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Abstract

The main objective of this paper is to improve stability citioths, uniqueness and convergence
of the flow approach algorithm with viscoplastic and plastiaterial models. In this paper,
the problem of convergence and uniqueness of the problerorefinear simulation of sheet
metal forming processes modeled using rigid-viscoplastiterial model is considered. In the
numerical simulation of the deformation process MFP2D a®dPBD Finite Element programs
were used. The simplicity of the algorithm is the main adsagetof these codes, the Direct
Differentiation method and optimization modules can belemgnted in the source code. The
numerical instability caused by high values of the condittmmber of the main system of
equations is the main disadvantage of the codes. The pagtpach contact model used in
the program makes the stiffness matrix condition numbesa.or

1. Introduction

The objective of this paper is to improve stability condio uniqueness and convergence of
the flow approach algorithm with viscoplastic and plasti¢emial models. The numerical codes
MFP2D and MFP3D are used for practical simulations of theigtidal processes. In this paper
authors focus on the contact modeling by modifications op#realty approach method.

In the previous authors’ paper (Sosnowatkal., 2010), the stability and uniqueness of flow
approach algorithm in sheet metal forming simulations vetuelied. In the present paper, new
results in this field are presented.

One of significant drawbacks of rigid-viscoplastic shelpegach is poor stability and lack
of convergence due to relatively high values of the conditimber of the main system of
equations. The main reason that brings out the relativadydoadition of the system of equa-
tions is the penalty approach treatment of the contact maglel'he authors’ previous study on
metal forming processes proves that the choice of the pr@bee of the penalty factor is one of
the main problems in computations. A too small value of thegftg factor causes bad accuracy
of the contact modeling. Assumption of a too large value oighty factor leads to poor system
conditioning and significant errors. In many cases, i.e.mthe geometry of the drawpiece is
complex, the satisfactory value of penalty factor may nadteat all. In many commercial and
academic programs the penalty factor is assumed constangdhe whole forming process
and selected arbitrary, according to the engineer’s egpee at the moment.

The authors propose a modification of the well known penglfyr@ach in contact model-
ing. The main aim is to find a relationship which allows to cédte the best value of the penalty
factor for given drawing conditions. It should be noticedttthe penalty factor does not need
to be constant for all nodes. Additionally, the penalty éaactoes not need to be constant for all
iterations or time steps. In the proposed approach, onljirtiievalue of the tool penetration
in sheet have to be assumed instead of choosing abstraetofghenalty factor. On the basis



of the material parameters, geometry and actual configurati the sheet and the acceptable
penetration value, the penalty factor is calculated seplgréor each node of the sheet in con-
tact with tool at all time or iteration steps. At result, the@sion of the contact modeling is
approximately the assumed limit value of the penetration.

The tests performed show very good and promising resultpedially the influence of
proposed approach on the condition number of the main systerquations can be noticed.
Authors observe really good effect in the case of the comtexteling. The condition number
of the system of equations was improved at least by two omfarsagnitude in relation to the
system of equation without any contact conditions.

2. Flow approach formulation in sheet metal forming

The flow approach to metal forming problems with the rigidedgplastic material model is used
as the basis in this paper (Perzyna, 1966; Ofate and Ag8i?)1
The virtual work expression (equilibrium equation in theakdorm) to be solved reads

/ 0;;0€;;d2 = / fi0v,dY + t;0v;d(0N2), i,j=1,...,3 (1)
Q Q a0

wherewv; denotes velocity fieldf; is the distributed volumetric load; is the traction on the
boundary an integrals are taken over the actual body voluemeentdS? or its surface element
d(0%2), respectively.

Strain rates are presented as

) 1
gij = 5 (vij + vj4) (2)

Stresses are calculated from the constitutive equation
0ij = Sij + pdij Sij = 21" Eij 3

wheres;; is the Cauchy stress deviatprienotes the mean stress ands the Kronecker delta.
The constitutive functiop* is defined in the flow problem as
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Here, o, is the current static uniaxial tensile yield stress of thaemal, & = /3s;;s;; is

o

3z 3%

*

M:

the equivalent stress, = ,/%s‘ijéij is the effective inelastic strain rate, andn are physical
parameters of the rigid-viscoplastic model used.

For plastic materials with strain hardening, the yield timj () is a function of the effective
inelastic strairg, andz has to be computed as the time integrat of

The formal analogy between the plastic flow equations andmaudlation of incompressible
elasticity allows to solve the pure plastic flow problem wathhumerical code developed for
linear elasticity. Rates of large plastic strains are géat the same way as elastic strains. The
incompressibility condition must only be satisfied.

In sheet metal forming, the shell theory is used as the siitgtion of 3D problems. Plane
stress assumptions are used in shell theory so that the pressibility can be easily achieved
by adjusting the shell thickness during consecutive stéfiseosolution to ensure the constant
volume.



After spatial finite element discretization the stiffnesatrix K depends on the nodal ve-
locities g through the parameter® so that an iterative process is needed to find the solution
vectorq.

K®) [u* (q“ﬂ)} gt =qQ k=0,1,2,... (5)

in which Q denotes the external force vector, anis the iteration number.

3. Penalty function method

The crucial factor in finite element modelling of realiséchnological metal forming problems
is the way the contact between sheet and rigid bodies istieat

In previous studies (Sosnowsdti al., 2010), an algorithm for computing the ratio of the
main determinants of the system of equations, stiffnessxnatas developed and implemented
in metal forming simulation software MFP2D. One of the maagons of the bad condition-
ing of the problem was the penalty function method impleraéim the contact computations.
An alternative way of modelling the contact, the Lagrangiauitipliers method, was also con-
sidered. The main disadvantage of this method is that the noait system of equations is
extended by an additional multipliers. Their number cqoggls to the number of degrees of
freedom of the system where restrictions resulting froncth@act are imposed. An additional
difficulty is the fact that the number of multipliers variestionly in different time steps but also
on the given time step in subsequent iterations. Becaudesofltawbacks in the current state
of research Lagrangian multipliers method was consideyecxpensive numerically, as well
as causing potential difficulties due to the variable sizéhefproblem, for effective implemen-
tation in metal forming MFP2D and MFP3D simulation codes.

Functional of the potential energy is supplemented by a thattrepresents the potential
energy of contact constraints

1 1 . .
[I(u) = §Kijuiuj — Qiu; + €§(Dkiui — U ) (Dyjuy — Uy), (6)
whereDy; is a Boolean matrix identifying an active contact-resgéittiegrees of freedom while
Uy, IS a vector of contact constraints. The condition of statrag of the first derivative has the
form

oll X
E Kijuj + €Dy Dyjuj — €Dyt — Q; =0 (7)

After some transformations we have
(Kij —+ EDikaj) Uj = Qz + EDikﬂk (8)

The penalty function method requires no expansion of systeaguations with additional
unknowns. Regardless of the number of restrictions thedfilee problem remains the same.
However, serious difficulties arise from the necessity tedwsine the penalty factor ef A too
low value of the constant penalty factodecreases the accuracy of determining the contact. On
the other hand the large value aéffects the matrix conditioning. In the case of metal forgnin
nonlinear simulations it is very difficult to determine theoper value of the penalty factor
coefficient. It is determined by the trial and error methodahhs inefficient in the industry
metal forming simulations.



4. Main modifications of the penalty method

In this section, the modification of penalty approach metisqgatoposed. The main idea is to
apply the accuracy coefficient (i.e. the absolute error erdépth of penetration) instead of
fixing the penalty coefficient during the whole simulatiortloé forming process.

The penalty function method requires the adoption of sorheevef the penalty factor. It
is not obvious what should be the value of this factor. Theeaif the penalty factor should be
chosen as a large number. Hovewer, a too large value of thar feauses significant deteriora-
tion in matrix condition number.

The penalty factor could be associated with artificiallyaaiuced rigidity to a particular
element of the stiffness matrix of the problem. The solutibthe system of equations must of
course satisfy imposed restrictions. In addition, thetrigiand side of the system of equations
is modified.

The value of the penalty factor coefficient does not need tthbesame for each degree of
freedom. In addition, the penalty coefficient may vary insduent time steps and in sub-
sequent iterations during the solution of nonlinear equagiroblem. The only assumption is
made that on the left and right side of system of equationpéimalty coefficients values for a
given degree of freedom have to be equal. This assumptiattgdsom derivation of the the
basic system of equations (8).

The main idea of modifications of the penalty method algarith the contact problem is
to improve the accuracy (i.e. the absolute error or the defgplenetration) instead of fixing the
penalty coefficient value (the artificial rigidity) duringeg whole metal forming simulations.

4.1. Modifications of the algorithm for one degree of freedom

The model shown in Figure 1 is consideréds a stiffness of the spring,is the exciting force,
@ is the assumed value of displacement (restriction reguftom the contact) is the penalty
factor and) is the limit depth of penetration.

The potential energy of the system presented in Figure Vengs

1 1 1 1 1
Im=:= 2 o 2_ — 2 o822 A - 2.
zku qu + 2e(u u) 2ku qu + eu” — el + geu 9)
From the condition of stationarity of the first derivativetbé potential energy we have

ku—q—eu+eu=0. (20)

After some transformations we come at

(k+e)u = q+ eu. (11)
The displacement is thus given as
q+ €t
= 12
U= (12)

For large values of, the value of displacemeatis close to the value af.
Permitted penetration depthtakes the form

i—u<s (13)

Increase in the value of the penalty factoctauses decrease in the value of the coefficient
given by equation (13). Assuming that the given value of teegbration is satisfactory the
inequality (13) could be replaced by the equality

U —u=29. (14)
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Figure 1. Elastic spring with contact constraint

Substituting the relation (12) to equation (14) we get
. q+tetu
u —

=0. 15
k+e 0 (15)
After some additional transformations the equation takeddrm
k(i —38) —
_ w(p ¢ (16)

The above equation allows to determine the penalty factefficeent in the way that dis-
placement is calculated with the assumed accusacy

4.2. Formulation for the two-dimensional case

As in the case of one-dimensional problem, the basic syste¥hemuations is derived from the
minimum of the potential energy condition

Ku=q* @n

whereu is the solution vector of the system — the nodal displacementelocitiwes, whilé&
denotes arrays modified due to displacement restrictions,

K'=K+e¢, q =q+e(Dua). (18)

Here,en« v IS the penalty coefficient matrid) v, is the Boolean matrix identifying the de-
grees of freedom with contact displacement restrictidrnsis the vector of the contact restric-
tion values,N is the total number of degrees of freedom ands the total number of contact
restrictions.

We define the operatoa| resulting in the vector of the absolute value of the elemants

la| = [ails;, |a—b|=|a; — b (29)

We assume the accuracy of modeling of the condacin the case ofn restrictions, the
accuracy of modeling is expressed by the vector

d =01 (20)
wherel is them-dimensional unit vector. The equations take the form

D — u| = Dé. (21)



Substituting the solution of the global system of equatid to equations (21) we get

Dt — (K + €)' (q+ €(Dit)| = Do (22)
Multiplying both sides by K + €) we get

|IKDtu + eDi — q — eDa| = KD4 + eDé. (23)
After transformation of equation (23) we get

€Dé = [KDi — q) — KD§ (24)

After sidewise left-multiplication byD” we obtain the reduced system of equations

€ = [Ki—q - Ko (25)
where
Kyxm =D'KD,  €uxm =D"eD, G,y =D'q (26)

In equation (25), the right-hand side addare vectors whil& is the unknown matrix of
penalty coefficients. The eigenvalues of the ma&iare calculated because there is no pos-

sibility of calculating the matrix full form. The matrix ohe penalty coefficients takes the

diagonal form

0 for i#£j
The penalty coefficients in equation (27) are transformegldbal form
e = DeD”. (28)

To illustrate the formulation, consider the unilaterastrained beam shown in Figure 2.
The beam is discretized using three finite elements. Thesestion is d x 1 mm square
while the beam lengthis 30 mm. The stiffness matrix of a single finite element is given by

(20 0o -2 0 0 ]
12EJ 6EJ 0 _12EJ  6EJ
b ) ek 2ks
ke = l BA ¢ } (29)
symm 12ng _GJIEQJ
4J_l‘?J

where A is the cross-section ared,is the moment of inertia anfl = 210 G Pa is the Young
modulus. The accurate value of the contact modelling ismeduas0.1 mm. The global
stiffness is assembled from element matrices and readskjpesits)

[ k[14,4—6,6} + k[21,1—3,3} k[21,3—3,6} 0
K = k[24,4—6,6] + k?1,1—3,3] k?1,3—3,6}
L symm k?4,4—6,6}
420 O 0 —210 0 0 0 0 0 7
4.2 0 0 —2.1 10.5 0 0 0
140 0 —10.5 35 0 0 0
420 0 0 —-210 0 0
= 4.2 0 0 —2.1 10.5 (30)
140 0 —10.5 35
210 0 0
symm 2.1 —10.5
i 70 ]
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Figure 2. Restrained beam
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Figure 3. The beam deflection without contact conditions

The determinant of the stiffness matrix|iK| = 4.597¢11. The matrix condition number is
uw(K) = 4.572¢4.
The load vector (see Figure 2) has the following components

a=[000000 50 10] (31)

The displacement vector computed as if the contact comditieere disregarde®u,, = q)
5
T
Uy = [ —0.238 7.619 1.429 —-0.476 26.667 2.286 —0.414 51.429 2.571 } (32)

The beam deflections for this case are shown in Figure 3.

Regarding contact constraints, rigid surfaces limit tlr@as$wverse displacement of the node
3 and both the displacement components of node 4 (see Figufié@ vector of contact con-
straints and the identification table have the form

3 000010000
a=|-11, D=|1000000100 (33)
30 00000O0O0TI1O
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Figure 4. The beam deflection with contact conditions present

The matrix of the penalty coefficients calculated with eoquret (27) and (28) has the form

o O OO

(34)

)
I
Cooc oo ooC OO
o
~J

O OO OO oo oo
DD DD DO oo oo
DO DD DO oo oo
S
S OO O =
N
O OO OO oo oo
O T O OO oo oo
DD DD DO oo oo

coPoocoocoooco

The determinant of the stiffness matrix modified by the cantandition set of equations is
IK + €| = 1.948¢20. The matrix condition number isw(K + €) = 513.871. The decrease
of the matrix condition number by two orders of magnitude whserved{w(K) = 4.572¢4).
Modifications of boundary conditions by moving the rigid fages position results in possible
increase of the matrix condition number. However, even tbestwesult observed were still
better tharb.0e3. The vector of the nodal displacements takes the followalges

T
u:[—0.329 —-2.764 —0.201 —-0.658 3.018 1.709 —0.986 29.992 3.192} (35)

The beam deflection is shown in Figure 4.
The difference between coordinates of the rigid surfaceslaa position of the beam node
after deformation is

0.018
D'u—da=1 0014 | [mm] (36)
0.007

It should be noted that the above difference is an order ofnmade smaller than assuméd
This is probably due to the fact that there is no possibilitgaiculating the full matrix of the
penalty coefficientg (see equation (27)). However the distance between thesigidce and
beam element is always smaller then the assumed allowedratoe level. The change in the
boundary conditions, ie. the position of the rigid surfacehe value of the load, resulted in

8
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Figure 5. Test example, dimensions are given in inches
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Figure 6. Hemispherical punch deep drawing problem, dimensionsiaes gn Inches

exceeding the projected value &fonly in extreme cases, such as the value of displacements
without contact was a few rows greater than the contactdifitSuch cases seldom occur in
real numerical computations.

5. Numerical examples

The first numerical example considered is the test example ggometry shown in Figure 5.
The initial thickness of the blank was equal 0.035 in. The lGmb friction coefficient was
assumed 0.2.

There were two cases studied. One with classical penaltypapp with penalty coefficient
1.0E+07 and with modified approach with accuracy assumed-Q%) The improvement in
matrix condition number was observed with the use of moddgaltoach. The matrix condition
number in modified approach was equal 3.721074E+02 compar2d05008E+05 obtained
with the usage of classical penalty approach method.

Deep drawing of a thin circular isotropic sheet with a herepal punch is considered
as a second example (Woo, 1968). The geometrical configarafithe problem is shown in
Figure 6. The initial radius of the blank is 2.22 in. The iaitihickness of the blank was equal
0.035 in. The Coulomb friction coefficient was 0.2.
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Figure 7. Matrix condition number during consecutive steps

Fifty linear bending elements have been used in the analysie analysis was performed
with the use of MFP2D program with axisymmetric algorithntiop. The strain hardening law
was assumed in the form (stress unit is [tofjjin

[ 5.4+27.8%%, forz <0.36

o= { 5.4 + 24.429501  forz > 0.36 (37)

Summary indicators of determinants of matrices in all tineps of numerical simulations
are shown in Figure 7. It should be noted that in all but oneeiments the matrix condition
number is improved with the use of modified approach comparethssical penalty method
approach.
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POPRAWA WARUNKOW STABILNO SCI | JEDNOZNACZNO SCI DLA
ZAGADNENIA KONTAKTOWEGO W ANALIZIE TLOCZENIA
BLACH

Streszczenie

Celem niniejszej pracy jest poprawa warunkéw stalditno jednoznaczrsei i zbieznost
zadania lepkoplastycznego ptyniecia materiatu ttocgblaehy poprzez modyfikacje procedury
kontaktu z zastosowaniem zmiennego wspotczynnika kary. ikigjszej pracy rozwzany
jest problem zbiencsci i jednoznaczr&ci rozwiazania nieliniowego problemu symulacji
proceséw ttoczenia blach modelowanych z wykorzystanienywsm-lepkoplastycznego
modelu materiatowego. W symulacji numerycznej procesordedcji zastosowano programy
MFP2D i MFP3D Metody Elementéw Skozonych. Zaleta kodéw numerycznych MFP2D
i MFP3D jest prostota zastosowanego algorytmu analizy ptgaca w konsekwencji na
implementacje modutéw analizy wriwosci metodamiscistymi i optymalizacji procesu
ttoczenia blach. Wada przyjetego modelu materialowegbniestabilnsc numeryczna zadania
wywotana wysokim wskaznikiem uwarunkowania uktadu roiunaodatkowo model kontaktu
zawierajacy funkcje kary pogarsza wskaznik uwarunkoeanacierzy sztywrici.
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