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We deals with two aspects of the geometric description of continuized Bravais monocrys-
tals with many dislocations. First, a triad of vector fields is distinguished constituting
a basis for the C∞-module of smooth vector fields tangent to the body. This moving
frame defines its object of anholonomity as well as an intrinsic (“material”) Riemannian
metric of the body. Second, these geometric objects are used to define both the notions of
principal congruence of Volterra-type effective dislocations and principal local Burgers
vector associated with these congruences. The main topics discussed are (i) self-balance
equations of dislocations and secondary point defects generated by distributions of these
dislocations; (ii) a linkage of the Bianchi classification of three-dimensional real Lie
algebras with the physical classification of principal local Burgers vectors.
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1. INTRODUCTION

It is known that the occurrence of many dislocations in a Bravais monocrystal
generates a bend in originally straight lattice lines of this crystal (Orlov, 1983).
The distorted lattice lines can be represented, in a continuous limit approximation,
by a system of three independent congruences of curves, and tangents to these
curves definelocal crystallographic directionsof the continuized Bravais crystal
with dislocations. Planes spanned by two local crystallographic directions arelocal
crystal planes.If a crystallographic congruence, that is, a congruence of lattice
lines, is normal (Eisenhart, 1964) and its curves are orthogonal to local crystal
planes everywhere, the curves are orthogonal trajectories of a family ofcrystal
surfacesof the continuously dislocated Bravais crystal (Trzecsowski, 2001).

More precisely, we are dealing with the following geometric description of
these crystals (Trzecsowski, 2001). LetB ⊂ E3 denote abody identified with its
distinguished spatial configurations being an open subset of the three-dimensional
Euclidean point spaceE3 and contractible to a point. We will consider curvilinear
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coordinate systemsX = (XA; A = 1, 2, 3) onB such that [XA] = cm. Let σA

denote a coordinate curve

σA : (−ε, ε) 3 s→ X−1(X(p)+ s ∈A) ∈ B,

∈A= (δAB; B→ 1, 2, 3), σA(0)= p ∈ B, [s] = cm, (1.1)

with the tangent vectorcA(p) defined by

cA(p) = σ̇A(0) ∈ E3, [cA(p)] = cm−1, (1.2)

whereσ̇A = dσA/ds andE3 denotes a three-dimensional Euclidean vector space
identified with the space of all translations inE3. In differential geometry the
vector fieldcA : B→ E3 is usually identified with the partial derivative operator
∂A = ∂/∂XA. In this sense, a moving frame8 = (Ea; a = 1, 2, 3) onB can be
identified with the following first-order differential operators:

Ea = e
a

A∂A, e
a

A ∈ C∞(B), [Ea] = cm−1. (1.3)

The moving frame8 can be considered as the one defining a system of three
independent congruences oflattice linesof the continuous Bravais crystal with
dislocations and8 is called then aBravais moving frame.

Next, we can define the nondimensional tensor measureS[8] of anholonomity
of 8 such thatS[8] = 0, iff dislocations are absent. Namely, if8∗ = (Ea; a =
1, 2, 3) is the Bravais moving coframe dual to8 of Eq. (1.3)

Ea = a
e A d XA,

a
e A ∈ C∞(B),

〈Ea, Eb〉 = a
e A e

b

A = δa
b; [Ea] = [d XA] = cm, (1.4)

then the tensor fieldS[8] defined by

S[8] = d Ea ⊗ Ea = Sc
abEa ⊗ Eb ⊗ Ec

Sab
c ∈ C∞(B), [Sab

c] = cm−1 (1.5)

and the object of anholonomityCab
c ∈ C∞(B) of 8 defined by

[Ea, Eb] = Ea◦Eb − Eb ◦ Ea = Cc
abEc (1.6)

are related according to the following formula (Yano, 1958):

Sab
c = −1

2
Cc

ab. (1.7)

It follows from (1.5)–(1.7) that

S[8] = 0 iff Ea = ∂/∂ξa, a = 1, 2, 3, (1.8)

whereξ = (ξa) is a coordinate system ofB. Thus, the tensor fieldS[8] can be
accepted as a measure of the distortion of lattice lines due to dislocations. The lack
of this distortion is identified with the lack of dislocations.
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The occurrence of dislocations is accompanied with the appearance ofsec-
ondary point defectsgenerated by the distribution of these dislocations (e.g., be-
cause of intersections of dislocation lines—Oding, 1961). Consequently, the metric
properties of Bravais crystals with many dislocations are in general non-Euclidean.
It can be modeled by the assumption that the considered body is additionally en-
dowed with such Riemannian metric that reduces to a Euclidean metric when
dislocations are absent. Thisintrinsic metric tensorcan be taken in the following
form (Trzecsowski, 1993, 2001):

g[8] = δabEa ⊗ Eb = gABd XA ⊗ d XB,

gAB = a
e A

b
e B δab, [gAB] = [1]. (1.9)

The secondary point defects influence the slip phenomenon (Trzecsowski,
2001). It can be modeled by means of the treatment of lattice lines and crystal sur-
faces as those located in the Riemannianmaterial spaceBg = (B, g[8]) associated
with the considered distribution of dislocations (Trzecsowski, 2001).

It ought to be stressed that it is usually assumed that dislocations have no
influence on metric properties of a crystal (Kr¨oner, 1986). In the proposed ap-
proach, we assume that dislocations have no influence on local metric properties
(of a crystal) only. Namely, the base vector fields of a Bravais moving frame are
considered as those defining the local crystallographic directions as well as local
scales of the Riemannian internal length measurement along these directions. It is
a representation of theshort-range orderof continuously dislocated crystal with
secondary point defect. The above-defined tensor measure of anholonomity and
the curvature tensor (e.g., Eisenhart, 1964) of the Riemannian material space rep-
resent thelong-range distortionof this crystal (Trzecsowski, 1994). The main topics
of this paper, discussed in accordance with this model of the long-range distortion
due to dislocations are (i) self-balance equations of dislocations and secondary
point defects; (ii) a linkage of the Bianchi classification of three-dimensional real
Lie algebras with the physical classification of congruences of dislocation lines
associated with these algebras.

2. ANHOLONOMITY AND DENSITIES OF DISLOCATIONS

Let us consider the tensor measure of anholonomityS[8] of (1.5) as a tensor
field on the Riemannian material spaceBg (Section 1). We can introduce then
the so-calleddislocation density tensorα as an geometric object defined on this
material space (Trzecsowski, 1984, 2001)

α = αabEa ⊗ Eb, [α] = cm−3,

αab = eacdScd
b, [αab] = cm−1, (2.1)
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whereeabc ∗=∈abcdenotes the permutation symbol∈abcconsidered as a contravari-
ant 3-vector density of weight+1 inBg (GolÃacb, 1966);

∗=means that a relation is
valid in a distinguished coordinate system (or a base). The componentαab of (2.1)
can be written in the following form:

αab = γ ab+ ωab,

γ ab = α(ab), ωab = α[ab] = 1

2
tce

cba, (2.2)

and

ta = eabcα
bc = Cc

ac, (2.3)

whereeabc
∗=∈abc denotes the permutation symbol∈abc (=∈abc) considered as a

covariant 3-vector density of weight—1 inBg (GolÃacb, 1966).
Thus, according to (1.5)–(1.7) and (2.1)–(2.2), the object of anholonomity

Cc
ab can be written in terms of the dislocation density tensor

Cc
ab = t[bδ

a
c] − ebcdγ

da. (2.4)

It follows from (1.6) and (2.4) that

[E3, E2] = γ 11E1+
(
γ 12+ 1

2
t3

)
E2+

(
γ 13− 1

2
t2

)
E3,

[E1, E3] =
(
γ 21− 1

2
t3

)
E1+ γ 22E2+

(
γ 23+ 1

2
t1

)
E3,

[E2, E1] =
(
γ 31+ 1

2
t2

)
E1+

(
γ 32− 1

2
t1

)
E2+ γ 33E3. (2.5)

Let ∇g denote the Levi-Civita covariant derivative based on the intrinsic metric
tensorg[8] of (1.9) (Choquet-Bruhatet al., 1977). Then

∇gEa = ωa
b ⊗ Eb,

ωa
b = ωc

b
aEc, ωa

[ab] =
1

2
ca

bc, (2.6)

and

divgEa = ∇g
A e

a

A = g−1/2∂A
(
g1/2 e

a

A
)
,

g = det(gAB), (2.7)

where (1.3) and (1.9) were taken into account. It follows from (1.3), (1.4), (2.4),
(2.6), and (2.7) that the followingself-balance equationswould be fulfilled:

divgEa = ta, a = 1, 2, 3. (2.8)
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We see that the long-range distortion of a Bravais crystal with many disloca-
tions can be characterized, in a continuous limit, by a pair (γ, t) where

γ = γ abEa ⊗ Eb, γ ab = γ ba; [γ ] = cm−3,

t = aEa, ta = δabtb; [t ] = cm−2. (2.9)

Note that if rankγ ≥ 2, then the system9 = (la; a = 1, 2, 3) of its principal
vectors is defined univocally up to its orientation. Therefore, we can assume that

γ = γ ala ⊗ la,

la · lb = δab, γ a ∈ C∞(B),

[la] = [γ a] = cm−1, (2.10)

where, according to (1.9) and (2.10)

l = Qa
bEb, Qb

a ∈ C∞(B),

Q = (Qb
a) : B→ SO(E3). (2.11)

Let Ld(B) denote a finite total length of dislocation lines contained in the
Bravais crystalB ⊂ E3. Thescalar volume dislocation densityρ is defined by the
condition that (Trzecsowski, 2001)

0〈Ld(B) =
∫
B

ρdVg〈∞,

ρ ∈ C∞(B), ρ〉0, [ρ] = cm−2 (2.12)

wheredVg denotes the Riemannian volume element (Eisenhart, 1964). The pair
(ρ , α) of dislocation densities defines the so-called local Burgers vectorb of a
congruence of effective Volterra-type dislocation lines with their tangentg[Φ]-
versorl (Trzecsowski, 1994, 2000, 2001)

ρb = lα,

bg = ‖b‖g = (b · b)1/2〉0, ‖l‖g = 1,

[l] = cm−1, [b] = [1], [bg] = cm. (2.13)

There exist types of effective dislocations defined by relationships between the
tangent vectorl and the local Burgers vectorb: edge, screw, and mixed (Trzecsowski,
2001). If the local Burgers vector of (2.13) vanish then the corresponding congru-
ence of curves does not consist of dislocation lines. Ifl is a principal vector ofγ

γ l = ηl, ‖l‖g = 1, (2.14)

and thel-congruence is endowed with a nonvanishing local Burgers vector, then
this congruence of dislocations and its local Burgers vector are calledprincipal
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(Trzecsowski, 2000, 2001). If rankγ ≥ 2, then there exist three distinguished con-
gruences of curves and at least two of them are principal congruences of dislo-
cations (edge, screw, or mixed) (Trzecsowski, 2001). Particularly, it follows from
(2.1), (2.2), (2.8)–(2.10), and (2.13) that these are principal congruences of screw
dislocations if and only if

divgEa = 0, a = 1, 2, 3. (2.15)

Note that ifγ = 0, then anyl-congruence, except the casel = t/‖t‖g for which
bg = 0, consists of edge dislocations (Trzecsowski, 2001).

3. JACOBI IDENTITY

Let W(B) denote the set of all smooth vector fields onB tangent toB and
identified with the linear first-order differential operatorsu = uA∂A, uA ∈ C∞(B),
whereu(p) = uA(X(p))∂A|p (Section 1). SinceW(B) is closed under addition of
these vector fields and their multiplication by smooth functions onB, it is the
so-calledlinear module(Choquet-Bruhatet al., 1977; Sikorski, 1972). A Bravais
moving8 = (Ea) of (1.3) is avectorial baseof W(B). It means that a vector
field u ∈ W(B) can be univocally represented in the formu = uaEa, ua ∈ C∞(B)
(Sikorski, 1972). We can also define an internal operation inW(B) by means of
the Lie bracket (see 1.6)

[u, v] = u ◦ v− v ◦ u. (3.1)

The multiplication defined by the Lie bracket is distributive with respect to addition
and anticommutative; it is not associative but it satisfies instead theJacobi identity.

[u1, [u2, u3]] + [u2, [u3, u1]] + [u3, [u2, u1]] = 0. (3.2)

The moduleW(B) together with the above-defined internal operation is aLie
algebra(Choquet-Bruhatet al., 1977).

It follows from (1.6) and (2.4) that applying the Jacobi identity to three vector
fieldsEa, Eb, andEc, the followingself-balance equationshould be fulfilled:

∂bα
ab = −αabtb, (3.3)

where∂a denotes the derivative in the directionea = e
a

ACA, that is (see (1.2) and

(1.3)):

∂a = ∂ea = e
a

A∂A = Ea, (3.4)

or, equivalently

∂bγ
ab+ 1

2
eabc∂btc = −γ abtb, (3.5)
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where (2.1) and (2.2) were taken into account. Particularly, in the case (2.15) we
obtain that

∂bγ
ab = 0. (3.6)

Let us consider the case

γ abtb = 0,

tg = ‖t‖g = (tata)1/2 ≥ 0. (3.7)

Then

∂bα
ab = ∂bγ

ab+ 1

2
eabc∂btc = 0. (3.8)

Moreover, according to (2.10) and (2.11), we can take without loss of generality
that

t = t3l3, l3 = E3, (3.9)

and

Qb
a = cosθδa

b + (1− cosθ )δa
3δ3b − sinθ ∈bc

a,

∈bc
a = δad ∈dbc, θ : B→ 〈0,π〉. (3.10)

Then

l1 = cosθE1+ sinθE2,

l2 = − sinθE1+ cosθE2. (3.11)

It follows from (2.1), (2.2), (2.9), (2.10), (2.13), (2.14), (3.7), and (3.9) that the
three principal congruences of dislocations defined byg[Φ]-versorsl1, l2, andl3
are endowed with the principal local Burgers vectors (Section 2)b1, b2, andb3

given by

ρb1 = γ 1l1+ µm1,

ρb2 = γ 2l2+ µm2,

ρb3 = γ 3l3, (3.12)

where

µ = tg/2, tg = |t3|, γ 3µ = 0,

m1 = −l2, m2 = l1, la · lb = δab. (3.13)

Thus

ρbg,α =
√

(γ α)2+ µ2, α = 1, 2,

ρbg,3 = |γ 3|, bg,a = ‖ba‖g. (3.14)
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and

cosψ = b1 · b2

bg,1bg,2
= 2µ(γ 1− γ 2)/bg,1bg,2. (3.15)

It follows that

ψ = π

2
iff µ(γ 1− γ 2) = 0. (3.16)

If

γ 3 = 0, tg ≥ 0, (3.17)

thenb3 = 0, which means that the principal vectorl 3 does not define a congruence
of dislocations. The two remaining principal vectorsl 1 andl 2 define congruences
of mixed dislocations with local Burgers vectorsb1 andb2 of the following form:

ρb1 = (γ 1 cosθ + µ sinθ )E1+ (γ 1 sinθ − µ cosθ )E2,

ρb2 = (−γ 2 sinθ + µ cosθ )E1+ (γ 2 cosθ + µ sinθ )E2, (3.18)

where (3.11)–(3.13) were taken into account. Thus, we are dealing with such
principal congruences of dislocations that their tangents (l 1 andl 2) and their local
Burgers vectors (b1 andb2) are located on the same planes of the two-dimensional
distributionπ (E1, E2) of local crystal planes spanned, at each pointp ∈ B, by
vectorsE1(p) andE2(p). It means thatπ (E1, E2)-planes are virtuallylocal slip
planes(Trzecsowski, 2001). If additionally, (3.6) is fulfilled, then

dt= 0, i.e. t = t3E3 = dϕ, (3.19)

where (3.8) and (3.9) were taken into account, and the crystal surfaces (Section 1)∑
c
= ϕ−1(c), c ∈ R, (3.20)

considered as surfaces in the material spaceBg, define in this space a representation
of virtual slip surfacesnormal toE3-direction.

The principal Burgers vectorsb1 andb2 of (3.18) are tangent to lattice lines,
analogically as it takes place in the case of single dislocations in discrete crystal
structures (Hull and Bacon, 1984), only if

γ 1 = γ 2 = γ ;B→ (0,∞), γ 3− 0,

µ = |κ| = γ tgθ , κ = 1

2
t3, θ : B→ 〈0,π/2〉, (3.21)

whereγ , θ ∈ C∞(B). Then

ρbα = (γ / cosθ )Eα, α = 1, 2,

b1 · b2 = 0, bg,1 = bg,2 = bg, (3.22)
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where

ρbg −
√
γ 2+ κ2 = γ / cosθ. (3.23)

Particularly, it follows from (2.5), (2.10), (3.9), (3.11), and (3.21) that forθ = 0,
we have

tg = 0, la = Ea, a = 1, 2, 3, (3.24)

and

[E2, E1] = 0, [E1, E3] = γ E2, [E3, E2] = γ E1, (3.25)

where the Bravais moving frame8 = (Ea) is additionally constrained by (2.15).
It follows from (3.22)–(3.24) that we are dealing with two principal congruences
consisting of screw dislocations and such that

ρbg = γ. (3.26)

If (see the remark at the very end of Section 2)

γ = 0, t = t3E3, t3〉0,

lα = Eα, α = 1, 2, (3.27)

then (2.5) reduces to

[E1, E2] = 0, [E3.Eα] = κEα, α = 1, 2,

κ = 1

2
t3 : B→ (0,∞), (3.28)

and, according to (3.12) and (3.13), we have

ρb1 = κE2, ρb2 = κE1, b3 = 0, (3.29)

so, thatbg,1 = bg,2 = bg where

ρbg = κ. (3.30)

It means that theEα-congruences,α = 1, 2, consist of edge dislocations of the
same strength.
If additionally there exists a smooth functionH :R→ (0,∞), [H ] = cm−1, such
that

∀p ∈
∑

c
, κ(p) = H (c), (3.31)

where
∑

c ⊂ Bg denotes the crystal surfaces defined by (3.20) and considered as
a two-dimensional submanifold of the material spaceBg, then

∑
c is a flat surface

with the constant mean curvatureH (c) (Trzecsowski, 2001). Thus, it is virtually a
single glidecase (Trzecsowski, 2001).
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4. BIANCHI-TYPE DISTORTIONS

A basis8 = (Ea) of the linear moduleW(B) (Section 3) spans a three-
dimensional real vector spaceW8(B) of the so-called8-parallel vector fields onB

W8(B) = {v = vaEa, va ∈ R} ⊂ W(B). (4.1)

If the object of anholonomity of (1.6) consists of constants

Ca
bc = const., (4.2)

then the Lie bracket of (3.1) defines in the vector spaceW8(B) the structure
of a three-dimensional real Lie algebra. The components of geometric objects
appearing in (2.1)–(2.5) are constants and (3.5) reduces to (3.7). Therefore, (2.11)
and (3.9)–(3.11) withQb

a = const.would be valid and, without loss of generality,
we can restrict ourselves to the case

la = Ea, a = 1, 2, 3. (4.3)

The commutation rules of (2.5) takes, according to (2.10) and (3.9), the following
canonical form (Dubrovinet al., 1979):

[E3, E2] = γ 1E1+ κE2, [E1, E3] = −κE1+ γ 2E2,

[E2, E1] = γ 3E3, (4.4)

where

κ = 1

3
t3, κγ 3 = 0. (4.5)

Moreover, it follows from (2.8), (3.9), and (4.5) that the following conditions would
be fulfilled

divgE1 = divgE2 = 0, divgE3 = 2κ. (4.6)

The principal vectors of (2.10) and (4.3) define principal congruences of
dislocations endowed with the (principal) local Burgers vectorsba, a = 1, 2, 3,
given by

ρb1 = γ 1E1− µE2,

ρb2 = γ 2E2− µE1,

ρb3 = γ 3E3; µ = |κ| ≥ 0. (4.7)

If κ 6= 0, thenγ 3 = 0 what means thatE3 does not define a congruence of dislo-
cations;E1 andE2-congruences consist of mixed or edge dislocations. Ifγ 3 6= 0,
thenµ = 0 what means that we are dealing with congruences of screw dislocations
constrained by (2.15). It follows from (4.7) that

ρbg,a = const., a = 1, 2, 3, (4.8)
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wherebg,a = ‖ba‖g, and thus

p = const., iff bg,a = const., a = 1, 2, 3. (4.9)

We will call uniformly densesuch distributions of dislocations for which

αab = const., ρ = const., (4.10)

It ought to be stressed that the scalar volume dislocation densityρ of a finite total
lengthLd(B) of dislocations contained in the Bravais crystalB (Section 2) is mea-
sured with respect to material volume elementdVg. Consequently, for uniformly
dense distributions of dislocations, we have:

ρ = Ld(B)/Vg(B),

0 〈 Vg(B) =
∫
B

dVg〈∞, (4.11)

where (2.12) and (4.7) were taken into account.
The Bianchi classification of three-dimensional real Lie algebras (Dubrovin

et al., 1979) offers an opportunity for a comprehensive classification of all uni-
formly dense distributions of dislocations. This classification can be just as well
interpreted as a list ofelementary Bianchi-type distortionsof continuized Bravais
crystal due to dislocations (see Section 5—Final remarks).

Let us consider, as an example, the case of mutually orthogonal principal local
Burgers vectors. It follows from (3.16) and (4.7) that then the following conditions
would be fulfilled

κ(γ 1− γ 2) = 0, κγ 3 = 0. (4.12)

Particularly, if

κ 6= 0, (4.13)

then

γ 1 = γ 2 = γ , γ 3 = 0. (4.14)

If

γ = 0, κ〉0, (4.15)

then, according to (4.4), the commutation rules of (3.28) withκ = const. take
place. It corresponds to a distribution of edge dislocations (Trzecsowski, 2001) of
Bianchi-type V. The material spaceBg is then a particular case of the so-called
equidistant Riemmanian space (Trzecsowski, 2001). Moreover, in this case the
material space has a constant negative scalar curvature

K = −κ2, (4.16)
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and the flat virtual slip surfaces
∑

c, c ∈ R, of (3.20) has the same constant mean
curvatureH . It follows from (3.30) and (3.31) that for these slip surfaces

H = ρbg. (4.17)

Note that ifρ is interpreted as the mean density of dislocations in a Bravais crystal
andbg is identified with the mean strength of these dislocations, then (4.17) covers
with the well-known approximation of the normal curvatureH of crystal surfaces
in their local crystallographic directions (Trzecsowski, 2001).

If

γ 〉0, κ〉0, (4.18)

then (4.4) can be written in the form

[E3, E2] = γ [E1+ ζE2], [ E1, E3] = γ [E1− ζE2],

[E2, E1] = 0, (4.19)

whereζ is the parameter describing, according to (4.7), (4.14), and (4.18), the ratio
of edge and screw components of the principal local Burgers vectorsb1 andb2

ζ = κ

γ
〉0. (4.20)

The commutation rules of (4.19) define the Bianchi Lie algebra of type VII(ζ ),
ζ 〉0. The such defined distributions of dislocations have principal congruences of
mixed dislocations of the same strength given by

bg,2 = bg,1 = bg(ζ ),

ρbg(ζ ) = γ
√

1+ ζ 2. (4.21)

Note that ifbg(ζ1) 6= bg(ζ2), then the corresponding Lie algebras VII(ζ ) and VII(ζ )
are not isomorphic (Dubrovinet al., 1979). Thus, we are dealing with a one
parameter family of physically different distortions of a Bravais crystal structure
due to many dislocations.

If

γ1 = γ2 = γ 〉0, ζ → 0+, (4.22)

then VII(ζ ) tends to the Bianchi Lie algebra VII(0) defined by (3.25) withγ =
const. and the material spaceBg is flat (Trzecsowski, 2001). It means that the
secondary point defects have no influence on metric properties of the dislocated
Bravais crystal. Thus, in this case (2.15) is fulfilled for a flat intrinsic metricg[8].
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5. FINAL REMARKS

Let us return to the tensor measureS[8] of anholonomity of a Bravais moving
frame8 = (Ea) (Section 1). It is easy to see that the dependence8→ S[8] is in-
variant under the groupGL+(3) of all real 3× 3 matrices with positive determinant
(Trzecsowski and SlÃawianowski, 1990)

∀L ∈ GL+(3), S[8L] = S[8],

8L = (EaLb
a; b = 1, 2, 3), L = (Lb

a; a, b = 1, 2, 3). (5.1)

This global invariance means that homogeneous deformations of a body with
dislocations do not influence the fundamental physical field describing the long-
range distortion of the crystalline structure because of dislocations. If we restrict
ourselves to unimodular homogeneous deformations (i.e.L ∈ SL(3)), then the
scalar volume density is additionally preserved.

Therefore, we can anticipate the same global invariance of Euler–Lagrange
equations describing a static and self-equilibrium distribution of dislocations. It
can be shown that there exists such a class of affinely invariant Euler–Lagrange
equations that uniformly dense distributions of dislocations of orthogonal types
(i.e., so(3) or so(2,1)-type) are described by universal solutions of these equations
(Trzecsowski and SlÃawianowski, 1990). It suggests that the uniformly dense distri-
bution of dislocations can be treated as afundamental stateof the distorted Bravais
structure. Therefore, a fundamental state here is not the state of an ideal crystal
structure, but the state of its elementary distortion due to dislocations.
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