation, but the
proposed below non-standard separation

A = Aθ = R(r)F (ϕ, θ) = R · F, (46)

results in an easy separable equation

νϕϕ
rR

∂2rR

∂r2 +
νrr

r2F sin2 θ

∂2F

∂ϕ2

−
(
νϕr
rR

∂R

∂r
+

νrϕ
r2R

∂rR

∂r

)
1

F sin θ
∂F

∂ϕ
= iωγ. (47)

For the separated function F (ϕ, θ) it is assumed the
separation with the constant p2 in the form of

1
F sin2 θ

∂2F

∂ϕ2 = −p2 (48)

with the analytical solution

F = A exp(ipϕ sin θ) + B exp(−ipϕ sin θ). (49)

The solution (exemplary for constant B = 0 due to
technical aspects) leads to equation

∂2rR

∂r2 − ip

(
νϕr
r

∂R

∂r
+

νrϕ
r2

∂rR

∂r

)

=
(
p2νrr
r2 + iωγ

)
R, (50)

that confirms the proposed non-standard separation (46)
is successful (the solution for A = 0 and B 	= 0 is obtained
by substituting p → −p).

The equation obtained has the analytical solution for
anisotropic region as follows [16]

R(r) = (βr)h− 1
2 (C1Iδ(βr) + C2Kδ(βr)) , (51)

where it was denoted

β2 =
iγω − εω2

νϕ
, (52)

h = ip
νrϕ + νϕr

2νϕ
, (53)

δ = ±
√

(h − 1
2 )2 +

p2νr + ipνrϕ
νϕ

. (54)

For the air-gap (γ = 0) it is satisfied

∂2rR

∂r2 − (κ + 1)κ
R

r
= 0 (55)

(κ + 1)κ = p2 (56)

with the solution given below

R = R(r) = arκ1 + brκ2. (57)

The analytical solution for the spherical motor can
be presented in terms of separated function R(r) and
F (ϕ, θ) obtained with the help of separation proposed.
The exemplary spherical induction motor with anisotropic
and spherical rotor is considered and shown in Figs. 7
and 8. For the monoharmonic magnetomotive force of
stator the magnetic field distribution and electromagnetic
torque are calculated. The data for analysis are presented
in Fig. 9 (radii notation is adequate to Fig. 4).

The accuracy for both partial differential solutions
are checked and presented in Fig. 10 for conducting and
nonconducting region for separated ordinary differential
equations. The solutions for ordinary differential equation

Spherical induction motor with anisotropic rotor (SI units)

νr :=
νo

15
νφ :=

νo

20
νrδ :=

νo

1
νφδ :=

νo

1
νrφ := 0.3 · νφ νφr := 0.3 · νφ p := 1

h := z
νφr + νrφ

2 · νφ · p · i λ1 :=
√

(0.5 − h)2 + (νr · p2 + z · p · i · νrφ) · νφ−1
λ2 := −λ1

λ := λ1
s := 2 · π · i · 10

g := 0.0002 R := 0.045 a := 0.03 θs := 5000 γ := 10 · 106 λ = 1.22202

Fig. 9. The data set for the exemplary spherical motor
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Z( ) and D( ) denote solution for vector magnetic poten-
tial separated function R( ) for conducting region (γ 	= 0)
and air-gap (γ = 0), respectively. In Fig. 10 LZ (RZ)
means value of left-hand (right-hand) side of ordinary
differential Eq. (50) for conducting region. In Figure 10
LD (RD) means value of left-hand (right-hand) sides of

ordinary differential Eq. (55) for the air-gap region, re-
spectively. The accuracy for both ordinary differential
equations are checked and presented in Fig. 10, for ex-
emplary data. For exact solutions it should be satisfied
LZ/RZ = 1, and LD/RD = 1 as it is shown in Fig. 10.

r := Ra + 0.5 · a Accuracy for partial differential equations

LZ :=
[
∂2

∂r2 Z(β · r) +
2(l − h)

r
r
∂

∂r
(Z(β · r))

]
RZ :=

[
β2 +

νr · p2 + (z · p · i · νrφ)
νφ · r2

]
· Z(β · r) LZ

RZ
= 1.00000

LD :=
[
∂

∂r

(
∂

∂r
D(r)

)
+

2
r

· ∂

∂r
D(r)

]
RD :=

√
p2r2 · νrδ

νφδ
· D(r)

LD

RD
= 1.00000

Fig. 10. Accuracy for partial differential equations solutions

r := R + 0.5 · g Electromagnetic torque – total value
Maxwell’s method Iθ := 0.5 · (θ − θo)(cos(θ) − cos(θo))

Lorentz and material torques

Te := r3 · π · Iθ · Re(Hφδ(r) · Brδ(r)) Cr :=
R∫

Ra

(|Aa(r)|)2 · r2dr

T e = 0.020 TeCu := −z · p · π · γ · Iθ · Im(s) · Cr TeCu = 0.020

TeFe := p · π · Iθ · Im


 R∫
Ra

(νφr − νrφ) · (Bra(r) · Bφa(r)) · r2dr




Torques ratios

TeCu

Te
= 1.000

TeFe

Te
= 0.000

TeCu+ TeFe

Te
= 1.00000

Fig. 11. Electromagnetic torque calculation for spherical motor

Power balance – Poynting vector, power losses, magnetic energy

Er :=
νr

2
· k ·

R∫
Ra

(|Z(β · r) · p|)2dr

Eφ :=
νφ

2
· k ·

R∫
Ra

(|dxZ(β · r)|)2dr

Ca :=

∣∣∣∣∣∣∣
0 if (νrφ = 0) · (νφr = 0)

−0.5 · k · z · p · i ·

 R∫
Ra

Z(β · r) · dxZ(β · r)dr

 otherwise

Erφ := νrφ · Ca Eφr := νφr · Ca

Eµ := Er + Eφ + Erφ + Eφr Eε := 0.5 · ε · k · (|s|)2 · Cr0 Pq := (|s|)2 · γ · k · Cr0
Eµ := 0.01 Eε := 0 Pq := 1.238
Sc := νφδs ·k ·R ·D(R) ·dxD(R) Q := 2 · Im(s · Eµ + s · Eε Pe := 2 · Re(s · Eµ + s · Eε)
Sc = 1.238 + 1.309i Q = 1.309 Pe = 0

Erφ + Eφr

Er + Eφ
= 0.078

Eε

Eµ
= 0.000

Pq + Pe + Q · i
Sc

= 1.00000

Fig. 12. Electromagnetic field energy balance – calculation
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For the evaluated magnetic filed distribution and elec-
tromagnetic torque has been calculated as shown in
Fig. 11. There are presented the electromagnetic torques
two components: Lorentz TeL and material TeFe that to-
gether constitute the total electromagnetic torque Te. The
torque decomposition is presented for checking analysis
correctness, too. It should be pointed out that for either
isotropic or normally anisotropic (νϕr = νrϕ) rotor the
anisotropy torque component disappears (in the case of
Hermite conjugate reluctivity matrix, generally). The con-
dition for this statement is the same as for cylindrically
shaped rotor (Section 2).

Moreover, it was controlled accuracy of electromag-
netic field solutions by means of the energy-power balance.
The Poynting vector [1–5] is used for evaluating the mag-
netic energy and power losses in rotor. In order to check
the accuracy of electromagnetic field solutions the energy-
power balance has been checked. The Poynting vector is
used for evaluating the magnetic energy and power losses
in rotor. For checking the correctness of the obtained elec-
tromagnetic field distribution the power balance has been
checked with the help of MathCadTM program. The com-
plex power is calculated with the help of Poynting vector
as follows

Sc = −iωνo

∫
S

BϕδAzdS. (58)

The fulfilment of electromagnetic field power balance
ensures us that the analytical solutions are correct. More-
over, the power analysis leads to the power losses value
in solid rotor

Pq = γ
∫
V

E2
zdV . (59)

The exemplary calculations are shown in Fig. 12.

For technical purposes the analysis of influence of
normal magnetic anisotropy (µrϕ = µϕr = 0) on the
torque-slip curve is carried out for two cases of rotor
magnetic anisotropy

with radial-dominate magnetic reluctivity — Tr and
µr > µϕ,

with angular-dominate magnetic reluctivity — Tφ and
µϕ > µr,

in comparison with the case of isotropic rotor — T .

For the three specified above cases (at condition
µr + µϕ = const = 30 · µo, γ = 7 · 106 S/m, R = 0.05 m,
a = 0.03 m, g = 0.002 m, Θ = 1000 A, p = 1 — for
radii notation see Fig. 4) the electromagnetic steady-state
torque-slip curve have been obtained with the help of
the presented magnetic field distribution — Fig. 13. The
torque-slip curves show that electromechanical converter
with radial-dominate magnetic reluctivity develops elec-
tromagnetic torque at stable part of torque-slip curve
greater than for other anisotropy and isotropic rotor.

Fig. 13. Torque-slip curves for different anisotropy: Tr for µr > µϕ
— solid line, T for µr = µϕ — dot line (isotropic rotor), Tφ for

µr > µϕ — dash-dot line (for all cases µr + µϕ = const,
µrϕ = µϕr = 0) for spherical motor

6. Conclusions

The proposed method for electromagnetic torque/force
calculation described in analytical way enables us to
calculate its total and component values. The torque/force
components indicate the physical reason for theirs

induction i.e Lorentz force and
material force component (nonhomogeneous and ani-

sotropy components).
The mathematical proof for the main equation for

force density has been provided with the help of tensor
notation in Appendix. The tensor notation is convenient
due to its mathematical form not only for curvilinear
co-ordinate system but also for numerical algorithms.

For the chosen electromechanical converters linear,
cylindrical and spherically shaped electromagnetic field
and force/torque have been calculated. The accuracy of
the calculation carried out has been checked by total
force/torque decomposition correctness, too.

The solutions obtained lead to the conclusions that the
radial-dominate anisotropy increases the electromagnetic
torque value at steady-state of work.

For spherically shaped electromechanical converter
the non-standard separation is proposed that leads to
the analytical solutions. The mathematical form of non-
standard separation is given by Eq. (46).

It is pointed out, that the Lorentz force can be
presented by means of surface integral for homogeneous
regions if its reluctivity matrix is either isotropic or
anisotropic Hermite-conjugate.

Appendix

The energy tensor, which includes the stress tensor, can
be defined as follows

�̄k
i = −GklFil + 1

4δ
k
i G

lmFlm. (57)

The excitation tensor Gik has the following form

Gik = νoF
ik + W ik,
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where

W ik =




0 −cPx −cPy −cPz
cPx 0 +Iz −Iy
cPy −Iz 0 +Ix
cPz +Iy −Ix 0


 ,

Gik =




0 −cDx −cDy −cDz

cDx 0 −Hz +Hy

cDy +Hz 0 −Hx

cDz −Hy +Hx 0


 .

The tensor density of the energy tensor can be defined as
follows

�̄k
i = −GklFil + 1

4δ
k
i GlmFlm, (58)

The first pair of the Maxwell’s equations for the
curvilinear co-ordinate system can be written in the form

Fik,l + Fkl,i + Fli,k = 0. (59)

The second pair of the Maxwell’s equations where the
tensor density of the excitation tensor appears has the
form

∂Gik

∂xk
= Gik

,k = −ji. (60)

Due to the skew-symmetry of tensors F ik and Gik one
gets

Fik,lGik + 2Kl + 2(FklGik),i = 0.
where

Kl = Fliji, Kl =
√

|g|Kl.

The excitation tensor and the electromagnetic field tensor
are connected by material parameters as follows

Gik = λikpqF
pq + ∆Gik, (61)

where the material coefficients constitute the tensor

λikpq =
√
gλikpq.

The material relation (63) took the form known for
∆Gik = 0 and for symmetrical material coefficients.

Consecutive, it can be written

(FikGik),l = FikGik
,l + Fik,lGik, (62)

hence, according to the Eqs. (61) and (62), there are
satisfied the following relations:

(FikGik),l = λpqikFpqFik,l + λikpqFpqFik,l + Fikλ
ik
pq,lF

pq

+ [Fik∆Gik
,l + Fik,l∆Gik].

The material tensor λpqik in terms of the symmetrical
and the asymmetrical parts can be represented as follows:

λpqik = 1
2 (λpqik + λikpq) + 1

2 (λpqik − λikpq) =
pqik

λ
s

+
pqik

λ
a

.

Hence

(FikGik),l = 2GikFik,l − 4Ml − 4Ql − 4Nl,

where there were defined

Ql = − 1
2 [Fik∆Gik

,l − Fik,l∆Gik], (63)

Ml = − 1
2

ikpq

λ
a

FpqFik,l = 1
2 λ

ik
pq
a

F pqFik,l, (64)

Nl = − 1
2Fikλ

ik
pq,lF

pq. (65)

The tensor force density satisfies the following relations:
1
2 (FikGik),l + 2Nl + 2Ql + 2Ml + 2Kl + 2(FklGik),i = 0,

thus finally with the help of Kronecker’s delta symbol:

Kl = −{−GkpFlp + 1
4δ

k
l GpqFpq},k − Nl − Ql − Ml.

The divergence of the energy tensor is equal to

(�̄ k
i ),k = Ki + Ni + Qi + Mi, (66)

The non-vector notation for the tensor density of gener-
alised force volume density enables one to exchange the
volume integral into the surface one with the help of
Gauss’s theorem.
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