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Self-Balance Equations and Bianchi-Type
Distortions in the Theory of Dislocations
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We deals with two aspects of the geometric description of continuized Bravais monocrys-
tals with many dislocations. First, a triad of vector fields is distinguished constituting

a basis for the €-module of smooth vector fields tangent to the body. This moving
frame defines its object of anholonomity as well as an intrinsic (“material”) Riemannian
metric of the body. Second, these geometric objects are used to define both the notions of
principal congruence of Volterra-type effective dislocations and principal local Burgers
vector associated with these congruences. The main topics discussed are (i) self-balance
equations of dislocations and secondary point defects generated by distributions of these
dislocations; (ii) a linkage of the Bianchi classification of three-dimensional real Lie
algebras with the physical classification of principal local Burgers vectors.
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1. INTRODUCTION

Itis known that the occurrence of many dislocations in a Bravais monocrystal
generates a bend in originally straight lattice lines of this crystal (Orlov, 1983).
The distorted lattice lines can be represented, in a continuous limit approximation,
by a system of three independent congruences of curves, and tangents to these
curves defindocal crystallographic directionsf the continuized Bravais crystal
with dislocations. Planes spanned by two local crystallographic directiofecate
crystal planeslf a crystallographic congruencehat is, a congruence of lattice
lines, is normal (Eisenhart, 1964) and its curves are orthogonal to local crystal
planes everywhere, the curves are orthogonal trajectories of a famiy sl
surfacesf the continuously dislocated Bravais crystal (J&aaski, 2001).

More precisely, we are dealing with the following geometric description of
these crystals (Trz@wski, 2001). Le3 ¢ E3 denote ebodyidentified with its
distinguished spatial configurations being an open subset of the three-dimensional
Euclidean point spacg® and contractible to a point. We will consider curvilinear
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coordinate systemX = (X”; A= 1, 2, 3) onB such that K] = cm. Letoa
denote a coordinate curve

oa:(—&6) 35— XYX(p)+5sen) € B,

ea= (6ag;B—>1,2,3), oa(0)=pe B, [s] =cm, (1.2)
with the tangent vectara(p) defined by
ca(p) = oa(0) € E%, [ca(p)] =cm, 1.2)

whereo s = doa/dsandES denotes a three-dimensional Euclidean vector space
identified with the space of all translations E?. In differential geometry the
vector fieldca : B — E?2 is usually identified with the partial derivative operator
da = 3/3XA. In this sense, a moving frame = (E,; a = 1, 2, 3) onB3 can be
identified with the following first-order differential operators:
A= gAaA, aeA € C®(B), [Ea]l =cmt (1.3)

The moving framed can be considered as the one defining a system of three
independent congruences lattice linesof the continuous Bravais crystal with
dislocations anab is called then &ravais moving frame

Next, we can define the nondimensional tensor meegudrpof anholonomity

of ® such that§ ®] = 0, iff dislocations are absent. Namely,df* = (E?; a =
1, 2, 3) is the Bravais moving coframe dual®oof Eq. (1.3)

E2—@,dXA, €, e C®(B),
(E% Ep) =€ae” = 5§ [E] =[dX*] =cm, (1.4)
then the tensor fiel& @] defined by
o] =dE?® E, = SS,E?Q EP ® E¢

Sw® € C¥(B), [Sw]=cm™ (1.5)
and the object of anholonomiy,,° € C*(B) of ® defined by
[Ea, Eb] = EaoEp — Ep o Ea = CS Ec (1.6)

are related according to the following formula (Yano, 1958):

1
Sw’ = _Ecgb- (1.7)

It follows from (1.5)—(1.7) that
S o] =0 iff E;=09/0¢% a=1,2,3, (1.8)

where& = (£2) is a coordinate system &. Thus, the tensor fiel@ ®] can be
accepted as a measure of the distortion of lattice lines due to dislocations. The lack
of this distortion is identified with the lack of dislocations.



Self-Balance Equations and Bianchi-Type Distortions 713

The occurrence of dislocations is accompanied with the appearases-of
ondary point defectgenerated by the distribution of these dislocations (e.qg., be-
cause of intersections of dislocation lines—Oding, 1961). Consequently, the metric
properties of Bravais crystals with many dislocations are in general non-Euclidean.
It can be modeled by the assumption that the considered body is additionally en-
dowed with such Riemannian metric that reduces to a Euclidean metric when
dislocations are absent. Thigrinsic metric tensocan be taken in the following
form (Trzesowski, 1993, 2001):

9[®] = 8bE? ® E® = gapd X* @ d X5,
b
Ors = €0, [gas] = [1]. (1.9)

The secondary point defects influence the slip phenomenon @i,
2001). It can be modeled by means of the treatment of lattice lines and crystal sur-
faces as those located in the Riemanmiterial spacéy = (B, g[ ]) associated
with the considered distribution of dislocations (Tspe/ski, 2001).

It ought to be stressed that it is usually assumed that dislocations have no
influence on metric properties of a crystal ¢Ker, 1986). In the proposed ap-
proach, we assume that dislocations have no influence on local metric properties
(of a crystal) only. Namely, the base vector fields of a Bravais moving frame are
considered as those defining the local crystallographic directions as well as local
scales of the Riemannian internal length measurement along these directions. Itis
a representation of th&hort-range ordeof continuously dislocated crystal with
secondary point defect. The above-defined tensor measure of anholonomity and
the curvature tensor (e.g., Eisenhart, 1964) of the Riemannian material space rep-
resent théong-range distortiorof this crystal (Trzeowski, 1994). The main topics
of this paper, discussed in accordance with this model of the long-range distortion
due to dislocations are (i) self-balance equations of dislocations and secondary
point defects; (ii) a linkage of the Bianchi classification of three-dimensional real
Lie algebras with the physical classification of congruences of dislocation lines
associated with these algebras.

2. ANHOLONOMITY AND DENSITIES OF DISLOCATIONS

Let us consider the tensor measure of anholonoBiib] of (1.5) as a tensor
field on the Riemannian material spag (Section 1). We can introduce then
the so-calleddislocation density tensar as an geometric object defined on this
material space (Trz®wski, 1984, 2001)

oa=0®E,®Ep, [a] =cm 3,

aab — eacd&db’ [aab] — cm‘l, (2_1)



714 Trzesowski

wheree??® £ cab¢denotes the permutation symksfe considered as a contravari-
ant 3-vector density of weight1 in By (Golab, 1966);= means that a relation is
valid in a distinguished coordinate system (or a base). The compeffeoit(2.1)
can be written in the following form:

o =y + o™,
yab Q@) ab _ labl %‘tcecba, 2.2)
and
ta = €™ = C, (2.3)

whereespe = €anc denotes the permutation symbal,. (=€) considered as a
covariant 3-vector density of weight—1 18y, (Golab, 1966).

Thus, according to (1.5)—(1.7) and (2.1)—(2.2), the object of anholonomity
C;, can be written in terms of the dislocation density tensor

Cép = tpd3 — ey ™ (2.4)
It follows from (1.6) and (2.4) that

1 1
[Es, Eo] = yME1+ (J/lz—i- §t3) E>+ (V13 — §t2> Es,

1 1
[E]_, E3] = (yzl— §t3> Ei+ )/22E2 + <)/23—|— étl) Es,

1 1
[Ez Eq] = (V31+ §t2> Ei+ <)’32 - Etl) Ez>+ y*°Es. (2.5)

Let V9 denote the Levi-Civita covariant derivative based on the intrinsic metric
tensorg[®] of (1.9) (Choquet-Bruhagt al., 1977). Then

VIE; = wa” ® Ep,
02" = 0’aE®, ofhy = %Cgc (2.6)
and
divgEa = V3" = g /%9a(g"? "),
g = det@ne). (2.7)

where (1.3) and (1.9) were taken into account. It follows from (1.3), (1.4), (2.4),
(2.6), and (2.7) that the followingelf-balance equationsould be fulfilled:

divgEa =ti, a=1,2,3 (2.8)
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We see that the long-range distortion of a Bravais crystal with many disloca-
tions can be characterized, in a continuous limit, by a paitYwhere

y = )/abEa ® Eb, yab — yba; [V] — Cm—S,
t =%E,, t%=68%t; [t] =cm 2 (2.9)

Note that if ranky > 2, then the systen¥ = (I;;a =1, 2, 3) of its principal
vectors is defined univocally up to its orientation. Therefore, we can assume that

Yy =7%a®la,
|a ° Ib = 8ab- Va € COO(B)v
[la] = [y =cm™, (2.10)

where, according to (1.9) and (2.10)
| = Qa°Ep, Qu® € C¥(B),
Q = (Qba) B — SO(E3). (2.11)

Let Ly4(B) denote a finite total length of dislocation lines contained in the
Bravais crystaB c EZ. Thescalar volume dislocation densityis defined by the
condition that (Trzeowski, 2001)

O(La(B) = /pdVg(oo,
B

p € C®¥(B), p)0, [p] =cm? (2.12)

wheredVy denotes the Riemannian volume element (Eisenhart, 1964). The pair
(p, @) of dislocation densities defines the so-called local Burgers védctdra
congruence of effective Volterra-type dislocation lines with their tanggdi-
versorl (Trzesowski, 1994, 2000, 2001)

pb =la,
by = lIbllg = (b-b)Y*)0, [lllg=1,
l=cm™, [0o]=[1], [bg] =cm. (2.13)

There existtypes of effective dislocations defined by relationships between the
tangentvectdrand the local Burgers vectbredge, screw, and mixed (Trzewski,
2001). If the local Burgers vector of (2.13) vanish then the corresponding congru-
ence of curves does not consist of dislocation linekidfa principal vector ofy

yl=mnl, llg=1, (2.14)

and thel-congruence is endowed with a nonvanishing local Burgers vector, then
this congruence of dislocations and its local Burgers vector are galiedipal
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(Trzesowski, 2000, 2001). If rank > 2, then there exist three distinguished con-
gruences of curves and at least two of them are principal congruences of dislo-
cations (edge, screw, or mixed) (Texavski, 2001). Particularly, it follows from
(2.1), (2.2), (2.8)—(2.10), and (2.13) that these are principal congruences of screw
dislocations if and only if

divgEa =0, a=1,2,3 (2.15)

Note that ify = 0, then anyl-congruence, except the cdse: t/||t||q for which
by = 0, consists of edge dislocations (Tspsvski, 2001).

3. JACOBI IDENTITY

Let W(B) denote the set of all smooth vector fields Briangent to5 and
identified with the linear first-order differential operatars= uAd, u? € C*(B),
whereu(p) = uA(X(p))aap (Section 1). Sinc&V(B) is closed under addition of
these vector fields and their multiplication by smooth functions3ot1it is the
so-calledinear module(Choquet-Bruhagt al,, 1977; Sikorski, 1972). A Bravais
moving ® = (E,) of (1.3) is avectorial baseof W(55). It means that a vector
fieldu € W(B) can be univocally represented in the foura= U2E,, u? € C*°(B)
(Sikorski, 1972). We can also define an internal operatiow/{5) by means of
the Lie bracket (see 1.6)

[uv] =uov—-vou. (3.1)

The multiplication defined by the Lie bracket is distributive with respect to addition
and anticommutative; it is not associative but it satisfies insteathttabi identity

[ug, [uz, us]] + [uz, [us, us]] + [us, [uz, us]] = 0. (3.2)

The moduleW(B) together with the above-defined internal operation isiea
algebra(Choquet-Bruhatt al., 1977).

It follows from (1.6) and (2.4) that applying the Jacobi identity to three vector
fieldsE,, Ep, andEc, the followingself-balance equatioshould be fulfilled:

o = —a®ty, 3.3)

whered, denotes the derivative in the directien= gACA, that is (see (1.2) and
(1.3)):
0 = D, = gAaA = Ea, (3.4)

or, equivalently

1
3b)/ab + éeab(:&btc = —)/ab'[b, (3.5)
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where (2.1) and (2.2) were taken into account. Particularly, in the case (2.15) we
obtain that

dpy® = 0. (3.6)
Let us consider the case
3, =0,
tg= Ity = (tat*)"* = 0. 3.7)
Then
aww=%ﬁﬂéé%mza (3.8)

Moreover, according to (2.10) and (2.11), we can take without loss of generality
that

t =133, I3=Es, (3.9)
and
Qp® = cos8f + (1 — c0s9)8583 — SiNG €pc 2,
€nc? =86 eqo, 0:B— (0,7). (3.10)
Then

Iy = cosHE; + SinbE,,
l, = —sinGE; + cosh Es. (3.11)

It follows from (2.1), (2.2), (2.9), (2.10), (2.13), (2.14), (3.7), and (3.9) that the
three principal congruences of dislocations definedj#]-versorsly, |, andls
are endowed with the principal local Burgers vectors (Sectiob, 2,, andbs
given by

pby = yH1 + pumy,

pby = y 25 + pmy,

pbs = y°ls, (3.12)
where
=192, tg=1t° »°u=0,
mi=—lp, M=ly, la-lp=dap. (3.13)
Thus

pbge =V (y9)2 +u?, a=1,2,

pbgs = [¥3], bga = IIballg. (3.19)
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and
by - b, 1 2
cosy = g 104 2 = 2u(y™ — y~)/bg,1bg 2. (3.15)
It follows that
T,
y=5 it uyt-rH=0 (3.16)
If
y¥=0, tg=>0, (3.17)

thenbs = 0, which means that the principal vectgdoes not define a congruence
of dislocations. The two remaining principal vectbysandl , define congruences
of mixed dislocations with local Burgers vectdrsandb, of the following form:

pby = (y*cosd + using)E; + (y*sind — u coso)Ey,
pby = (—y?sinf + p cosf)Eq + (y?cosh + u sinb)E,, (3.18)

where (3.11)—(3.13) were taken into account. Thus, we are dealing with such
principal congruences of dislocations that their tangdnatar(dl ;) and their local
Burgers vectordy; andb,) are located on the same planes of the two-dimensional
distribution (E;, E) of local crystal planes spanned, at each pard B, by
vectorsE;(p) and Ex(p). It means thatr (E1, E2)-planes are virtuallyocal slip
planes(Trzesowski, 2001). If additionally, (3.6) is fulfilled, then

dt=0, ie.t =tE3=dg, (3.19)
where (3.8) and (3.9) were taken into account, and the crystal surfaces (Section 1)
Y. .=¢'0), ceR (3.20)

considered as surfaces in the material sggceefine in this space a representation
of virtual slip surfaceshormal toEs-direction.

The principal Burgers vectols andb, of (3.18) are tangent to lattice lines,
analogically as it takes place in the case of single dislocations in discrete crystal
structures (Hull and Bacon, 1984), only if

yt=y2=y;B— (0,00), y*-0,
1
uw=lk|=ytg0, k= Et?" 0:8B— (0,71/2), (3.22)
wherey, 6 € C*(B). Then

pb, = (y/cosf)E,, a=1,2,
by-b, =0, bg1=Dbyo=Dhy, (3.22)
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where

pbg —Vy%2+ k%2 =1y/cosh. (3.23)

Particularly, it follows from (2.5), (2.10), (3.9), (3.11), and (3.21) thatéfet 0,
we have

tg = 0, Ia = Ea, a= 1, 2, 3, (3.24)
and
[E2, E1] =0, [Ey, B3] =yE [Es, E2]l =yEy, (3.25)

where the Bravais moving frame = (E,) is additionally constrained by (2.15).
It follows from (3.22)—(3.24) that we are dealing with two principal congruences
consisting of screw dislocations and such that

phy =y. (3.26)
If (see the remark at the very end of Section 2)
y =0, t=1t3Es t3)0,
ly, =By, @a=1,2, (3.27)
then (2.5) reduces to

[E1, E2] =0, [Es.E,]=«E,, «a=1,2,
K= %t3 : B — (0, 00), (3.28)

and, according to (3.12) and (3.13), we have
pby =kEy, pb,=«Ey, b3=0, (3.29)
so, thatby 1 = by > = by where
pby = «. (3.30)

It means that thde,-congruencesy = 1, 2, consist of edge dislocations of the
same strength.

If additionally there exists a smooth functi¢h: R — (0, 00), [H] = cm™, such
that

vpe Y . «(p)=H(), (3.31)

where) . C By denotes the crystal surfaces defined by (3.20) and considered as
a two-dimensional submanifold of the material spAggethen) s a flat surface

with the constant mean curvaturg(c) (Trzesowski, 2001). Thus, it is virtually a
single glidecase (Trzeowski, 2001).
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4. BIANCHI-TYPE DISTORTIONS

A basis ® = (E,) of the linear moduleWV(B) (Section 3) spans a three-
dimensional real vector spalé; (13) of the so-calledb-parallel vector fields o8

W (B) = {v = V?E,, v? € R} € W(B). (4.2)
If the object of anholonomity of (1.6) consists of constants
Cg. = const., 4.2)

then the Lie bracket of (3.1) defines in the vector sp#&g3) the structure

of a three-dimensional real Lie algebra. The components of geometric objects
appearing in (2.1)—(2.5) are constants and (3.5) reduces to (3.7). Therefore, (2.11)
and (3.9)—(3.11) witlQ,? = const would be valid and, without loss of generality,

we can restrict ourselves to the case

la=Ea, a=1,23 (4.3)

The commutation rules of (2.5) takes, according to (2.10) and (3.9), the following
canonical form (Dubroviret al,, 1979):

[Es, E2] = y*E1 +«Ea, [E1, Eg] = —«E1 + y?Ey,
[E2, Eq] = y°Es, (4.4)

where

1
Kzg&xﬁza (4.5)

Moreover, it follows from (2.8), (3.9), and (4.5) that the following conditions would
be fulfilled

divgE; = divgE; =0, divgEz = 2. (4.6)

The principal vectors of (2.10) and (4.3) define principal congruences of
dislocations endowed with the (principal) local Burgers vectyrsa = 1, 2, 3,
given by

pby = y*E1 — uE,

pb, = y?E; — uEy,

pbs = y3Es; p=Ix| > 0. (4.7)
If x # 0, theny® = 0 what means thd s does not define a congruence of dislo-
cations;E, andE,-congruences consist of mixed or edge dislocations? K 0,

thenu = 0 what means that we are dealing with congruences of screw dislocations
constrained by (2.15). It follows from (4.7) that

pbga =const.,, a=1,2,3, (4.8)
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wherebg s = ||ballg, and thus
p =const., iff bga=const,a=1,2,3 (4.9)
We will call uniformly denseuch distributions of dislocations for which
a® = const., p = const., (4.10)

It ought to be stressed that the scalar volume dislocation demsity finite total
lengthL4(B) of dislocations contained in the Bravais crydgiSection 2) is mea-
sured with respect to material volume elemehy,. Consequently, for uniformly
dense distributions of dislocations, we have:

p = La(B)/Vy(B),

0 ( Vg(B) = /dVg(oo, (4.11)
B

where (2.12) and (4.7) were taken into account.

The Bianchi classification of three-dimensional real Lie algebras (Dubrovin
et al., 1979) offers an opportunity for a comprehensive classification of all uni-
formly dense distributions of dislocations. This classification can be just as well
interpreted as a list aflementary Bianchi-type distortion$ continuized Bravais
crystal due to dislocations (see Section 5—Final remarks).

Let us consider, as an example, the case of mutually orthogonal principal local
Burgers vectors. It follows from (3.16) and (4.7) that then the following conditions
would be fulfilled

k(' —y?) =0, «y*=0 4.12)
Particularly, if
Kk #0, (4.13)
then
yt=y’=y, v*=0 (4.14)
If
y =0, «)0, (4.15)

then, according to (4.4), the commutation rules of (3.28) wita const. take
place. It corresponds to a distribution of edge dislocations ébwski, 2001) of
Bianchi-type V. The material spads, is then a particular case of the so-called
equidistant Riemmanian space (Tspevski, 2001). Moreover, in this case the
material space has a constant negative scalar curvature

K = —«2, (4.16)
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and the flat virtual slip surfaces ., ¢ € R, of (3.20) has the same constant mean
curvatureH. It follows from (3.30) and (3.31) that for these slip surfaces

H = phy. (4.17)

Note that ifp is interpreted as the mean density of dislocations in a Bravais crystal
andby is identified with the mean strength of these dislocations, then (4.17) covers
with the well-known approximation of the normal curvatiteof crystal surfaces
in their local crystallographic directions (Tyzawski, 2001).

If

)0, «)0, (4.18)
then (4.4) can be written in the form
[Es, Eo] = y[E1+ B3], [Eu, Es] = y[E1—Eg],
[E2, E1] =0, (4.19)

wheret is the parameter describing, according to (4.7), (4.14), and (4.18), the ratio
of edge and screw components of the principal local Burgers velat@sdb,

¢ =)0 (4.20)

The commutation rules of (4.19) define the Bianchi Lie algebra of type;¥II(
¢£)0. The such defined distributions of dislocations have principal congruences of
mixed dislocations of the same strength given by

bg,2 = bg,l = bg(é')a
phy(¢) = /14 ¢2. (4.21)

Note thatifby(¢1) # bg(22), then the corresponding Lie algebras Y)land VII(¢)
are not isomorphic (Dubroviet al, 1979). Thus, we are dealing with a one
parameter family of physically different distortions of a Bravais crystal structure
due to many dislocations.

If

n=y2=7r)0, ¢— 0y, (4.22)

then VII(¢) tends to the Bianchi Lie algebra VII(0) defined by (3.25) wjith=

const. and the material spady is flat (Trzgsowski, 2001). It means that the
secondary point defects have no influence on metric properties of the dislocated
Bravais crystal. Thus, in this case (2.15) is fulfilled for a flat intrinsic mefirig].
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5. FINAL REMARKS

Let us return to the tensor meas@&] of anholonomity of a Bravais moving
frame® = (E,) (Section 1). Itis easy to see that the depend@nee ] isin-
variant under the group L™ (3) of all real 3x 3 matrices with positive determinant
(Trzesowski and Siwianowski, 1990)

VL € GL*(3), §oL] = 9],
dL = (Ealp’;b=1,2,3), L =(Lp*; a,b=1,2,3) (5.1)

This global invariance means that homogeneous deformations of a body with
dislocations do not influence the fundamental physical field describing the long-
range distortion of the crystalline structure because of dislocations. If we restrict
ourselves to unimodular homogeneous deformations l(i.e.SL(3)), then the
scalar volume density is additionally preserved.

Therefore, we can anticipate the same global invariance of Euler—Lagrange
equations describing a static and self-equilibrium distribution of dislocations. It
can be shown that there exists such a class of affinely invariant Euler—Lagrange
equations that uniformly dense distributions of dislocations of orthogonal types
(i.e., so(3) or so(2,1)-type) are described by universal solutions of these equations
(Trzesowski and Sdwianowski, 1990). It suggests that the uniformly dense distri-
bution of dislocations can be treated darrdamental statef the distorted Bravais
structure. Therefore, a fundamental state here is not the state of an ideal crystal
structure, but the state of its elementary distortion due to dislocations.
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