Reachability index of the positive 2D general models

T. KACZOREK*

Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland

Abstract. It is shown that 2(n+1) is the upper bound for the reachability index of the n-order positive 2D general models.

Keywords: reachability index, positive 2D general model, upper bound.

1. Introduction

In recent years a growing interest in positive twodimensional (2D) systems has been observed [1–9]. An overview of some recent results in positive systems has been given in the monographs [1,10] and papers [5–9] and on the controllability of 1D and 2D systems in [11]. The asymptotic behaviour of positive 2D systems and their internal stability have been investigated in [8,9]. The local reachability of positive 2D systems described by the second Fornasini-Marchesini models [2–4] has been analyzed in [5]. It was shown that the reachability index of the n-order positive 2D systems is not bounded by n.

In this note it will be shown that 2(n+1) is the upper bound for the reachability index of the *n*-order positive 2D systems described by the general model.

2. Problem formulation

Let $R^{n \times m}$ be the set of $n \times m$ real matrices and $R^n = R^{n \times 1}$.

Consider the 2D general model

$$\begin{aligned} x_{i+1,j+1} &= A_0 x_{ij} + A_1 x_{i+1,j} + A_2 x_{i,j+1} \\ &+ B_0 u_{ij} + B_1 u_{i+1,j} + B_2 u_{i,j+1} \quad \text{(1a)} \\ i,j &\in Z_+ \text{ (the set of nonnegative integers)} \\ y_{ij} &= C x_{ij} + D u_{ij} \end{aligned} \tag{1b}$$

where $x_{ij} \in R^n$ is the local state vector at the point (i, j), $u_{ij} \in R^m$ and $y_{ij} \in R^p$ are the input and output vectors and $A_k \in R^{n \times n}$, $B_k \in R^{n \times m}$, $k = 0, 1, 2, C \in R^{p \times n}$, $D \in R^{p \times m}$.

Boundary conditions for (1a) are given by

$$x_{i0}, i \in Z_{+} \text{ and } x_{0j}, j \in Z_{+}$$
 (2)

Let \mathbb{R}^n_+ be the set of *n*-dimensional vectors with nonnegative components.

DEFINITION 1. The model (1) is called the positive 2D general model (P2DGM) if for all boundary conditions

$$x_{i0} \in R_+^n, \ i \in Z_+, \ x_{0j} \in R_+^n, \ j \in Z_+$$
 (3)

and every sequence of inputs $u_{ij} \in R_+^m$, $i, j \in Z_+$ we have $x_{ij} \in R_+^n$ and $y_{ij} \in R_+^p$ for $i, j \in Z_+$.

Theorem 1 [10]. The model (1) is a P2DGM if and only if

$$A_k \in R_+^{n \times n}, \ B_k \in R_+^{n \times m}, \ k = 0, 1, 2, \ C \in R_+^{p \times n},$$

$$D \in R_+^{p \times m}$$
(4)

where $R_{+}^{p \times q}$ is the set of $p \times q$ real matrices with nonnegative entries.

The transition matrix T_{ij} of the model (1) is defined by

$$T_{ij} = \begin{cases} I_n & \text{(identity matrix) for } i = j = 0\\ A_0 T_{i-1,j-1} + A_1 T_{i,j-1} + A_2 T_{i-1,j} & \text{for } i, j > 0 \ (i+j>0) & \text{(zero matrix) for } i < 0 \text{ or/and } j < 0 \end{cases}$$
(5)

From (5) it follows that for P2DGM (1) $T_{ij} \in \mathbb{R}_{+}^{n \times n}$ for $i, j \in \mathbb{Z}_{+}$.

DEFINITION 2. The P2DGM (1) is called reachable at the point $(h,k) \in Z_+ \times Z_+$ if for zero boundary conditions (ZBC) (2) and every vector $x_f \in R_+^n$ there exists a sequence of inputs $u_{ij} \in R_+^m$ for $(i,j) \in D_{hk}$ such that $x_{hk} = x_f$, where

$$D_{hk} = \{(i, j) \in Z_+ \times Z_+ : 0 \le i \le h, 0 \le j \le k, i + j \ne h + k\}.$$
 (6)

DEFINITION 3. The P2DGM (1) is called reachable for ZBC if it is reachable at any point $(h, k) \in Z_+ \times Z_+$. If $x_f \in R_+^n$ is reachable at the point (h, k) then it will be said that the state x_f is reached in h + k steps. The number h + k steps is called the reachability index of (1) and it will be denoted by I_R , i.e. $I_R = h + k$.

Theorem 2 [10]. The P2DGM (1) is reachable for ZBC if and only if the reachability matrix

$$R_{hk} := \left[M_0, M_i^1, 1 \leqslant i \leqslant h; M_j^2, 1 \leqslant j \leqslant k; \right.$$

$$M_{ij}, 1 \leqslant i \leqslant h; 1 \leqslant j \leqslant k; i+j \neq h+k \right]$$
 (7)
$$M_0 = T_{h-1,k-1}B_0, M_i^1 = T_{h-i,k-1}B_1 + T_{h-i-1,k-1}B_0,$$

$$i = 1, ..., h$$

$$M_j^2 = T_{h-1,k-j}B_2 + T_{h-1,k-j-1}B_0, j = 1, ..., k$$

$$M_{ij} = T_{h-i-1,k-j-1}B_0 + T_{h-i,k-j-1}B_1 + T_{h-i-1,k-j}$$

 $B_2, i = 1, ..., h; i = 1, ..., k, i + i \neq h + k$

^{*} e-mail: kaczorek@isep.pw.edu.pl

contains an $n \times n$ monomial matrix (in each of its rows and in each of its columns only one entry is positive and the remaining entries are zero).

For standard 1D n-order linear systems the reachability index is equal to n.

It is also known [5] that for standard (i.e. not necessarily positive) 2D general models the reachability index is equal to n ($I_R = n$) i.e. any local state of (1) starting from ZBC can be reached in h + k steps for $h + k \leq n$.

For P2DGM (1) the set X_{h+k}^+ of all local states that can be reached in h+k steps starting from ZBC by means of an input sequence $u_{ij} \in R_+^m$ coincides with the set of all nonnegative combinations of the columns of the matrix (7), i.e. $X_{h+k}^+ = coneR_{hk}$.

It is known [5] that the reachability index I_R of a positive 2D linear systems is not bounded by n.

In [5] it was shown that the reachability index of the system (1) with $A_0 = 0$, $B_0 = B_1 = 0$ and

is equal to $I_R = 13$ (for n = 7). In [5] the conjecture was also given that $n^2/4$ represents an upper bound for the reachability index of every 2D positive system.

In this paper it will be shown that 2(n+1) is the upper bound for the reachability index of the P2DGM.

3. Problem solution

Solution of the problem is based on the following lemma

Lemma. Let

 $\det \left[I_n z_1 z_2 - A_0 - A_1 z_1 - A_2 z_2 \right]$

$$= z_1^n z_2^n - \sum_{\substack{i=0\\i+j\neq 2n}}^n \sum_{i=0}^n d_{ij} z_1^i z_2^j. \quad (9)$$

Then the transition matrices T_{ij} (defined by (5)) satisfy the equations

$$T_{n+k,0} = A_2^{n+k} = \sum_{i=0}^{n-1} d_{i0}^k A_2^i, k = 0, 1, \dots$$
 (10a)

$$T_{0,n+l} = A_1^{n+l} = \sum_{j=0}^{n-1} d_{0j}^l A_1^j, l = 0, 1, \dots$$
 (10b)

$$T_{n+k,n+l} = \sum_{\substack{i=0\\i+j\neq 2n}}^{n} \sum_{j=0}^{n} d_{ij} T_{i+k,j+k} \text{ for } k,l = 1,2 \text{ (10c)}$$

Proof. The relations (10a) and (10b) follow from the Cayley-Hamilton theorem applied to A_2 and A_1 , respectively.

Taking into account that

$$[I_n z_1 z_2 - A_0 - A_1 z_1 - A_2 z_2]^{-1}$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} T_{ij} z_1^{-(i+1)} z_2^{-(j+1)}$$
(11)

we may write

$$\sum_{i=0}^{n} \sum_{j=0}^{n} H_{ij} z_{1}^{i} z_{2}^{j} = \left(z_{1}^{n} z_{2}^{n} - \sum_{\substack{i=0\\i+j\neq 2n}}^{n} \sum_{i=0}^{n} d_{ij} z_{1}^{i} z_{2}^{j} \right) \cdot \left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} T_{ij} z_{1}^{-(i+1)} z_{2}^{-(j+1)} \right)$$
(12)

where $\sum_{i=0}^{n} \sum_{j=0}^{n} H_{ij} z_1^i z_2^j$ is the adjoint matrix to the matrix

$$[I_n z_1 z_2 - A_0 - A_1 z_1 - A_2 z_2].$$

From comparison of the matrix coefficients at the same powers of $z_1^{-k}z_2^{-l}$ for k, l = 0, -1, -2,, k + l < 0 of the equality (12) we obtain (10c).

THEOREM 3. If the P2DGM (1) is reachable then it is reachable in at most 2(n+1) steps $(h \le n, k \le n)$, i.e.

$$I_R \leqslant 2(n+1) \quad (h \leqslant n, k \leqslant n). \tag{13}$$

Proof. If the P2DGM (1) is reachable then by Theorem 2 the reachablity matrix (7) contains an $n \times n$ monomial matrix for $h+k \leqslant 2(n+1)$ since by the equation (10) the columns M_i^1, M_j^2 and M_{ij} of (7) for $h+k \leqslant 2(n+1)$ $(h \geqslant n, k \geqslant n)$ are linear combinations of the columns of the matrix R_{hk} for $h+k \leqslant 2(n+1)$ $(h \leqslant n, k \leqslant n)$.

Example. Consider the P2DGM with

Using (5) and (7) we obtain

$$T_{31} = 0, \ T_{32} = A_2, \ T_{33} = T_{11}, \ T_{34} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$T_{41} = 0, \ T_{42} = T_{20}, \ T_{43} = T_{21}, \ T_{44} = I_4$$

and

From Theorem 2 it follows that the P2DGM with (14) is not reachable for $h+h \le n=4$ and it is reachable for $h+k=6>n^2/4$. The reachability index of the system satisfies the condition (13), i.e. $I_R=h+k=6<2(n+1)=10$.

References

- [1] L. Farina and S. Rinaldi, *Positive Linear Systems. Theory and Applications*, New York: Wiley, 2000.
- [2] E. Fornasini and G. Marchesini, "Doubly indexed dynamical systems", *Math. Sys. Theory* 12, 59–72 (1978).
- [3] E. Fornasini and M. E. Valcher, "On the spectral and combinatorial structure of 2D positive systems", $Lin.\ Alg.\ \&\ Appl.$, 245, 223–258 (1996).
- [4] E. Fornasini and M. E. Valcher, "Primitivity of positive matrix pairs: algebraic characterization, graph-theoretic description, 2D systems interpretation", SIAM J. Matrix Analysis & Appl., 19 (1), 71–88 (1998).
- [5] E. Fornasini and M. E. Valcher, "On the positive reachability of 2D positive systems", *Positive Systems LNCIS* 294, 297–304 (2003).
- [6] J. Klamka, "Constrained controllability of positive 2-D systems", Bull. Pol. Ac.: Tech. 46(1), 95–104 (1998).
- [7] J. Klamka, "Controllability of 2-D systems: a survey", Appl. $Math.\ and\ Comp.\ Sci.\ 7(4),\ 101–120\ (1997).$
- [8] M. E. Valcher and E. Fornasini, "State models and asymptotic behaviour of 2D positive systems", *IMA J. Math. Control and Information* 12, 17–36 (1995).
- [9] M. E. Valcher, "On the internal stability and asymptotic behavior of 2-D positive systems", *IEEE Trans. Circ. and Syst.* 44(7), 602–613 (1997).
- [10] T. Kaczorek, $Positive\ 1D\ and\ 2D\ systems,$ Berlin: Springer-Verlag, 2002.
- [11] J. Klamka, Controllability of Dynamical Systems, Dordrecht: Kluwer Academic Publ., 1991.