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One-dimensional elongation of a cubic crystal
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Abstract. Large elongation in one definite direction of a crystal of cubic symmetry is considered. The equations of second order elasticity
theory are applied. In this approximation three constants of the second order and six constants of the third order characterize the crystal. The
stress is a function of the elongation direction. The elongation directions for which the stress reaches an extreme value have been analyzed.
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1. Second order elasticity

Crystals are of special interest in a fundamental research.
Plates or bars cut out from a crystal are frequently used in
physical equipment. Taking into account the symmetries
(called point groups) the crystals may be divided into
32 classes. All crystals belonging to one class have the
same macroscopic symmetry. Cubic crystals posses the
highest crystallographic symmetry. In the linear case
their mechanical behaviour is described by three elastic
constants. Triclinic crystals belong to the class of the
lowest symmetry. In the linear case triclinic crystals are
described by twenty-one elastic constants.

Clusters of chaotically oriented single crystals are
globally isotropic. Isotropic material posseses the highest
mathematically possible symmetry. Mechanical properties
of linear isotropic material are described by only two
elastic constants. Most of the experience in engineering
is connected with isotropic materials. It must be stressed
that mechanically isotropic crystals do not exist.

External load applied to a crystal results in its defor-
mation. Since the crystal is not isotropic the deformation
of a crystal essentially differs from that of isotropic ma-
terial. In the presented paper the analysis of the forces,
necessary to produce a defined in advance elongation is
given. We confine to one symmetry only, namely to the
cubic symmetry. Typical material of this symmetry is the
crystal of copper or silver. Obviously linear material is
of special interest. However in the nonlinearity some ad-
ditional, very important phenomena are present. Trying
to avoid complex, non-transparent considerations we do
not consider general elasticity, but confine to the second-
order theory. The second order theory of elasticity was
presented in the monograph of Green and Adkins [1]. All
equations of the first chapter of the presented paper are
based on this monography. Introduce the Cartesian coor-
dinates x;. The material point of the body is identified
by its position x; in the stress-free initial state. In the
course of time the point z; moves to a new position.
The values of the displacement vector u; are functions of
the Cartesian coordinates x; and time t, u; = w;(x;,t).
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In the presented paper we compare the initial and final
states and time ¢ serves only as parameter. Therefore for
simplicity we shall write w; = w;(z;). Partial derivative
of u;(x;) with respect to z; is the displacement gradi-
ent u; ;. The strain tensor €;; may be expressed by the
displacement gradient

(1)

Summation convention is accepted in the whole presented
paper. Due to the presence of the product w,;u,; the
deformation tensor €;; always is a nonlinear function of
the displacement gradient. The linear measure of strain
which disregards the nonlinear term may be used only
in the linear theory, where the stress is a linear function
of strain. The relation (1) is purely geometrical. No
material properties are involved. The elastic energy @
(strain energy) is a nonlinear function of strain &;;.

In second order elasticity the expression for the elastic
energy @ (per unit volume in the stress-free state) takes
into account the squares, but neglects the cubes and
higher powers of strain tensor e;;. The elastic energy @
reads

1
gij = 5 (i +uji + ur ).

(2)
The elastic energy is a polynomial of the third grade of
strain, but polynomial of the sixth grade of the displace-
ment gradient. The coefficients 1/2 and 1/6 present in
Eq. (2) are commonly accepted in the literature [2].

The fourth rank tensor cjjpq is the tensor of sec-
ond order elastic constants and cjjpqrs is the tensor
of third order elastic constants. In some older papers
those tensors are called first and second order elastic
constants, respectively. Since the expression (2) is homo-
geneous in e;; it may be assumed that cijpq = Cpgij
and Cijpgrs = Cpqijrs = Cijrspq- SiNCE €;; is symmet-
ric without loosing the generality it may be assumed
that the constants satisfy the relations c¢;jpq = cjipg and
Cijpgrs = Cjipgrs- Lhe elastic constants of the second or-
der and of the third order may therefore be assumed to
possess the following symmetries

P = §Ciqu8ij5pq + gciqursgijgpqETS'

Cijpq = Cpqij = Cjipq, (3)

(4)

Cijpgrs = Cpqijrs = Cijrspq = Cjipqrs-
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Symmetry of the crystal results in additional sym-
metries. As mentioned above the second order elastic
constants c¢;jp, for triclinic symmetry may be expressed
by 21 different material constants. In the simplest case of
cubic symmetry there are only 3 non-zero different con-
stants of the second order and 6 material constants of the
third order. The 81 constants cijxm and 729 constants
Cijkmpq May therefore for the cubic crystal be expressed
by only 9 elastic constants. The isotropic material is char-
acterized by 2 constants of second order (Lame constants)
and 3 constants of third order only. There exist several
different methods of measuring the constants of the third
order. A measurement of forces in static deformation is
one of them, but the most frequently used method is
based on measurements of the ultrasonic wave speeds.

Denote by H;; the symmetrized derivative of the
elastic energy @ with respect to the deformation ¢;;

od od
Hy=— + 2 5
J 88@' 8Eji ( )
From (2) and the symmetries (3)—(4) there follows

oo

P = Cijpq€pq T 5 CijparsEpacrs
Eij 2

(6)
and further

(7)

The stress tensor 7;; may be expressed by the function
H;; and the displacement gradient u;_;

Hij = 2¢ijpqEpq + Cijpars€pgErs-

(8)
The stress tensor 7;; is not symmetric. It is in fact the
first Piola-Kirchhoff stress tensor [3]. This tensor may
be expressed by the deformation gradient and material
constants.

Consider elongation in the direction n;. This is a ho-
mogeneous deformation in which material elements paral-
lel to n; increase their length, and the material elements
orthogonal to m; remain unchanged. The displacement
vector u; is parallel to n; and its length is proportional
to the distance n,x, from the plane n,z, = 0. Therefore
the displacement u; reads

21i; = Hij + Hiruyr

(9)
where v is the measure of deformation. On the whole
plane n,x, = const the displacement vector is the same.
The displacement gradient u;; and the strain tensor &;;
may now be calculated from (1) and (9)

1

2
Ugj = UNiNj, €55 = VNN + §V n;n;.

ui(zy) = vnin,a,,

(10)

For each material, linear and nonlinear strain tensor con-
sists of a term proportional to v and a term proportional
to v2. Substitute the above expression into (8) and take
into account the symmetries of ¢;jpq and c;jpgrs to obtain
the following expression for the stress tensor

1
— 2 (2.
Tij = VCijpqNpNg + V (2clqursnpnanns

92

+§cl-qunpnq + nj&'rpq”r”p”q) (11)

The stress tensor 7;; is determined uniquely by the strain
energy @ and the shear. In (11) the terms of the order v
have been neglected.

The stress vector 7; acting on a surface with unit
normal n; equals to the product of the stress tensor 7;;
and the vector n;

(12)
In the presented Section we do not consider the stresses

acting on other surfaces. From the above relations there
follows

tj = TijT-

1
— e ) 2 (= .
lj = VCijpgninpng + v (2 CijpgrsiMpNgMy T

+5 CidpgMintph + njcl-rpqnmrnpnq> (13)

In general this vector is not collinear with n;. Its
squared length equals to t;t; and its projection on n;
equals to t;n;. It follows that the modulus of the compo-
nent s, parallel to n; and the modulus of the component
s¢ orthogonal to n; are given by the relations

Sp =1in;4,
Z AL , (14)
Sy = tjtj — S,
Obviously s, and s; may be calculated within »2, not
v3. In accordance with (13) the formulae of the form
S$n = Usn1 + V*(Sn2 + Sn3), (15)
st = sy +n? (s + $13)
are expected. From (13-14) the expressions for s,1, Spa,
Sp3 follow

Sn1 = CijpgMiTjNpTg,

Sn2 = —ciqunmjnpnm

2 (16)

Sn3 = Eciqursnmjnpnrnqns.

Pass to the calculation of s;. The form (16) must be
valid for each choice of cijpq, Cijpgrs and v. The long
formulae for s;;, s and sy;3 will not be quoted. The
component s; may be computed from (14).

The inclination angle & of the stress to the surface,
i.e. the angle between t; and n; is of a great interest.
Obviously there is

|tJnJ|7 - t_t
N b

Stiffness s equals to the ratio of the component of ¢;
in the direction n; and the measure of deformation v.
The sum s,, cf. (16) is the measure of stiffness.

Since the expressions (17) for s,1, sp2 and s,3 are even
functions of n; the values s,1, s,2 and s,3 are invariant
under the transformation

cosé =

(17)

(n1,n2,n3) = (—n1, —n2, —n3). (18)
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Note that the vector t; as given by (13) is an odd func-
tion of n;. Therefore its length is an even function of n;. It
follows that t;t; and s; are invariant under the transfor-
mation (18). More detailed examination of the expressions
proves that for cubic symmetry the six above values are
additionally invariant under the transformations

(n1,n2,n3) = (n2,n1,n3), (N1, N2, N3)

= (n1,n3,n2), (n1,n2,n3) = (n3,n2,n1).  (19)
The above invariances allow to confine the analysis to the
directions located between the vectors (1,0,0), (1,1,0) and

(1,1,1), cf. Fig. 1.

2. Linear elasticity

Linear elastic properties of a cubic crystal are defined by
three independent elastic constants of second order. In
the abbreviated notation (€1 = 11, €2 = €99, ..., £4 = 2€23,
etc.) they are hi1, hia and hygg, cf. [2]. All 81 components
of the elastic constants of tensor c¢;;,q may be expressed
by the three constants of the hi1, hi2 and hgg, namely

C1111 = C2222 = €3333 = N11,
Cl122 = C1133 = C2233 = C2211 = C3311 = €3322 = N12, (20)
C2323 = C2332 = C3223 = ... = C1212 = C1221 = Ruaa.

All other components
equal to zero.

To gain recognition of the stresses in this Section we
shall analyze the influence of elastic constants on stress
in pure one-dimensional strain. We assume in turn: i)
hll = ].7 h12 = 0, h44 = O7 11) hll = O7 h12 = 1, h44 =0
and iii) hq; = 0, hig = 0, hyy = 1. As an example a
definite material (copper) will be considered later.

Calculate the stresses for the following eight selected
directions

nY =(0,0,1), nf?=(1/2,0,1), n?

n =(1,1/2,1), n{®

of the tensor Cijpg €.8. C1112 are

- (07 17 1)7
=(1,1,1), n'9=(/31/31),

el

L AL
a8 @

a @ B x

Fig. 1. Projection of selected directions on the z3 = 0 surface

In Fig. 1 the front side of a cube of dimension 2 x 2 x 2
is shown. This side is a square of dimension 2 X 2, situ-
ated on the plane x3 = 1. In Fig. 1 there are shown the
[N E)) (8)

;s 1, ...,n, intersect

M 0@ 0 are

the plane 3 = 1. The three vectors n,”’, n; ;
the symmetry directions of the cube. Due to the symme-
try of the problem (cf. Eq. (19)) each extension of the
crystal (defined by vector n;) is equivalent to an exten-
sion situated in the triangle (n1,ns, ns). In particular the
extensions in the directions (1,1,1/2) and (1/2,1,1) are
equivalent to the extension in the direction (1,1/2,1) listed
above. Detailed calculations show, that the spherical an-
gle corresponding to the triangle nl(l), nl(g), nl@ equals to
m/12. This angle is equal to 1/48 of full spherical angle
47, that represents all possible directions of the three di-
mensional space. Note that for an isotropic material all
extension directions are equivalent to only one, arbitrary
chosen direction.

For the eight directions (21) the linear stress is de-
termined by values listed in Table 1. The normal linear
stress t,1 and the linear shear stress t;; are given. The

points, where the eight vectors n

TLE?) =(2/3,1/3,1), n§8) =(2/3,2/3,1). (21) angle ¢ is the inclination of the total stress to the sur-
face. The values 1.571 marked by an asterisk are the limit
values, where the expression for tangens has the form 0/0.
Table 1
Longitudinal and transverse components of linear stress and &
hi1 =1 hig =1 hgq =1
tn1 by € tn1 b1 £ tni b1 ¢
2D 100 0 o 0 0 1571 0 0 1571%
n{® 680 240 339 0.320 0240 644 640 480  .G44
250 0 0 500 0 0 1000 0 0
oY 407 106 252 593 105 475 1185 210 175
WP 333 0 0 667 0 0 1333 0 0
nEG) .686 281 .388 314 281 729 .628 561 729
o™ 500 198 388 500 198 378 1000 397 378
ngg) 391 147 359 609 147 237 1218 294 237
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The actual values of stress t,,1 and t;; may be obtained
by multiplying the values quoted in the Table by the value
of the elastic constant of the material (h11, hi2, or haq)

W 3 6

and the deformation measure v. Note that n; ’, n;
are the symmetry directions of the cube and therefore the
stress is parallel to the elongation direction.

The overall (linear) properties take into account the
actual values of all elastic constants of the second order.
Calculate the stresses for one definite material, namely to
copper. Copper crystallizes in the cubic symmetry of the
type VIIb for which there exist only three different elastic
constants of second order hiy, hio, hay and six different
elastic constants of the third order hii1, hi12, hi123, R144,

hiss, hase, cf. [2, 4]
h11 =169 GrPZ—L7 h12 =122 GPa, h44 =735 GrPZ—L7 (22)

h111 = —1350 GrPZ‘L7
h123 =-120 GPa, h144 = —66 GPa,
h155 = -T20 GPa, h456 = —32 GPa.

The values of the third order will be needed in the
next Section. Taking into account the values (22) we
obtain the following coeflicients

Table 2
The components of linear stress and
inclination angle £ for copper

h112 = —800 GPa,
(23)

tn1 [GPa] t41 [GPa] & [radian]

n 169.00 0 0

n® 20215 2486 122
nt® 220,80 0 0

n™ 23039 10.85 047
n{® 23807 0 0

n{® 20154 2006 143
n{” 22080 2055 093
n® 23200 1521 065

Note that for the directions n§1)7 ng?’) and n§5) the stress

is purely normal to the surface. The real stresses may be
obtained by multiplication of the values in columns t,;
and ty by v. The inclination angles are different from
those quoted in the Table 1.

3. Nonlinear terms

There exist two kinds of the nonlinearity of the stress-
strain relation. First of them is the physical nonlinearity.
It manifests itself in the presence of the elastic constants
of the third order. For the cubic symmetry there exist
six different elastic constants of the third order. In the
abbreviated notation these constants are hii1, hi12, h123,
hi44, h1s5 and hgse. In the tensor notation the non-
zero elastic constants are C111111, C111122, C112233, C112323,
€113131, C233112. Other non-zero components follow from
the tensor symmetries. The elastic constants of second
order contribute to stress proportional to /2.

94

The second kind of nonlinearity is of another ori-
gin. Because in the expression for deformation e;; the
nonlinear product u,;u, ; is present, even in physically
linear material the nonlinear terms occur. This fact is the
source of geometrical nonlinearity. It manifests itself in
the non-zero values of s,3, S¢o.

We start with the geometrical nonlinearity. For h1; =
1, h1o = 1 and hgq = 1 and the eight directions (¥, ga)(K)
selected in the previous Section the values of longitudinal
and transverse forces are given in the Table 3. In order
to obtain stress in any material the values given in the
Table must be multiplied by »? and the value of elastic
constant of the second order for that particular material.
The values 1.571 marked by an asterisk were calculated
as the limiting values.

Table 3
Coefficients t,2, t;2 and & for the geometrical nonlinearity
hyp =1 hog = 1 hag =1

tha  ti2 €& tpa 2 3 tn2 U2 €
Y150 0 0 0 0 1571F 0 0 1571%
n® 1020 120 117 480 120 245 960 240 245

n® 750 0 0 0 0 0 150 0 0
nM 611 052 086 889 052 059 1778 .105 059

n® 50 0 0 1000 0O 0 2000 0 0
n® 1020 140 135 471 140 289 942 281 289
n{™ 750 099 131 750 099 131 1500 198 131
n{® 585 073 125 913 073 080 1.827 .147 080
Note that for the directions n(l), n® and n'® the

i 7 %
second order geometrical nonlinearity stress is purely
normal to the surface.

For copper the coeflicients for geometrical nonlinearity
are given in Table 4. The inclination angles are rather
small, do not exceed 0.05 radians.

Table 4
Geometrical nonlinearity for copper
tno [GPa] 49 [GPa] & [radian]
ntD 253.50 0 0
n{? 30323 1243 041
nt? 331,20 0 0
nt 34559 543 016
n{® 35710 0 0
n{® 30230 1453 048
n{? 33120 1028 031
n® 34814 760 022

Pass to the physical nonlinearity. Tables 5 and 6 give
the longitudinal and transverse stress separately for each
elastic constant of the third order.
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Table 5
Coefficients t,3, ti3 and £ for h111 =1, h11o =1, hioz =1
hi11 =1 hi12 =1 hi23 =1
tn3 tiz & tn3 ti3 3 in3 tt3 3
Y500 00 0 0 0 L571X 0 0 L571%
n® 260 120 432 240 120 464 0 0 1571*
D12 0 0 3 0 0 0 0 1571*
nY 088 029 318 346 017 050 066 047 615
n® 0% 0 0 33 0 0 a0 0
n® 275 128 435 205 102 461 020 026 899
o™ 145 084 524 316 062 195 039 042 813
n® 087 056 572 325 022 066 088 045 374
Table 6
Coefficients t,3, ti3 and € for higqy =1, his5 = 1, hyse = 1
higa =1 hiss =1 hgse =1
tn3 143 £ tn3 143 £ tn3 13 3

o 0 1571 0 0 1571 0 0 1571*
n® o 0 L571% 960 480 464 0 0 1571%
S L571* 1500 0 0 0 0 1571*
nM 305 279 615 1383 070 050 527 372 615
n® 667 0 0 133 0 0 889 0 0
n® 122 153 899 820 408 461 162 204 899
n” 236 250 813 1264 250 195 315 333 813
n® 58 207 374 1299 086 066 703 276 374

The values given in Tables 5 and 6 represent the
physical nonlinearity. In order to obtain stresses for a
definite material the coefficients t,,3, t;3 quoted in Tables 6
and 7 must be multiplied by v? and additionally by the
value of elastic constant of the third order for that
particular material. The values 1.571 marked by asterisk
were calculated as the limiting values. The inclination
angle for physical nonlinearity is much larger than that for
geometrical nonlinearity. For directions where stresses are
small it reaches 90°"¢. Obviously again for the directions
nl(l)’ nfB)
surface.

and nl@ the stress is purely normal to the

Table 7

Physical nonlinearity for copper

tns [GPa] 43 [GPa] & [radian]
n —675.00 0 0
n{® 123420 27960 223
n® _1sas7s 0 0
nM 114237 67.59 047
n® 13741 0 0
n{® 114118 222.03 193
n{™ 138844 14099 101
n® 138108 3033 0.022
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Note that for extension the longitudinal stresses t,3 are
negative in contrast to the longitudinal stresses t,2 quoted
in the Table 4, that are positive.

Finally consider jointly both physical and geometrical
nonlinearities for copper. Table 8 gives the corresponding
values, again for the eight directions selected above.

Table 8
Geometrical and physical nonlinearity for copper
tno +tns [GPa] t10 + ty3 [GPa] ¢ [radian]
R 42150 0 0
n® 930,97 267.17 279
o3 121755 0 0
nM —1096.79 73.02 066
n{® 1030.34 0 0
a8 _s3s87 208.39 243
n{™ —1057.24 13418 126
n® 1032.95 22.73 022

)

7

For elongation in the symmetry directions n ngg)

and nl@ shear stress tio+1:3 and angle & are equal to zero.
The geometrical and physical nonlinearities neutralize to
some extent each other. Therefore the actual inclination
angles for copper are in general smaller than those quoted

separately in the Tables 4 and 7.
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4. Extreme values

In the present Section the extreme values will be analyzed.
The shearing planes and shearing directions for which one
of coefficients s,1, Sn2, St3, ... reaches its extremum will
be found. Their sums e.g. sp2 + Sp3, will be considered,
too. The three components of the vector n; are the
independent variables. Three constraints expressing the
fact, that n;1 is a unit vector must be taken into account.
In order to avoid these constraints in the computations
introduce two new, real parameters (J,¢). Write the
components of the vector n; in the form

ny = sin 4 cos @, (24)
ng = sin ¥ sin ¢, (25)
ng = cosv. (26)

Since n; is the unit vector two parameters (9, ¢) define
it uniquely. They may be interpreted as two angles. The
angle 9 defines the inclination of the unit vector n; to
the z3 axis. The angle ¢ defines the inclination of its
projection on the x1x2 plane to the x; axis. Note that the
reflections of n; in the coordinate planes are described by
the following changes of the angles ¥ and ¢

(n1,n2,n3) = (—n1,n2,n3) if (J,¢) = (I, 7 — ¢),
(n17n27n3) = (n17 _n27n3) if (197<)0) = (197 _@)7
(n17n27n3) = (77/1777/27 —’I’Lg) if (197(00) = (1977( - QD)

(27)

Substitution of (24)-(26) into the expression for t;
given in (16) leads to a sum of 81 products of trigonomet-
ric functions of ¥ and ¢. Some terms due to symmetry of
the problem are equal to zero. The same number of prod-
ucts appears in the expressions for ¢t and ¢3 given in (17)
and (18). Purely analytical approach to the extreme val-
ues leads to simple, but long trigonometric equations. In
practice only the numerical approach is effective.

In cubic crystals all three principal directions are
equivalent. Therefore the properties for some deforma-
tions are exactly the same, as the properties for other de-
formations. It is easy to check that the following changes
of the deformation direction

(n1,n2,n3) = (n2,n1,n3),
(n1,n2,n3) = (n1,n3,n2),

(n1,n2,n3) = (n3,n2,n1)

do not change the properties of the crystal, i.e. the
values of t;. The above discussed symmetry properties
of functions ¢; allow us to confine all calculations to
directions defined by the vector n; possessing non-negative
components ni, ng and ns. The values for other vectors
n; follow from the symmetries of the considered problem.

Start with the values of sg1, Sp1, Sp1. They express
the linear part of the stress-deformation function for pure
shear.
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Table 9
Extreme values of s,1, s¢1 and £ for Cu
Value (¥, ¢) (n1,n9,n3)
tp1 max 2381 (.9541,7854) (.577,.577.577)
m/m 2208  (.7854,0) (.707,0,.707)
min  169.0 (0,¢) (0,0,1)

;1 max 201 (.4454,7854) (.305,.305,.902)
m/m 259  (.3927,0) (.383,0,.924)
m/m  10.9 (.8368,.4460) (.670,.320,.670)
min 0 (0,¢) (0,0,1)
min 0 (.7854,0) (.707,0,.707)
min 0 (.9541,7854) (.577,.577.577)

€ max 145 (.3933,7854) (.271,.271,.924)

Maximum value is marked by “max”, and minimum
value by “min”. An extremum, that is neither maximum,
nor minimum is marked by “m/m” (minimax). The val-
ues of 9, ¢ are useful only in computations. For analysis
of the problem more useful and transparent is the direc-
tion (ni,m9,m3) given in the last column. Note that in
accord with (19) the components (ni,n2,n3) may be in-
terchanged, i.e. to (n1,n3,n2). For @ = 7/2 the normal
to the shearing plane and the shearing direction coincide
with the coordiate axes. If instead of a numerical value of
@ is written ¢ then for each ¢ is reached an extremum.

The transverse force has a minimum for all symme-
try directions (0,0,1), (1,0,1) and (1,1,1) three (and the
23 other equivalent symmetry directions). For these di-
rections stress vector is parallel to n; and the inclination
angle has a minimum equal to 0. There exist no other
minima of £. In order to save space the minima of £ were
not quoted.

Similar calculations lead to the extreme values of ¢,,2,
ty2. Their values are given in Table 10. Note that some
of the directions in Table 5 and Table 6 do not coincide.
The extreme direction for the geometrical nonlinearity
are different from that for the physical nonlinearity.

Table 10
Extreme values of s,2, si2 and £ for Cu
Value (¥, ) (n1,n9,n3)
tno min 357.1 (.9552,.7854)  (.577,.577,.577)
max 331.2 (.7854,0) (.707,0,.707)
m/m 253.5 (0,¢) (0,0,1)
tp  max 145 (.4449,.7854)  (.303,.303,.903)
m/m 12.9 (.3924,0) (.382,0,.924)
m/m 5.43 (.8335,.4319)  (.673,.309,.673)
min 0 (0,¢) (0,0,1)
min 0 (.7854,0) (.707,0,.707)
min 0 (.9552,.7854)  (.577,.577,.577)
£ max 278 (.2918,0) (.288,0,.958)
049 (.3931,7854) (.271,.271,.924)
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The physical nonlinearity is characterized by the data
quoted in Table 11.

Table 11
Extreme values of s,3, s;3 and £ for Cu
Value (9, ¢) (n1,n9,n3)
tns max —1548.7  (.784,0) (.707,0,.707)
m/m —1387.5 (.9553,7854) (.577,.577,.577)
min  —.675 (0,¢) (0,0,1)
tp3 max 2912 (.3931,0) (.383,0,.924)
m/m 2458  (.3390,.7854) (.235,.235,.943)
m/m 73.5 (.8203,.3695) (.682,.263,.682)
min 0 (0,¢) (0,0,1)
min 0 (.784,0) (.707,0,.707)
min 0 (.9553,.7854)  (.577,.577,.577 )
€ max  .278 (.2918,0) (.288,0,.958)

All explanations given for Table 10 remain valid.

Since both sk and sgz contribute to the stress pro-
portionally to 2, important for the analysis is their sum
(sk2 + sk3). The same holds for the sums (s,2 + s,3) and
(sp2 + sp3). Table 12 gives the corresponding extremes.

Table 12
Extreme values of (8,2 + Sn3), (st2 + st3) and £ for Cu
Value (%, ) (n1,n9,n3)
tp2 +tp3 max —421 (0,¢) (0,0,1)
tno +1p3 m/m  —1030,3 (.9541,7854) (.577,.577,.577)
tno +tp3 min  —1217.5  (.7854,0) (.707,0,.707)
tig+tp3  max  206.21  (.4456,.7854) (.305,.305,.902)
tio+t;3 max 2783 (.3938,0) (.384,0,.924)
tig+ti3 M/m 2323 (.3349,.7854) (.233,.233,.944)
tio+tp3  min 0 (.9541,.7854)  (.577,.577,.577)
n max 370 (.2730,0) (.270,0,.963)
n m/m 280  (.3930,.8022) (.266,.275,.924)
n m/m 346 (.2434,7854) (.171,.171,.971)
n m/m 070  (.8246,.3909) (.679,.279,.679)
n min 0 (.7854,0) (.707,0,.707)

Bull. Pol. Ac.: Tech. 52(2) 2004

The three directions (1,0,0), (1,1,0) and (1,1,1) are
connected with the symmetry of the cube. To them
correspond extreme values of all three variables quoted
in the Tables 9-12. Other directions, e.g. the direction
(.305,.305,.902) in Table 12 is an extreme direction for
one variable only. Such directions are specific extreme
directions of the considered material.
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