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Abstract. In the paper, a feedforward linearization method for differential-pair operational transconductance amplifier (OTA) is discussed.
The proposed technique is developed using simple differential pair transconductors and linear reference resistor. The concept leads not only to
very efficient linearization of a transfer characteristic of the OTA but also offers the possibility of effective phase compensation. Due to this,
the circuit can be used in applications requiring precise phase response (e.g. filters). SPICE simulations show that for the circuit working with
a ±1.25V power supply, total harmonic distortion (THD) at 0.8Vpp is less then 0.1% in comparison to 10.2% without linearization. Moreover,
the input voltage range of linear operation is increased. Power consumption of the overall circuit is 0.94mW. The 3rd order elliptic filter example
has been designed and simulated. It turns out that the proposed compensation scheme significantly improves the performance of the filter at
higher frequencies.
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1. Introduction

CMOS transconductance elements are useful building
blocks for the design of many analog and analog-digital
signal processing systems. Such applications (e.g. active
filters and tranconductance multipliers) usually require
very linear voltage-to-current converters (transconduc-
tors) or operational transconductance amplifiers (OTAs)
[1–4]. One of the simplest and most widely used transcon-
ductors is a source-coupled differential pair [4]. It is
commonly known that an application of the feedforward
technique enables to improve performance of many analog
signal processing circuits. This technique is widely used to
reduce nonlinear distortion in amplifiers [5–12]. Moreover,
it is successfully employed to frequency compensation of
operational amplifiers and OTAs [13–16]. Other phase
compensation schemes for multistage amplifiers have also
been reported in literature [17–19].

Several techniques for improving the linearity prop-
erties of CMOS transconductors of OTAs based on the
source-coupled differential pairs (both symmetrical and
unsymmetrical) have recently been proposed [20–34].
These techniques employ MOS transistors operating both
in saturation and triode regions. Such linearization meth-
ods as adaptive biasing (e.g. [25]), source degeneration
(e.g. [29]), and current differencing lead to effective lin-
earization (e.g. [28]), current addition (e.g. [23]), however,
at the expense of increased power consumption and, usu-
ally, reduced transconductance factor and power efficiency
(defined as the maximum linear output current divided
by the total bias current [4]).

In this work, a novel highly linear operational trans-
conductance amplifier (OTA) is proposed. The circuit
uses, as basic building blocks, simple differential pair
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transconductors. The linearization follows by employing
an active-error feedforward scheme. The error signal is
generated using an additional differential pair transcon-
ductor and a resistor which is assumed to be linear. This
resistor can be an external one or it can be implemented
as an monolitic element e.g. using a high resistive poly
technology. Moreover, this resistor can be tuned digitally
using an appropriate matrix of switches and reference
resistors.

It follows that the linearization circuitry itself offers an
interesting phase compensation scheme, which is different
from the ones described in the literature so far [16,26,27].
Moreover, the linearized circuit topology ensures that no
right-half plane (RHP) zeros are present. Obviously, some
of the previously reported compensation schemes can be
also applied to the proposed transconductor. In practice,
the method [26] is preferred for its simplicity.

The proposed technique gives effective linearization
and is free of drawbacks mentioned in the previous para-
graph. In particular, it allows us to implement the OTA
circuit which has extremely low power consumption, ex-
tended linear range of operation as well as good transcon-
ductance tuning capability. Moreover, the effective phase
compensation can be easily applied, which makes the cir-
cuit suitable for high-frequency applications (e.g. filters).

The paper is organized as follows. In Section 2, a de-
scription of the proposed linearization method is pre-
sented. In Section 3, a frequency response of the lin-
earized circuit is analysed in detail using the transcon-
ductor model that comprises parasitic capacitors and
conductances. Section 4 presents the circuit realization
of the linearized differential pair OTA. In Section 5, the
SPICE simulation results of the OTA are discussed, in-
cluding THD and Monte Carlo analysis. In Section 6, the
example of 3rd order elliptic filter is design and simulated.
Section 7 concludes the paper.
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2. Description of feedforward linearization
method
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Fig. 1. Nonlinear model of transconductance element:

(a) symbolicrepresentation, (b) AC-equivalent model

For the purpose of the subsequent analysis we will rep-
resent the nonlinear transfer characteristic of transcon-
ductor using power series expansion. Let iG denotes the
output current of the transconductor, while vIN is the
differential input voltage of the transconductor as shown
in Fig. 1. Then we have

iG(vIN ) =
∞∑

n=1

gnvn
IN (t) = G(vIN ) (1)

where coefficients gn are defined as

gn =
1
n!

dnG(vIN )
dvn

IN

∣∣∣∣
vIN =0

. (2)

By definition, coefficient g1 is the transconductance gm of
the amplifier.
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Fig. 2. Simple CMOS differential pair transconductor

Consider the simple CMOS differential pair transcon-
ductor shown in Fig. 2. It can be shown, using square-law
MOS transistor modelling, (e.g. [35]) that its normalized
transfer characteristic around zero is:

iG(x) = 2ISSx
√
1 − x2 (3)

where x is a normalized input voltage defined as x =
vIN2(VGS − VT ), with vIN being a differential input
voltage, VGS and VT — gate-source DC voltage and
threshold voltage, respectively; ISS is the biasing current
of the differential pair. Actually, formula (3) is valid
for |x| � √

2/2. For larger x the transfer characteristic
saturates. The corresponding power series expansion is of

the form:

iG(x) = 2ISS

(
x − 1

2
x3 − 1

8
x5 − 1

16
x7 − 5

128
x9 . . .

)
.

(4)
Figure 3. shows the concept of transconductance amplifier
linearization based on active-error feedforward method.
All amplifiers G〈1〉, G〈2〉, G〈3〉, modelled as in Fig. 1, are
assumed to be identical. Their transfer characteristics are
described by the power series expansion (1). Moreover,
it is assumed that resistor R in Fig. 3 is linear and
equal to 1/gm. In practice, e.g. in integrated circuit
implementations some technologies offer high resistive
poly which can be used to realize resistor R. Alternatively,
such a resistor can be treated as an external (discrete)
element.
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Fig. 3. Three-block feedforward transconductance amplifier

Using (1), the output current iOUT of the overall
circuit in Fig. 3. can be written as follows:

iOUT (t) =
∞∑

n=1

gn[vIN (t)]n +
∞∑

n=1

gn[vIN (t) − vR(t)]n (5)

where

vR(t) = g−1
1

∞∑
n=1

gn[vIN (t)]n. (6)

This means that the voltage at the input of the
transconductor G〈3〉 (working as an error amplifier)
equals vIN (t)− vR(t) = vIN (t)− g−1

1
∑∞

n=1 gn[vIN (t)]n =
−g−1

1
∑∞

n=2 gn[vIN (t)]n. Hence, we obtain

iOUT (t)

=
∞∑

n=1

gn[vIN (t)]n +
∞∑

n=1

gn

[
−g−1

1

∞∑
k=2

gk[vIN (t)]k
]n

. (7)

Normally, vIN (t) − vR(t) is much smaller than the
input voltage of transconductors G〈1〉 and G〈2〉, which
allows us to neglect the higher order terms in the output
current of G〈3〉. This leads to the following approximation:

iOUT (t) ∼=
∞∑

n=1

gn[vIN (t)]n −
∞∑

n=2

gn[vIN (t)]n = g1vIN (t)

(8)
which shows the perfect cancellation of nonlinearities of
the overall transconductance amplifier in Fig. 3.

One can calculate THD for both original and lin-
earized circuit assuming the transfer characteristic (3) for
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all transconductors (in particular, we no longer neglect
higher order terms in the output current of G〈3〉 as in
(8)). The results of numerical calculations are presented in
Figs. 4, 5 and 6. Figure 4 shows theoretical THD charac-
teristics for the considered circuits. Figures 5 and 6 show
theoretical transfer and transconductance characteristics,
respectively. It is worth noting that using the active-error
feedforward technique one can obtain not only significant
reduction of THD but also considerable increase of linear
range of operation (recall that the transfer characteristic
for differential pair transconductor saturates for x ≈ 0.7;
for linearized circuit it happens for x ≈ 1.2).
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Fig. 4. Theoretical THD characteristics for (1) simple

differential pair transconductor, (2) linearized transconductor
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Fig. 5. Theoretical transfer characteristics for (1) simple

differential pair transconductor, (2) linearized transconductor
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Fig. 6. Theoretical transconductance characteristics for (1) simple

differential pair transconductor, (2) linearized transconductor

3. Frequency response of linearizedOTA-C
integrator

In this section, we shall consider the frequency response
of the linearized transconductor. In order to get adequate
results, we use the model of transconductor shown in
Fig. 7. The OTA itself is treated as an ideal voltage-
controlled current source of transconductance g1. The rest
of the elements in Fig. 7 are: Ci — input capacitance, Co

— output capacitance, Cc — coupling capacitance, go —
output conductance.

G
+

-
vIN

Ci Ci

Cc
Cogo

iG

Cc

Fig. 7. Transconductor model including parasitic conductance

and capacitors

It is commonly known in the literature (e.g. [4]) that
the transfer function of differential pair transconductors
exhibits a RHP zero which is formed due to feedforward
path through gate-drain capacitance Cgd. In the structure
in Fig. 7, this effect is modelled by capacitors Cc. This zero
introduces excess phase lag at high frequencies, which can
be the limiting factor in applications requiring a precise
phase response, e.g. filters. Cancellation methods of RHP
zeros can be found in the literature [21], [22]. As we will
shown, RHP zero due to the capacitor Cc is cancelled
in a natural way in the active-feedforward linearization
structure in Fig. 3.
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Fig. 8. Three-block feedforward transconductance amplifier with

parasitic elements, working as an integrator loaded with capacitor CL

Now, we apply the model in Fig. 7 to the feedforward
transconductance amplifier in Fig. 3, which, together with
the load capacitance CL, forms the integrator presented
in Fig. 8. We assume that all tranconductors are the
same. The elements in Fig. 8 are: g′ = g1 + go, g′′ = 2go,
C1 = Co + Cc + Ci, C2 = 2Co + Cc. Capacitor C∗

c equals
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Cc, however, it is distinguished for the reasons to be
explained later.

The circuit in Fig. 8 is a two-zero and two-pole system.
Both zeros and poles are real and negative. Its transfer
function H(s) can be easily calculated using the general
Gm-C filter model [36]. The formula for H(s) is the
following

H(s) = H0
(1 + s/ωz1)(1 + s/ωz2)
(1 + s/ωp1)(1 + s/ωp2)

(9)

where

H0 =
g1

2go
, ωz1 =

g1

Cc
, ωz2 =

g1

2C1 + 3C∗
c

(10)

and the poles can be approximated (on assumption g1 �
go) by the following formulas

ωp1 =
2go

CL + C2 + 2C∗
c

,

ωp2 =
g1

C1 + C∗
c (CL + C2 − C1)/(CL + C2 + 2C∗

c )
.
(11)

We observe that zeros are independent of the load
capacitance CL. For CL much larger than the rest of
the capacitances, which is usually the case, the above
formulas can be approximated as

ωp1 =
2go

CL
, ωp2 =

g1

C1 + C∗
c

. (12)

Now, since go � g1, it turns out that ωp1 is a dominant
pole. Actually, it is a corner frequency of the integrator.
Moreover, we have ωp1 < ωz2 < ωp2 � ωz1 (the last
inequality follows from the fact that Cc � C1). It is seen
that the frequency of ωz2 is slightly smaller than that of
ωp2 (they differ by factor 2 to 3 depending on the relation
between C1 and C∗

c ).
It is worth noting that there are no RHP zeros, so no

cancellation is needed. In practical circuit implementa-
tions there are always additional poles (e.g. due to output

current mirrors; see Fig. 9) which introduce phase lag.
This excess phase can be compensated by capacitor C∗

c .
To this end one has to increase C∗

c by connecting in par-
allel additional compensating capacitor. Note that this
compensation scheme is simpler than the commonly used
method [26], [27]. It follows that unlike the compensation
scheme proposed in [16], the proposed circuit allows us to
obtain very good linearity as well as compensation of the
phase characteristic at the same time. This indicates the
potential of the circuit for use in high-frequency filtering,
where both features are of equal importance.

4. Linearized differential pair OTA imple-
mentation

In Fig. 9 a circuit implementation of the active-error
feedforward linearization concept discussed in Section 3
is shown. The common mode feedback circuit (CMFB)
is shown in Fig. 10. Note that the circuit in Fig. 9 is
a differential-input two-output OTA, which follows from
the fact that such a configuration is more suitable for fil-
tering applications. Thus, it is a slight modification of the
concept presented in Fig. 3. Transistors Q1,2,7,8 form clas-
sical differential source-coupled pairs with current sink
realized by transistor Q26. Actually, the pair Q1,Q2 im-
plements two-output counterpart of transconductor G〈1〉

in Fig. 3. Transistors Q7,Q8 implement the counterpart
of transconductor G〈2〉 loaded by resistor 1/2gm. Differ-
ential pairs Q3,Q4 and Q5,Q6 with current sinks Q25

and Q27, respectively, realize error amplifiers correspond-
ing to G〈3〉 in Fig. 3. The transconductors have common
current sources realized by transistors Q12–15,20,21 and
Q16–19,22,23. Note that in order to change the transcon-
ductance of the circuit in Fig.9, the bias current Ibias and
resistor 1/2gm have to be adjusted simultaneously.
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Fig. 9. Complete diagram of the linearized CMOS OTA
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Fig. 10. Common-mode feedback circuit

5. Simulation results

The complete circuit in Fig. 9 was designed for the
0.35-mm AMS process and simulated using SPICE. All
p-channel and n-channel transistors have their bulks con-
nected to VDD and VSS , respectively. The W/L ratios
for transistors in Fig. 9 are: 4/1 for Q1−8, 30/1 for
Q9−19,21,23−27, 60/1 for Q20,22 and 15/1 for Q28. Chan-
nel length is 1µm for all transistors. The bias current
was set to Ibias = 40 µA. The circuit was simulated with
VDD = −VSS = 1.25 V. The power consumption of the
circuit is about 0.94 mW (including CMFB).
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Fig. 11. SPICE simulated transconductrance characteristics of the

circuit in Fig. 9: (1) without linearization, (2) with linearization

Figure 11 shows the simulated transconductance char-
acteristic of the circuit in Fig. 9 and the reference simple
differential pair transconductor in Fig. 2, respectively. It
is seen that the improved linearity of overall transcon-
ductance element is obtained without deteriorating the
transconductance of the circuit. This is not the case for
the feedback technique, where the improvement of linear-
ity is obtained at the expense of reduced transconduc-
tance of the overall element. Moreover, we can observe
a significant increase of the linear input voltage range
for the linearized circuit, which confirms the theoretical
predictions presented in Section 3.
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Fig. 12. SPICE simulated THD characteristics of the circuit in Fig. 9

with 1MHz sine wave: (1) without linearization, (2) with linearization

In order to have a quantitative measure of linearity
improvement, the total harmonic distortion has been
calculated for the circuit in Fig. 9 assuming 1 MHz sine
wave input. The THD characteristics of the circuit with
and without linearization are shown in Fig. 12. We can
observe a big difference between both curves in Fig. 12.
For example, THD at 0.8Vpp input signal for linearized
circuit is less than 0.1% while THD for the circuit without
linearization is about 10.2%. For input signal 1.2Vpp the
figure is 0.78% and 21%, respectively. These results also
confirm the theoretical predictions of Section 3.
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Fig. 13. Monte-Carlo simulation results for transconductance of OTA
in Fig. 9 for Ibias = 40µA and 1% deviations (with gaussian distri-

bution) in Vth and k

Monte-Carlo simulations have been performed in order
to check how the transistor mismatch affects transconduc-
tance of OTA circuit. Figure 13 shows the Monte-Carlo
simulation results for the transconductance of the OTA
in Fig. 9. The simulations have been carried out assum-
ing 1% deviation (with gaussian distribution) in Vth and
transconductance parameters for all circuit transistors.
A bias current has been set to 40 µA. The mean value of
gm is 65.7 µA/V, while the standard deviation of gm is
1.5 µA/V.

It turns out that the OTA circuit in Fig. 9 has a
very good tuning capability. Some of the data is shown in
Table 1 as well as in Fig. 14. Recall that it is necessary
to change both the bias current and the value of the
reference resistors 1/2gm, while tuning the circuit.
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Table 1
Tuning capability for the linearized OTA circuit in Fig.9

Ibias gm Power consumption DC gain Ibias gm Power consumption DC gain
[µA] [µA/V] [µW] [dB] [µA] [µA/V] [µW] [dB]

0.5 3.0 0.10 88.2 8.0 28.2 0.26 80.7

1.0 5.7 0.12 87.5 16.0 42.3 0.43 72.5

2.0 10.2 0.14 86.3 32.0 59.9 0.77 50.4

4.0 17.5 0.18 84.3 50.0 69.6 1.14 39.8
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Fig. 14. Transconductance tuning capability for OTA in Fig. 9

In order to illustrate the performance of the com-
pensation scheme introduced in Section 3, the OTA-C
integrator with 1pF load has been simulated without
and with phase compensation using two capacitors of
0.035 pF connected between resistors 1/2gm and OTA
outputs (Ibias = 20 µA). Figure 15 shows phase char-
acteristics for the circuit in those two cases. It follows
that the phase compensation allows us to significantly
enlarge the frequency of 1◦ excess phase (the figure is
3.8 MHz and 63.5 MHz without and with compensation,
respectively).
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Fig. 15. Phase characteristic of OTA-C integrator with 1pF load (1)
without phase compensation, (2) with 0.035pF compensation capa-

citor

Based on the simulation results, we can assert that
the presented OTA circuit does not exhibit drawbacks
mentioned in the introduction, which are common to
the most of the linearization techniques described in the

literature ([20–34]). Its main features are: no reduction
of transconductance factor in comparison to the simple
differential pair, significant increase of linear range of
operation, high efficiency of linearization (i.e. large linear
output current), very low power consumption, no RHP
zeros, easy and effective phase compensation.

6. Filter example

In order to illustrate the robustness of both linearization
scheme and phase compensation, a 3th order low-pass
elliptic Gm-C filter in Leap-Frog (LF) structure with
floating capacitor [37] has been designed and simulated.
The general structure of the filter is shown in Fig. 16.
We have assumed 10.0 MHz cut-off frequency, minimum
pass-band gain 0.9, and maximum stop-band gain 0.16.
Element values are: g = 60 µA/V (bias current equal to
32 µA), C1 = 1.98 pF, C2 = 1.06 pF, C3 = 0.80 pF,
C4 = 1.60 pF.
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Fig. 16. Diagram of the 3th order low-pass elliptic Gm-C filter in LF
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Fig. 17. Amplitude characteristic of 3rd order elliptic filter in Fig. 16:
(1) without phase compensation, (2) with phase compensation

of OTA
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Figure 17 shows the amplitude characteristics of the
filter. In the first case, the filter was simulated assuming
transconductors without phase compensation. We can ob-
serve that its transfer function exhibits large distortions.
While using compensated OTAs (compensating capacitors
equal to 0.054 pF), characteristic of the filter is almost
ideal, especially the quality of the transfer function zero
is excellent.

We have also tested linearity of the overall filter. For
the sake of comparison we have considered two cases. In
the first one we have simulated the filter with conventional
differential pair transconductors in Fig. 2. It follows that
THD of the output signal of the filter with 1 MHz sine
wave input equals 4.1% (14.3%) for 0.6Vpp (1.0Vpp) input
signal amplitude. The filter in Fig. 16 has been also im-
plemented using linearized transconductors in Fig. 9. The
simulation results for the filter with linearized OTAs show
that THD of its output signal with 1 MHz sine wave input
equals 0.1% (0.28%) for 0.6Vpp (1.0Vpp) input signal am-
plitude. Thus, application of linearized transconductors
gives a significant reduction of the nonlinearity distortion
of the whole filter circuit. Due to the increase of the linear
input voltage range of the circuit in Fig. 9, the filter can
now work with much larger input signals. For example,
THD level of 1.0%, which was obtained for the filter with
reference differential pair transconductors with 0.4Vpp of
input signal, is now attained for input signal amplitude
equal to 1.2Vpp.

7. Conclusions

An effective linearization method based on the active-
error feedforward concept has been developed for real-
izing a very linear CMOS OTA. The proposed circuit
technique combines a classical source-coupled differen-
tial pair transconductor with a simple error amplifier in
feedforward path. Theoretical considerations have been
performed using power series expansion of the trans-
fer characteristic of differential pair transconductor. The
complete linearized OTA in differential-input two-output
structure has been simulated via SPICE using the 0.35-µm
AMS process. For power supply ±1.25 V, total harmonic
distortion at 0.8Vpp is less than 0.1%. The circuit has
very low power consumption, which is less than 1mW for
the bias current equal to 40 µA. The obtained simulation
results confirm that the linearity of the overall transcon-
ductance element is significantly improved in compari-
son to the reference circuit (i.e. simple differential pair
transconductor). Moreover, a significant increase of the
linear input voltage range for the linearized circuit was
observed. The efficient phase compensation can be ap-
plied, which makes the circuit suitable for high-frequency
filtering. It is worth noting that the compensation scheme
follows directly from that linearized circuit topology and
requires no additional circuitry except one capacitor.
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