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Analytical electromagnetic field and forces calculation for
linear, cylindrical and spherical electromechanical converters
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Abstract. The paper deals with the problem of force and torque calculation for linear, cylindrical and spherical electromechanical converter.
The electromagnetic field is determined analytically with the help of separation method for each problem. The results obtained can be used as
test tasks for electromagnetic field, force and torque numerical calculations. The analytical relations for torque and forces are also convenient
for analysis of material parameters influence on electromechanical converter work.
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1. Introduction

The determination of forces induced by electromagnetic
field in electromechanical converter is an important prob-
lem. For electromechanical converters the acting force or
torque values play deciding role for users. Modern tech-
nologies enable us to construct electromechanical convert-
ers with parts having wide range of properties between
them anisotropic. Especially, the induction motors — lin-
ear, cylindrical and spherically shaped have got often
magnetically anisotropic parts. The magnetic anisotropy
could increase the value of forces and torques arising in
electromechanical converter. The intention of this paper
is to present the analytical solutions for linear, cylindrical
and spherical induction motor problems. Basing on the
main equation for electromagnetic forces density there are
presented and discussed forces and torques values acting
in electromechanical converters. The analytical relations
for force and torque are the base for material parame-
ters influence analysis. The presented below solutions for
anisotropic and isotropic cases for magnetic circuit of in-
duction motor can be used as a test-task for numerical
packages, too.

2. Force and torques in electromagnetic
field

The first pair of Maxwell equations [1-3] take the well-
known form

cwlB=-B A divB=o. (1)

The second pair of Maxwell equations can be presented
in vector notation as follows

divD=p A curlﬁ:j—i—ﬁ. (2)

The constitutive relation for electromagnetic field vectors
for non-hysteresis medium are

Hy = vuy By, (3)

Dy = euv By, (4)
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where ¢, denote dielectric permittivity, v,, are magnetic
reluctivity, w, v, w are curvilinear system co-ordinates
(summation due to twice appearing indices is accepted).

The volume density of the total force [4, 5] can be
written in the form of (Appendix)

F=7c+N+M, (5)
that point out the physical reasons for arising of the
electromagnetic force component and is widely used for
calculation of forces that appear in electromagnetic field
region [6-9]. On the right hand side of Eq. 5 there are
three components of electromagnetic force as follows

— acting on external currents/charges — the Lorentz
force equals to

fL:pE+;X§7 (6)

— originated by change of magnetic reluctivity and

electric permittivity [10] — the so-called nonhomogenous
component N

- 1 1
N = §Bqu grad(vyw) — §EuEw grad(eyw), (7)

and asymmetry component M. (Eq. 66).

The forces/torques described mathematically by Lo-
rentz formula are called Lorentz forces/torques. The
forces/torques given by non-homogeneous and asymmetry
components are called material forces/torques.

The tensor notation — presented in Appendix — is
convenient for forces components evaluation in curvilinear
co-ordinate systems e.g. cylindrical and spherical. The
total force density can be also presented with the help of
Maxwell stress tensor in vector notation as follows

div(—edy) = efry + eNy + eM,, (8)
where
Gy = — BH, + iyey, (9)
JLu = JjvBuw — juwBu, (10)
= Tt 5 e BBt 5 5 BB
LOvy o (11)
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For Cartesian co-ordinate system e = 1, u = x (Section 3);
for cylindrical e = 7, u = « (Section 4) and spherical
system e = r?sind, u = ¢ (Section 5), subsequently.
So, the virtue of tensor notation is evident: it leads to
the vector notation easily. Moreover, the tensor notation
can be easily implemented in any programming language.
The components of tensors —- presented in matrix form
—- are very convenient in use for any loop algorithms,
especially.

Vyu)B Vyw ) By . (12)

3. Linear electromechanical converter
(1 — dimensional field)

The simplest linear electromechanical converter [11] for
analytical analysis of electromagnetic field and force cal-
culation is presented. For describing Lorentz Fj and
anisotropy forces Fr. the main Eq. (5) will be applied.
The model of the electromechanical converter consid-
ered is an induction linear motor with conducting and
anisotropic carriage (Fig. 1). The model can represent
linear motor used in traction. The motor carriage is
smooth and magnetically homogeneous. The conducting
rotor carriage has the width a, and the air-gap width is
g = const.

Z
X :
y carriage
y=0 move direction
y=a | Vo Ve Yo oo e
y=atg|©_ O 0.0 © © |
vy raile

Fig. 1. Model of linear induction motor

For the linear induction motor the analytical solution
for the electromagnetic field distribution and forces can
be found. The correctness of the analytical analysis gives
the possibility to demand for the highest accuracy of
force values. Additionally, the solutions obtained for forces
decomposition confirm the form of Eq. (5) mathematically
proved (in Appendix) . The total force decomposition for
components called is satisfied as shown in this paragraph.

The electromagnetic field calculation will be provided
under the following assumptions
a) electric displacement current vanishes due to the small

field frequency [11],

b) Maxwell’s stress tensor part connected with the elec-
tric field can be omitted due to considered range of
the frequency D, F, < H,B,,

¢) rail windings induce the sinusoidal mmf (magnetomo-
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tive force [10], [12])
Os(x) = O4 cos(ky — 2w ft),

where O, stands for magnitude of mmf, y is the
position on the infinitely long carriage towards move
direction, k propagation constant, f means stator
supply frequency,

d) reluctivities for motor carriage, are as follows

[ Vs yzy]
Vyw Vy |’
e) conductivity of motor carriage is v (isotropic parame-
ter).
The assumed symmetry of linear motor leads to the
one-dimensional analysis. Field change in perpendicular
direction to the move direction is neglected. The magnetic

flux density of vertical component of magnetic potential
A, can be presented as follows

B_7 oA, 7 0A.

T oy Y ox

The magnetic field strength components for the anisotro-
pic region can be shown in the form of

(13)

(14)

H, = v, By + vgyBy, Hy = vy By + vy By. (15)
The Maxwell equation
curl(H) = =~E = —vA (16)

and Eqs. (14)—(16) lead to the main equation in the form
of
0%A 0%A 0%A .
Vyﬁ - (Va:y + Vya:)wa; + VzWQZ = 7Az
The time-partial derivative of A, as a multiplication of
the operand iw and the complex magnetic potential A at
the steady state could be represented as follows

(17)

A — iwA, (18)
where w means carriage currents pulsation.
Equation (17) leads to either generalized Helmholtz

differential equation for conducting carriage

9%A 0%A 0?A
Vyg (Vay + Vyx)m yza—yQ =iwyA, (19)
or the Laplace differential equation for the air-gap region
0?A  9%A
— +—— =0. 20
Ox? 0y? (20)

Equations (19) and (20) will be solved by the separation
of the variables in the form

A=X(2)Y(y) = XY.

At the steady-state function Y (y) for monoharmonic
stator mmf has the given below form

Y (y) = exp(—iky).

Rearranging the Eq. (19) with due to separation scheme
for X (z) and Y (y) leads to differential equation for the

(21)

(22)
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layer
NED¢ - z dX k2
gl T 0 (B g2 — g, (23)
dx? vy dx vy
and for the air-gap Eq. (20) takes the form given below:
d’°X
—— —k’X =0. 24
dx? (24)

The solutions of the Egs. (23) and (24) are given in
Table 1. The four unknown constants a,, bs, as, bs can
be evaluated by formulating the boundary conditions and
there are grouped in Table 2.

The evaluation of magnetic field potential distribution
is followed by the electromagnetic torque components
analytical calculations. The Maxwell stress tensor leads
to the total electromagnetic torque by means of the
well-known formula

F= z/ofBaBTdS. (25)
ov

The electromagnetic torque component forced by machine

rotor currents can be evaluated by the Lorentz’s force
density as follows

Fr = f j.B.dV. (26)
1%

The equation shows the total torque decomposition, which
can be written in the shortened form of

F:FL+FF€, (27)

where Fr. denotes the so-called material torque. This
component is calculated with the help of the Eq. (12) as
follows (u = x)

Fo = f M,dV. (28)
A%

All torques are calculated for chosen linear motor. The
accuracy of the calculation provided with Mathcad™
equals to 1071 (data shown in Fig. 2 are for SI Unit
System).

Table 1
Solution of the differential equations

Region
(index a)

anisotropic carriage — Eq. (23)

air-gap — Eq. (24)
(index 6)

Solutions X ()

X(x) = ag exp(A1x) + ba exp(Aax)

X(z) = ag exp(kx) + bs exp(—kx)

constants aa, ba

as, bs

Table 2
The boundary conditions for magnetic field

Boundary condition Field excited by stator currents

Constants for solutions

Rail mmfy =a+g VoB(;y=76§/S
Carriage surface y = a Bsy = Bag

VOB(;y = vyBay + vya Bax

Inner layer surface y = 0 vyBy +vyz Bz =0

ag = @suo_l{Ue)‘l(aJrg) - We)‘Q(aJrg)}71

. —+ v
ay — kY T YT
2vy
Vx yw
ag = /K222 + nw
vy vy

— /a2 2
)\1,2 =—a; £ ay + aj

ba = —aaS, a5 = (la[]7 b5 = aaW
where
_ I/y)\l + lk'l/y;c
vyAg + tkvyz

(Ale/\la - S)\tha) + —“jf (e)‘la - Se/\Qa)

Yy
kl/o
Ara Sekga

(P +Q)e ke
(Q— P)e™

N = @

p
Q
U

w
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Linear induction machine — anisotropic carriage (SI unit system)

I/SCZ:%O l/y::f—(; vey :=0.5-vy+0.0-vy vyr :=0.0-vy —0.0-vy -1
v i=T7-10°
. 2.
aen TV g ao::wgz&w kem 070
2-vy vy vy

g:=0.005 [:=10 a:=0.1 0s:=2000 Al :=—al—+al2+a02 X2:=—al+ Val2+ a0?
FORCE COMPONENTS

vo:=4"1.771.107

Maxwell method z:=a+03-g
F=1.234

F:=1-Re(Hyd(z) - Bxd(zx))

Forces ratio

F Fe:=1-k-Im f(l/yx —vzy) - (Bza(z) - Bya(z))dx

Lorentz and material force
FL:=Im(s)-v-k-1-C FL=1244

a

0

FL F Fe
—=~ = 1.008

F F

= —0.008

F_L+F Fe

=1.
Ia 000

Fig. 2. Torque calculations for anisotropic rotor

4. Cylindrical electromechanical converter
(2 — dimensional field)

For describing Lorentz T.; and anisotropy T.p. torques
the proved method for induction motor with solid rotor
will be applied [12-15]. Let us consider the model of the
induction motor with conducting and anisotropic rotor
presented in Fig. 3. The model can represent the 2-phase
ferrite induction machine widely used in the industry.
The motor rotor is magnetically homogeneous, so the
tangential component of non-homogeneous component
vanishes N, = 0. The magnetic rotor does not exhibit
hysteresis phenomenon. The machine rotor is cylindrical.
Its outer radius is R. The conducting rotor layer has the
width a, and the air-gap width is ¢ = const.

the air-gap

conducting and
anisotropic layer

solid rotor

rotor shaft

Fig. 3. Model of induction motor with solid rotor

For the simplified model of the induction motor the
analytical solution for the electromagnetic field distri-
bution can be found. The correctness of the provided
analysis gives the possibility to demand for the accuracy
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Mathcad ™™ program

almost of 100% for torque components values. The nu-
merical analysis does not ensure such the level of torque
calculations. The electromagnetic torque decomposition
balance is satisfied, too.

stator coils

R+g

rotor shaft

air-gap solid rotor

Fig. 4. Induction motor model the cross-section and dimensions

The electromagnetic field calculation will be provided

under the following assumptions

a) electric displacement current vanishes,

b) Maxwell’s stress tensor part connected with the elec-
tric field can be omitted due to considered range of
the frequency,

c¢) stator windings induce the sinusoidal 2p-pole mmf
Os(a) = O; cos(pa — 2w ft), (29)

where @, stands for the magnitude of mmf, « is the
position angle, f means the stator supply frequency,
d) reluctivities for motor rotor, are given by the reluctiv-

ity matrix generally
I/’l" I/’I"O(
I/Ot’f’ I/Ot
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e) conductivity of machine rotor is v (isotropic parame-
ter).

The assumed symmetry of motor geometry and mmf
source lead to the two-dimensional analysis. The magnetic
flux density in terms of an axial component of magnetic
potential A, (z is symmetry axis of solid rotor) can be
presented as follows
=104, - 0A,
e Ba “or
The magnetic field strength components for the anisotro-
pic region can be shown in the general form of

H,. =v,.B, 4+ VpqBo, Hy = Vor By + Vo Bq,. (31)
Combining the Maxwell equation with the Eqgs. (30)

and (31) one obtains for steady-state the differential
Helmholtz equation for the anisotropic solid rotor

—

(30)

where p is a pair-pole number for stator windings.

Equation (32) with respect to the given above sepa-
ration scheme for the functions R(r) and S(«) gives the
differential equation for the layer

d*R [1—-2cdR [uv.p? 5
dr? r W{VQTQJFB]RO’ (36)
and for the air-gap
r d dR

The solutions of the Egs. (36) and (37) [16] are grouped
in Table 3. The four unknown constants a,, b,, as, bs can
be evaluated by formulating the boundary conditions and
there are grouped in Table 4.

v, 0 O0A Vrg + Vor 02A v, 0%A
——(r—) — — =iwvA, (32
r Or (r or ) T oroa | 2 oaz T (32) Table 3
and Laplace differential equation for the air-gap Solution of the differential equations
10, 0A 1 924 - ) - )
I (p = il =0. 33 Region anisotropic layer — Eq. (36)  air-gap — Eq. (37)
ror (r or )+ r2 Do (33) (index a) (index 6)
The Egs. (32) and (33) will be solved by the separation Solutions  R(2) = aazI,p(2)
of the variables in the following form for R(2), +ba2°K,p(2) , .
A= R(r)S(a) = RS, (31 FTI em ipvar +vra)jae ) T T
at the steady-state when the function S(«) for monohar- pp =/ + p2ur/va
monic s;ator I[nmf taikes the forn; constants . ba ag, by
d°R 1—2c|dR Vrp 9
—_— — - |—= R=0 35
dr? r dr [VQTQ +6 } ’ (35)
Table 4

The boundary conditions for magnetic field

Boundary condition

Field excited by stator currents

Constants for solutions

Stator current mmf r = R+ g = Ry voBgq

Rotor outer surface r = R

Inner layer surface r = R — a = Ra

Bg, = Bar, voBgs,, = VaBaa + varBar

vaBa +varBr =0

aq = Osvg {URE —WR; P} !

__1 90,
Rs ba ba = —aaS,a5 = aaU,bs = aaW
where
I 5(BRa) T
— _pB —
S - KII)B (ﬁRa) 7ﬁ \/lW’Y/VOz

P =2 (1 (1) — K (5R))
Q=1,p(BR) — SK,B(BR)
U=05 (PHff”+1 + QR*P)

W =05 (—PR”'H + QR”)

After evaluating the magnetic field potential distri-
bution both the magnetic flux density components and
the electromagnetic torque components can be evaluated,
analytically. The Maxwell stress tensor leads to the to-
tal electromagnetic torque by means of the well-known
formula

T, = vor f B.B,dS. (38)
oV

The electromagnetic torque component forced by machine
rotor currents can be evaluated by Lorentz’s force density

Bull. Pol. Ac.: Tech. 52(3) 2004

as follows

T, = f rj. B,dV. (39)
v

There is a question: whether the both torques are equal
for electromechanical converter which rotor exhibits the
magnetic anisotropy features? According to Eq. (5) —
after applying the Gaussian theorem [17] — for a cylin-
drical surface 9V which is situated in the air-gap it is
satisfied

Te = TeL + TeFe- (40)
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The equation shows the total torque decomposition (non-
homogeneous component vanishes), where T.p. denotes
the so-called material torque. The material torque can
be physically interpreted as a part of total torque that
can be exerted only if either directional nonhomogenity

or forced magnetic anisotropy appears. The electromag-
netic torques at the steady state are calculated exemplary
electromechanical converter. The considered cases of the
anisotropy are grouped in Table 5.

Table 5
Rotor magnetic anisotropy cases and results of calculations for the induction motor

1=03,R=0.1,a=0.07 05 =500, p=2,~="7-10°, g = 0.001, s = 27 - 3.0i

The case The reluctivities The current torque ratio The material torque ratio The total torque value
vo=(4r10~" H/m)~! Te,p/Te [%] T, pe/Te [%] Te [Nm]
a) vr = va = 0.04vo 100,0 0,0 4,29
vra = Var =0
b) va = 0.04v0 vr = 0.05v0 100,0 0,0 3,46
vra = Var =0
c) vr = va = 0.04vo 100,0 0,0 4,34
Vra = Var = 0.1vp
d) va = 0.04vo vr = 0.0500 100,0 0,0 3,50
vra = Var = 0.1vp
e) va = 0.04vo v = 0.0500 91,4 8,6 3,83
Vra = 0.101/7-
var = 0.15vp
f) va = 0.04vo vr = 0.05v0 100,0 0,0 4,01
VUro = 7010“/7
Var = +010’Ll/7
g) va = 0.04vo vr = 0.05v0 91,3 8,7 4,44

Vra = {010 — 2010}117

Induction motor with solid anisotropic rotor
o o 5 5 0.1 0.2
vri= — o= — vrd :=vo vad = vo vrea = 0.1 va var := 0.2 va
30 35
pom PATRVIO g mis pBe= 2 L psemp ] m g
2-va vo vad
g :=0.0015 1:=0.35 R:=0.1 a:=0.07 fs := 800 v:i=9-10°
c=—0.3i pB = 2.139 B=+/(s-v+s2-¢e) val B:=+/s v-val
Torque components r:=R+04g
Maxwell method Lorentz and material torques
Te:=7r?-m-1-Re(Had(r) - Bro(r)) Te=12.612
R
TeL:=p-m-1-Im(s)-~v- f (|Aa(r))? - rdr Tel =12.451
Ra
R
TeFe:=p-7m-1-Im f (var — 7ra) - (Bra(r) - Baa(r)) - rdr TeFe =0.161
Ra
Torques ratios
TeL TeF TelL +TeF
—E2 _ 0.98723 e 0.01277 Tl 100000
Te Te Te

Fig. 5. Torque calculations for anisotropic rotor — Mathcad TM program
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From the analyses carried out and grouped in Table 5
it is apparent, that the material torque component can
appear for induction motor with round, homogeneous and
non-hysteresis rotor if the matrix of magnetic reluctivities
is not Hermitan conjugate.

For the electromechanical converter the electromag-
netic torque components have been evaluated — Fig. 5. It
is significant that for induced anisotropy (the cases e) and
g)) appears the material torque T pe. For Hermitian con-
jugate reluctivity matrix — case f) (or for symmetrical
matrix particularly) the material torque vanishes.

Hence, there is possible to express the total torque T
(calculated by Maxwell stress surface integral) caused by
Lorentz force in the form of surface integral for Hermitian
conjugate reluctivity matriz (e.g. symmetrical matriz).

For the analysis of influence of normal magnetic
anisotropy (ftro = far = 0) on the torque-slip curve
shape there are considered three cases of rotor magnetic
anisotropy

with radial-dominate magnetic reluctivity — T'r and
M > fhas

with angular-dominate magnetic reluctivity — T« and
Ha > s
compared with the case of isotropic rotor — T0.

For the three specified above cases (at the condition
U+ fio = const = 30 - po, ¥ = 7-10° S/m, R = 0.05 m,
a=0.03m, g=0.001m &=500A,p=1,1=0.3m,
f1 = 50 Hz) the electromagnetic steady-state torque-slip
curve (s = (f1 —np)/ f1) have been obtained with the help
of the presented magnetic field distribution — Fig. 6.

Fig. 6. Torque-slip curves for different anisotropy: Tr for ur > po
solid line, T for pr = po dot line (isotropic rotor), Ta pr >
o — dash-dot line (for all cases ur + pa = const, pra = par = 0)

The analyses carried for cylindrically shaped elec-
tromechanical converter have brought out to the issues,
such as

— For the electromechanical converter with round
rotor, which does not exhibit both the nonhomogenity of
magnetic reluctivity and the hysteresis phenomenon only
the anisotropy of the magnetic reluctivity may cause the
material torque. Indeed, the material torque appears for
the cylindrical-shaped electromechanical converter in the

Bull. Pol. Ac.: Tech. 52(3) 2004

case
Vra 7& Var

— For the electrical machine rotor with radial-
dominate magnetic reluctivity the electromagnetic torque
is the greatest one for stable (‘arising’) part of torque-slip
curve.

— The obtained results enable one to state that
the electromagnetic torque of electromechanical converter
can be represented by the surface integral for both the
isotropic and the normal magnetic anisotropy of rotor.

5. Spherical electromechanical converter
(3 — dimensional field)

For the electromechanical converter with spherical rotor
— Fig. 7 (e.g. spherical motor [18-22]) the electromag-
netic field could be determined with the help of separation
of variable method. The book [20] presents the main solu-
tions for spherical converter by means of circuit analysis.
The further works present the field analysis of the prob-
lem in theoretical form [18, 19] or numerical [21, 22].

Fig. 7. Spherically shaped electromechanical converter-view

The non-standard separation proposed leads to the
analytical solution for the spherical symmetry problem
for anisotropic region. The solution obtained can be
applied for analysis of electromechanical converters with
spherically shaped moving part. The magnetic flux density
for spherical co-ordinate can be presented in the form

B=

I, 04y 0Agsing) 1, fordy 0A,
rsinfg | dy 06 r or 00

1 0 . 0A,
: {ETA@ sin  — a0 } (41)

For simple case A= /Yg = AgTy = Aly (is motivated
physically by the construction of the spherical motor —
Figs. 7 and 8) it is satisfied

—

G L [0A) T, [ord
~ rsind | Oy r or |-

(42)



D
anisotropic
rotor
-
@ lp
>\
|
/"““
stator mmf

Fig. 8. Spherical co-ordinate system

The Maxwell’s Eq. (16) and constitutive relation for
field (42) in the form of

H, Upr By + 1By,
Hy | = | VorBr + Voo By (43)
Hy

lead for -component to the relation given below

lﬁfr Veor % _ V(,;(p 87'149
ror \rsind | Oy r or

1 9 Vrr Ay Upy [ OrAg .
7rSin9 6@ (rsin@{ 890 } r { 67,. }> = 6. (44)

The standard separation method in the well-known form
of

A=Ay=R(r)OO)P(p) =R-6O -, (45)
does not lead to the easily solvable equation, but the
proposed below non-standard separation

A=Ag=R(r)F(p,0) =R F, (46)
results in an easy separable equation
Yoy 0*rR Vpr  O*F
rR 0Or? r2F sin? 6 0p?
Vor OR vy OPR 1 oF |
— — —— | =————= . 4
(TR or  r2R Or ) Fsing dy iy (47)

For the separated function F(y,0) it is assumed the
separation with the constant p? in the form of

1 0°F 9
Fsin20 002 P (48)

with the analytical solution

. Spalek

The solution (exemplary for constant B = 0 due to
technical aspects) leads to equation
9*rR . Veor OR vy OTR
— -t
or? r Oor r2 QOr

2
p V’r'f‘ .
= ( = + zwv) R, (50)

that confirms the proposed non-standard separation (46)
is successful (the solution for A = 0 and B # 0 is obtained
by substituting p — —p).

The equation obtained has the analytical solution for
anisotropic region as follows [16]

R(r) = (8r)"~ (Cul5(Br) + CaKs(Br)),  (51)
where it was denoted
3% = M, (52)
Vo
Vpyp + 1
h = ip—=—*~ 53
’ v, (53)
5 ,
5:#(,1_%)”%, (54)
Ve
For the air-gap (y = 0) it is satisfied
0*rR R
_ N —
5,2 (k+ 1)k . 0 (55)
(k+ 1)k = p? (56)
with the solution given below
R = R(r) = ar"™ + br"2. (57)

The analytical solution for the spherical motor can
be presented in terms of separated function R(r) and
F(¢,0) obtained with the help of separation proposed.
The exemplary spherical induction motor with anisotropic
and spherical rotor is considered and shown in Figs. 7
and 8. For the monoharmonic magnetomotive force of
stator the magnetic field distribution and electromagnetic
torque are calculated. The data for analysis are presented
in Fig. 9 (radii notation is adequate to Fig. 4).

The accuracy for both partial differential solutions
are checked and presented in Fig. 10 for conducting and
nonconducting region for separated ordinary differential

F = Aexp(ippsin ) + Bexp(—ippsinf). (49) equations. The solutions for ordinary differential equation
Spherical induction motor with anisotropic rotor (SI units)
Vo Vo Vo Vo
vr = T Ve = 20 vrd = T Voo = T vrg = 0.3 v vor := 0.3 v p:=1
A2 := )1
h::z%~ i)\l::\/(0.57h)2+(1/7"~p2+z~p~i~z/r¢)~1/¢)*1)\::)\1 s=2-m-1-10
g := 0.0002 R :=0.045 a:=0.03 fs := 5000 v :=10-10° A =1.22202

Fig. 9. The data set for the exemplary spherical motor
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Z( ) and D( ) denote solution for vector magnetic poten- ordinary differential Eq. (55) for the air-gap region, re-
tial separated function R( ) for conducting region (v # 0) spectively. The accuracy for both ordinary differential
and air-gap (v = 0), respectively. In Fig. 10 LZ (RZ) equations are checked and presented in Fig. 10, for ex-
means value of left-hand (right-hand) side of ordinary emplary data. For exact solutions it should be satisfied

differential Eq. (50) for conducting region. In Figure 10 LZ/RZ =1, and LD/RD =1 as it is shown in Fig. 10.

LD (RD) means value of left-hand (right-hand) sides of

r:=Ra+0.5-a Accuracy for partial differential equations
0? 2(l—h) 0 vr-p> +(z-p-i-vre) Lz
LZ = |—Z(3- —(Z(3 - RZ .= |B? - Z(B - — = 1.00000
|:(97"2 (B-r)+ r Tar( & 7“))] |:ﬁ + v - 12 (8-7) RZ
a (0 2 0 vrd LD
LD:=|—|=D --—D RD :=\/p?r?. — - D —— = 1.00000
[87" (87" (T)) * r or (T)} P 0% (r) RD
Fig. 10. Accuracy for partial differential equations solutions
r.=R+05-g Electromagnetic torque — total value
Maxwell’s method 10 :=0.5- (6 — 6o)(cos(8) — cos(bo))
Lorentz and material torques
R
Te:=1r® 710 -Re(H¢d(r) - Bré(r)) Cr:= f(|Aa(r)|)2 r2dr
Ra
Te = 0.020 TeCui=—z-p-m-~-10-Tm(s) - Cr | TeCu =0.020 |
R
TeFe:=p-7m-10-Im f(l/(,br —vrg) - (Bra(r) - Boa(r)) - r’dr
Ra
Torques ratios
T TeF T TeF
Cu_ 1000 e~ 0.000 TeCurTele 1 50000
Te Te Te

Fig. 11. Electromagnetic torque calculation for spherical motor

Power balance — Poynting vector, power losses, magnetic energy

R
vr
Bri= ke [(12(8-7) - pl)dr 0if (vré=0) - (vér = 0)
Ra L R
5 R Ca:= —05-k-z-p-i- fZ(ﬂ~r)~de(ﬂ~r)dr otherwise
E¢ = 7-k-f(|daiZ(ﬁ-r)|)2dr fa
Ra
Er¢ :=uvrg-Ca E¢r :=ver-Ca
Eu:=Er +E¢+ Eré+ E¢r Ee:=05-¢-k-(]s])?-Cr0 Pq:=(|]s|)?-v-k-Cro0
Eu:=0.01 Ee:=0 Pq:=1.238
Sc:=v@ds-k-R-D(R)-deD(R) Q:=2-Im(s-Eu+53- Ee Pe:=2-Re(s- Eu+3- Ee)
Sc=1.23841.309¢ Q = 1.309 Pe=0
Pg+ Pe+Q-i
Ero 1 Eor e = — 100000
———F =0.078 — = 0.000 ¢
Er+ E¢ FEu

Fig. 12. Electromagnetic field energy balance — calculation
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For the evaluated magnetic filed distribution and elec-
tromagnetic torque has been calculated as shown in
Fig. 11. There are presented the electromagnetic torques
two components: Lorentz T,y and material T, p. that to-
gether constitute the total electromagnetic torque T,. The
torque decomposition is presented for checking analysis
correctness, too. It should be pointed out that for either
isotropic or normally anisotropic (v,r = vy,) rotor the
anisotropy torque component disappears (in the case of
Hermite conjugate reluctivity matrix, generally). The con-
dition for this statement is the same as for cylindrically
shaped rotor (Section 2).

Moreover, it was controlled accuracy of electromag-
netic field solutions by means of the energy-power balance.
The Poynting vector [1-5] is used for evaluating the mag-
netic energy and power losses in rotor. In order to check
the accuracy of electromagnetic field solutions the energy-
power balance has been checked. The Poynting vector is
used for evaluating the magnetic energy and power losses
in rotor. For checking the correctness of the obtained elec-
tromagnetic field distribution the power balance has been
checked with the help of MathCad™ program. The com-
plex power is calculated with the help of Poynting vector
as follows

S, = —iwv, f BsA.dS. (58)
S

The fulfilment of electromagnetic field power balance
ensures us that the analytical solutions are correct. More-
over, the power analysis leads to the power losses value
in solid rotor

P, = nyde. (59)
\%4

The exemplary calculations are shown in Fig. 12.

For technical purposes the analysis of influence of
normal magnetic anisotropy (prp, = ftor = 0) on the
torque-slip curve is carried out for two cases of rotor
magnetic anisotropy

with radial-dominate magnetic reluctivity — Tr and
Pr > P,

with angular-dominate magnetic reluctivity — T'¢ and
Mo > o,
in comparison with the case of isotropic rotor — 7.

For the three specified above cases (at condition
pr + pip = const = 30 - pio, ¥ = 7-10% S/m, R = 0.05 m,
a =003 m, g=0002m =100 A, p=1— for
radii notation see Fig. 4) the electromagnetic steady-state
torque-slip curve have been obtained with the help of
the presented magnetic field distribution — Fig. 13. The
torque-slip curves show that electromechanical converter
with radial-dominate magnetic reluctivity develops elec-
tromagnetic torque at stable part of torque-slip curve
greater than for other anisotropy and isotropic rotor.
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Fig. 13. Torque-slip curves for different anisotropy: T'r for pur > pe
solid line, T for pr = py dot line (isotropic rotor), T'¢ for
pr > pip — dash-dot line (for all cases pr + g = const,
Hro = ppr = 0) for spherical motor

6. Conclusions

The proposed method for electromagnetic torque/force

calculation described in analytical way enables us to

calculate its total and component values. The torque/force

components indicate the physical reason for theirs
induction i.e Lorentz force and

material force component (nonhomogeneous and ani-
sotropy components).

The mathematical proof for the main equation for
force density has been provided with the help of tensor
notation in Appendix. The tensor notation is convenient
due to its mathematical form not only for curvilinear
co-ordinate system but also for numerical algorithms.

For the chosen electromechanical converters linear,
cylindrical and spherically shaped electromagnetic field
and force/torque have been calculated. The accuracy of
the calculation carried out has been checked by total
force / torque decomposition correctness, too.

The solutions obtained lead to the conclusions that the
radial-dominate anisotropy increases the electromagnetic
torque value at steady-state of work.

For spherically shaped electromechanical converter
the non-standard separation is proposed that leads to
the analytical solutions. The mathematical form of non-
standard separation is given by Eq. (46).

It is pointed out, that the Lorentz force can be
presented by means of surface integral for homogeneous
regions if its reluctivity matrix is either isotropic or
anisotropic Hermite-conjugate.

Appendix

The energy tensor, which includes the stress tensor, can
be defined as follows

S} = —GMFy + 167G Fyp. (57)
The excitation tensor G** has the following form

Gik _ VOFik + Wik,
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where

0 —cP, —cPy, —cP,

ik ) cPy 0 +1, -1

W= cPy, —I, 0 +I, ([’

cP, 41, -1, 0
0 —-cD, —cD, —cD,
Gik o CDg; 0 _Hz +Hy
cDy +H, 0 —H,

cD, -H, +H, 0

The tensor density of the energy tensor can be defined as
follows

8F = ~GMFy + 167G Fum, (58)
The first pair of the Maxwell’s equations for the
curvilinear co-ordinate system can be written in the form

Fipo 4 Fryi + Fiip = 0. (59)

The second pair of the Maxwell’s equations where the
tensor density of the excitation tensor appears has the
form

aGik
ok . 4
Due to the skew-symmetry of tensors F** and G** one

gets

ik st
= —j"

b= (60)

FikylGik + 2K, + Q(Fleik)yi =0.

K, = Fij', Ki=+l|g|Ki.
The excitation tensor and the electromagnetic field tensor
are connected by material parameters as follows

ik _ ik ik
G" = )\;quq + AG"™,
where the material coefficients constitute the tensor
ik _ ik
Ava = VI pg-
The material relation (63) took the form known for

AG¥ =0 and for symmetrical material coefficients.
Consecutive, it can be written

(FikG™) 1 = FiG' + Fyp G™, (62)
hence, according to the Eqs. (61) and (62), there are
satisfied the following relations:

(FiG™) 1 = NP9 Fp Fig 1 + N9 Fpg Fig + Fip Ay [ FP
+ [FikAGflk + Fi  AGH).

where

(61)

The material tensor AP?* in terms of the symmetrical

and the asymmetrical parts can be represented as follows:

. . . . . pqik  pqik
APaik — L(ypaik  \ikpay o Lpaik _ yikpay — TAT QTN
s a

Hence
(FirG™*) = 2G* Fy ) — 4M,; — 4Q; — 4N,

where there were defined

Qi = —3[FixAGT — Fi ]AG™], (63)
ikpq i

M, = *% A FpgFigy = %)‘gfz FP Eig, (64)

Ny =~ R ©
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The tensor force density satisfies the following relations:
L(FxG™) 1 4+ 2N, +2Q; + 2M,; + 2K, + 2(F G™*) ; = 0,
thus finally with the help of Kronecker’s delta symbol:

K, = —{-G"F, + 16/ G F,q} , — N, — Q — M.
The divergence of the energy tensor is equal to

(SF)x =Ki+Ni+Q; + M, (66)

The non-vector notation for the tensor density of gener-
alised force volume density enables one to exchange the

volume integral into the surface one with the help of
Gauss’s theorem.
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