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Geometrical and variational aspects of the gauge theory of static equilibrium distributions
of dislocations are analysed. The gauge procedure, based on Kondo and Kréner’'s Gedanken
Experiments for dislocated bodies, is formulated and basal interpretation rules of the theory are
proposed. The unimodular invariance of the free gauge field theory is discussed.

1. Introduction

It is well-known that a crystalline solid with a continuous distribution of dislocations can
be described as a locally homogeneous body endowed with such non-Euclidean geometry
that reduces to the Euclidean one if dislocations are absent (e.g. [2, 10-12 and 28]). It can
be illustrated by a simple “Gedanken Experiment”, called the cutting-relaxation procedure,
suggested by Kondo [10, 11] and showing that a body with dislocations can be represented
by a collection of small homogeneous pieces of the body, consisting of the same crystalline
material but translated and rotated with respect to one another (Section 3). This collection
fails to mesh to the form of an Euclidean continuous body, but it can be done if the
body is endowed with a non-Euclidean geometry compensating the collection elements
discrepancy (Section 4).

On the other hand, the second Gedanken Experiment, called the continuization of
the crystal and suggested by Kréner [14, 16], shows that for a continuously dislocated
crystal with a Bravais lattice, there exists (in a continuous limit — see Section 3) a field
of three local crystallographic directions defined up to (acting locally) rotational sym-
metries of that Bravais lattice. The translational symmetries of the crystal are lost in a
continuized crystal but an internal length measurement (in general non-Euclidean) along
these crystallographic directions is preserved.

We can think of in order to adjust the cutting-relaxation procedure to the continuiza-
tion procedure, the rotational discrepancy appearing in the former procedure as a spatial
representation of relative rotations of local crystallographic directions appearing in the
latter procedure (“Consistency condition” — Section 4). If so, a crystalline solid with con-
tinuously distributed dislocations can be described with the help of a local action of spatial
rotations induced by the breakage of material rotational symmetries of a homogeneous
crystalline solid. We can also think of the non-Euclidean internal length measurement

(71])
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along local crystallographic directions, as the one compensating the translational discrep-
ancy of Kondo Gedanken Experiment. It is the very basis for the definition of geometrical
clements of a gauge procedure (Section 4). We will formulate variational elements of this
procedure based on the theory of static equilibrium states of elastic solids (Sections 2, 5
and 6).

2. Classical elasticity

In mechanics of continua, a body is understood as a three-dimensional smooth and
oriented manifold B, globally diffeomorphic to an open subset of a three-dimensional
Euclidean point space E°. These global diffeomorphisms as well as the images of the
body under their action are called its (global) configurations. If o,k : B — E® are
configurations, then a diffeomorphism in E? defined, by

A=gouss T 4B By, (2.1)

where B, = x(B), B, = ¢(B), is called the deformation (of the configuration B,) of the
body. If we identify the tangent spaces Tp(B.) at points P € By with the real Euclidean
vector space E° (space of translations in E?®), then the differential d\ of a deformation A

defines the so-called deformation gradient F, : B, — E* ® E**:
Vuy € E Fo(P)y =dip(y), P é€Bs. (2.2)

If we additionally distinguish a point 0 € E?, then the deformation gradient can be written
in the form of the Frechet derivative D\ of the localization ) of the deformation (see
[27] — Appendix):

F.(P) = D)(0P), G

A(0P) = O0\(P), P € B,.

By using the differentiation rule for composition of functions, we conclude that the de-
formation gradients F, and F; which are derived from the same actual configuration ¢
but correspond to two different reference configurations x and k respectively, are related
by
Fo(P) = Fx(n(P))Px(P), (24)
where P, denotes the deformation gradient of the deformation n = Ko k™' : B, — Bs.
Let us consider the charts X = (X4): B — R’ and z = (2*) : E® — R’ (global or
local) of the body B and the configuration space E3, respectively. If ¢ : B — E’isa
configuration and p € B is a body point, then the coordinates (X', X, X*) = X(p) of the
point p are called its Lagrange coordinates while the coordinates (z', 2%, %) = z(p(p)) of
the image ¢(p) of p under ¢ are called its Eulerian coordinates. If is a distinguished
reference configuration, we can identify the body B with its configuration By and then
the chart X, = X ox~' : B, — R® is called also Lagrange coordinates. In this and the
next section we will differentiate X,-coordinates from X-coordinates but in remaining
sections we will deal with a fixed reference configuration x and both Lagrange coordinate
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systems will be identified. Let 2 = (2*) be Cartesian Eulerian coordinates deﬁned.by an
orthonormal base (gx; &k = 1,2,3) of the Euclidean vector space E® and by a fixed point

0 € E3, ie. for p € B:

2(p(p)) = () & 0p(p) = e 5. 2.5)

If 2% = A¥(X2) is a coordinate description of the deformation A (eq. (2.1)) in Lagrange
coordinates X, and in the above Cartesian coordinates, X = n4(X2) is a coordinate
description (in Lagrange coordinates X, and X;) of the deformation n describing the
passage from B, to B, then (see egs. (2.1)-(2.4)):

Lu(P) = F(Xu(P)),  Pu(P) = H(Xx(P)),
F(X.) = ex ®dN* (X)) = M4 (Xi)er ©@dX4, (2.6)
P(X.) =148 (X:)04®dXE, 84=0/0X4.

The physically equivalent Eulerian coordinates are those defined by Euclidean ge-
ometry of the configuration space E°, i.. these are Cartesian coordinates transforming
according to the rule

2'* = RF )zt + ot

: 2.7
BR=(REN)e00), 8=k 123)ecR, &)

where 0(3) denotes the group of all real orthogonal 3 x 3 matrices. In order to define
the notion of physical equivalence of Lagrange coordinates we have to consider relations
describing material properties of the body. First of all, in the framework of continuum
mechanics, it is admitted that a body B is a set endowed with a non-negative scalar
measure i, the mass distribution of the body, such that for any configuration ¢ of B there
exists a mass density o, of the body in this configuration and for P C B

wP)= [ e,dv, (2.8)
P

where P, = ¢(P) and the integral is defined by means of the Lebesgue measure in the
Euclidean point space E°. If « is a distinguished reference configuration, ¢ = & is another
reference configuration and = % o s~1, then from egs. (2.6) and (2.8) it follows that

ox = |det Pel(oz om). (2.9)
From eqs. (2.6) and (2.9) it follows that the following transformation of affine Lagrange
coordinates:
X'4 = PApX® + b4,
P=(P*g) e GL(3),|detP| =1, b= (") eR,
where GL(3) denotes the group of all real nonsingular 3 x 3 matrices, represents the

relation of physical undistinguishability of two reference configurations defined by their
mass density measuring.

(2.10)
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Next, we have to define a response of the material structure of the body on its de-
formation. In the local theory of the elastic response of material bodies, this response
depends only on the actual configuration of atoms in a macroscopically small (“physically
infinitesimal”) neighbourhood of each point of the body. In such neighbourhood a de-
formed material structure of the body (e.g. its crystalline structure) may be considered
as homogeneously deformed. In this way the description of the elastic response of a
deformed material body may be reduced to the consideration of the influence of defor-
mation gradients on internal forces of this body. If we deal with elasticity as a classical
Lagrangian field theory, the equations describing locally a static equilibrium configura-
tion of an elastic body can be formulated in the form of Euler-Lagrange equations for
variations of an action I,; of actual configurations ¢ defining deformations of a reference
configuration B,:

L(P;¢) = [ Le], 2.11)
Pe

where P, = k(P), P C B is a three-dimensional regular region with a regular closed
boundary and [.[¢] is a differential 3-form on B, (a Lagrangian) functionally depending
on ¢ only through point values of the deformation (2.1) and its deformation gradient, i.e.
(see egs. (2.2), (2.3) and (2.6)):

lk[@](P) = (P, A(P), Fi(P))
= Ly(Xk, ,(\,(XN),f(Xn))dNN(XR)'Xx=XK(P)’

where ) (X)) = A*(X,;) ¢ is a coordinate description of the localization A of A (eq. (2.3))
and dp, y

(2.12)

dpn(Xx) = 0x(Xi)dV (Xy),
dV (X)) = dXLAdX2 hdX)

denotes the mass density 3-form in the reference configuration B,. The condition of the
action functional independence on the choice of a reference configuration means that one
should have (see egs. (2.6), (2.9), (2.12) and (2.13)):

(2.13)

where X; = n(Xy) and z = E(X;\.,) are coordinate descriptions of the deformation

n = Kox~! and the localization z of the deformation A = poi~! (eq. (2.3);), respectively.
The action functional should also be frame indifferent, i.e. it should be invariant under
spatial isometries. It is equivalent to the assumption that the Lagrangian [, has the
following form [26]:

L[e](P) = 1u(P, Cu(P))
= -—o',C(X,v-, g(X;\:))d/*LN(XN)IXn=X~(P)’

where o, is the stored (elastic) energy function in the reference configuration B, and
Cx(P) is the so-called material deformation tensor (or right Cauchy-Green tensor) defined

(2.15)
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Cu(P) = (k" ™¢,)p, PeB,,
o) = 9*(8)p, pE€EB,

where § = 6% ® ¢! denotes the Euclidean metric tensor on E?, ¢ is an actual config-
uration and ¢* denotes pull back of tensors by v [19]. It is easy to see that

gn(P) = fN(P)Tfn(P) = ~C(X~(P)),
Q(Xx) = Cap(Xs)dX ® dXE, (2.17)
CaB(X) = N, 4 (XN, B (X)bh1

(2.16)

where the Eulerian Cartesian coordinates (z*) and the general Lagrangian coordinates
(X#) have been used. The induced on the body B flat metric tensor ¢, is called just as
the metric tensor C, on B, [19]. Particularly, if « is a distinguished (global) reference
configuration and ¢ = &, then

Cr = Bapde® ® de (2.18)
and the Riemannian flat manifold (B, ¢,) can be identified with the reference configura-

tion By considered as a Riemannian submanifold of the Euclidean point space E*. The
cr-orthonormal Lagrange coordinates £ = (£%) defined by eq. (2.18) can be then consid-
ered as Lagrangian coordinates on B, defined by an orthonormal base (casa = 1,2,3)

of the space E* and by a fixed point 0 € E* according to: for P € B,,
&P) = () 0P =¢¢,. (2.19)

The form of the stored energy function o, (eq. (2.15)) means that the so-called second
Piola—Kirchhoff stress tensor S« defined by:

1= 20925 = $45(X,)04 @ 03,
s (2.20)
AB _ Ox - A
S 204 5Cap’ 04 0/0X

is a symmetric tensor (§, = S7). The so-called first Piola-Kirchhoff stress tensor 2y is
defined by (see egs. (2.12), (2.15) and (2.20)):

oL, '
,\t,n = —Qnﬁ - tAkaA ®£k,

oL
tAk = =0k K
oF

The symmetric Cauchy stress tensor 7,,, appearing in the spatial description of elastic
bodies, is defined by

Tood=(0p0Me)Fts=T"oNer® g1,
Tk o )\ = (0p © A/QK)SABFkAFIB ‘

(2.21)

= S4BFlghy, Frp=2F,.

(2.22)
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If external forces are absent then Euler-Lagrange equations have, in Cartesian (Eulerian
as well as Lagrangian) coordinate systems, the following form [36]:

Bt = 0. (2.23)
If the body is homogeneous, i.e. if (see egs. (2.12) and (2.15)):
lh[so](P) = LN(E(Xﬁ))d/'LN(XN)IXK=X,¢(P))

Lu(F) = ~0x(F ),

then egs. (2.6); and (2.20)-(2.22) define a relation between stresses and deformation
gradients of the form:

(2.24)

I(P) = hu(Ec(P)), P € By, (2.25)

where it was denoted T = T, o ), the domain of the function f is the set GL*(£°)
of all nonsingular and orientation preserving tensors F € E>® E* = E’ @ E and the

values of this function are symmetric tensors T € §3 ® §3. The function h,, called
the response function (of the considered elastic body), has a structure depending on the
reference configuration « selected. The choice of & is arbitrary and we must examine the
implications of this fact. It is easy to see that if % is a new reference configuration, then
we obtain from eqs. (2.4), (2.9), (2.14) and (2.24) that for P € B,:

hi(Ex(n(P))) = hn(Lx(P)), (2.26)

which means that the response function defined in such a way characterizes an elastic
~ material independently of the choice of a reference configuration. Thus, although we
define the concept of a material with the help of a fixed reference configuration, the
property of a material being elastic is an intrinsic property of that material. Therefore,
two reference configurations « and & are physically undistinguishable iff (cf. egs. (2.4) and
(2.9)) for P € B,:

|det Po(P)| = 1,

- (2.27)
VFEGL*(E),  ha(F) = hnlEPu(P)) = hx(E).

The set of the values of all deformation gradients P : B, — E*® E?, describing the change
of the reference configuration » and fulfilling the conditions (2.27), constitute a subgroup
G,. of the unimodular group U(E®) C E* ® E? called the symmetry group with respect to
the reference configuration « of the elastic body B. The elements of this group generate
all reference configurations of the elastic body that are physically undistinguishable if we
will restrict ourselves to the mass density and stresses measuring only. Note, that the only
physically admissible deformations of B are those preserving orientation. Therefore, the
physically undistinguishable deformations of a reference configuration are those generated
by elements of the (special) unimodular group SL(EY), i.e. it should be G C SL{E); In
mechanics of continua the elastic solids are defined as those for which there exists such
reference configuration &, called an undeformed state of the body, that its symmetry group
is a subgroup of the special orthogonal group SO( E?). It can be shown [26] that for elastic
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solids
Gx = {Q€SO(E®) : V Fe GL* (B) Lu(FQ) = Lu(F)}. (2.28)

In the case of elastic crystalline solids the symmetry group G, can be considered as the
one describing orthogonal point symmetries of an oriented Bravais lattice [26 27). The
isotropic elastic solids are characterized by the condition that G, = SO( E?) in an unde-
formed state «.

Finally, we see that if x is an undeformed state of a homogeneous elastic solid, Cx
is the metric tensor induced on B by x (eq. (2.18)) and ¢ = (£%) are ch-orthonOImal
Lagrange coordinates on B, then the material space of the considered body can be defined
as a geometric space with a relation of physical equivalence of all Lagrange coordinates
§' = (¢'*) of the following form (cf. eq. (2.10)):

£ = Q%" +¢°,

=(Q") €GCSOB), g¢=(¢")€eR, (2.29)

where G is a group of matrices isomorphic with the symmetry group G, and SO(3) de-
notes the special orthogonal group of 3 x 3 real matrices. Note, that in the continuum
theory of crystalline elastic solids it is admitted that G is a discrete group but the trans-
lations ¢ in the equation (2.29) are assumed to be unrestricted; it is an approximation

of symmetries of real crystals revealing their rotational symmetries only [25]. Because of
that we will consider the group G as the one describing symmetries of a local material
structure of the body, whereas translations appearing in the equation (2.29) will be inter-
preted as transformations describing the homogeneity of this body (see also the concept
of a continuized crystal — Section 3).

3. Dislocated crystalline solid

Assume that a stress-free crystalline solid is loaded by boundary tractions in the elastic
regime. The occurrence of crystalline structure defects can be recognized by that unload-
ing does not take the body back to its original configuration. The unloaded state will
thus contain residual stress field. On the other hand, we assume that the stored energy
is only due to elastic deformations and clearly residual stresses cannot be captured by a
deformation gradient because these would model a body that unloads completely [18].
In the case of dislocated bodies we can characterize deformations of that unloaded state
based on an assumption that the distorted lattice is uniquely defined everywhere (e.g. [2,
10-12]). Namely, following Kondo, one images removing of infinitely small part of a
dislocated crystalline body and allowing it to relax (by removing all boundary tractions)
up to an unstrained state called the natural state. The discrete material structure of the
natural state coincides with a perfect lattice and we can use the difference between these
states and the deformed state as a measure of the stored elastic energy. Let us consider,
in order to describe this measure explicitly, a point P of a reference configuration B,
with Lagrange coordinates X = X, (P), and let dX“ denotes the distance between points
P,Q € B,. If §2°(X) denotes the distance between these material points in a deformed
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state B, and 6£*(X) is the same relaxed material element, then the relations
& ; :
s2i(X) = Fix(X)dX*4,
§E4(X )= Poa(X)dX4, (3.1)
62'(X) = B'a(X)66*(X)

define the so-called distortions: total (F" ), plastic (P®4) and elastic (B',). The elastic
distortion is a measure of the stored elastic energy and from egs. (3.1) it follows that

Fi(Xy= B (X)) P 4(X)- (3.2)

Repeating the Kondo cutting-relaxation procedure for many small elements of the
body, we obtain an amorphous collection of elements of an crystalline solid with a perfect
lattice, which are translated and rotated with respect to one another and, therefore, fail
to mesh to form a homogeneous Euclidean material continuum. It means, among other
things, the discrepancy of relaxed material elements 6§*(X(P)), P € B,. If we define
the moving coframe &* = (E) by

B*(X) = 66%(X),
EY(X) = ea(X)dX4, ea(X)=P°s(X),
then the translational discrepancy of those material elements can be expressed by the

nonintegrability condition of &*, i.e. by the condition that, for at least one 1-form E?, it
should be

(3.3)

T =dE® #0. (3.4)

Such representation of the translational discrepancy ought to be treated as a continuous
limit, neglecting the finitenes of the lattice spacing. We can think, for example, of some
limiting process in which lattice constants of a Bravais lattice decrease more and more
but the lattice rotational symmetries as well as the mass per unit volume and the content
of defects, remain unchanged. The resulting body, called by Kroner continuized crystal
[14, 16], retains locally the most characteristic properties of the original crystal, namely
the existence of three crystallographic directions at each point, the rotational equivalence
of triads of these directions and the countability of lattice steps along these directions.
Let us consider a moving frame ¢ = (Eq;a = 1,2,3) of base vectors parallel to local
crystallographic directions of the continuized crystal, as the one defining relaxed material
line elements of Kondo Gedanken Experiment according to eq. (3.3) and the following
duality condition:

E(X) = eA(0)0s, e (X)ea(X) = 8. (35)

Then, from the Kroner’s Gedanken Experiment, it follows the existence of a local rota-
tional uncertainty to select the moving coframe ¢* = (E?), i.e. these are defined up to the
following transformation:

E“(X) — E'*(X) = Q"(X)E*(X),

Q= (Q%): B — G c SO(3), 5.9
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where G is the group of point symmetries of an ideal Bravais reference lattice Sp, defining
a discrete crystalline structure of the considered crystalline solid and identified with the
material symmetry group of an homogeneous elastic crystalline continuum (see Section 2).
A pair (9, G) describes the short-range order of the dislocated crystalline solid treated as
a locally homogeneous body; we will call such pair the Bravais moving frame. More-
over, the Kréner’s Gedanken Experiment gives also a basis for the definition of a length
measurement within the dislocated crystal [16], although (discrete!) translational sym-
metries of the crystal are losed in the considered limiting process. Namely, because
dislocations have no influence on local metric properties of the crystalline body [14], an
internal length measurement in the body can be defined with the help of a metric tensor
gx of the form

9x(P) = g E*(X(P)) ® E*(X,(P)),

3.7
gab = Ca - Cp = const, P € By, W)

where the constants g,, constitute the metric matrix associated with the base (Cosa
= 1,2,3) of an ideal Bravais reference lattice Sy [28]. Note, that although at each point
P of the reference configuration B, we can define a Bravais lattice Sp, situated in the
space Tp(B.) = E® tangent to B, at P, with zeroth vector op € Tp(B,) as a point of
this lattice and with base vectors E.(Xx(P)), a = 1,2,3, this lattice has only rotational
symmetries of the reference lattice S;. These base vectors do not describe translational
symmetries of Sy although they define internal length measurement scales along local
crystallographic directions at each point of the continuized crystal treated as a locally
homogeneous body.

The important fact to be noted is that the natural coframe basis (d¢®) for the material
space of a homogeneous body (Section 2) is replaced by the moving coframe (E?) for
the material space of a locally homogeneous body. This anholonomic moving coframe
carries all the information about defects inherent in the material. For example from
the condition (3.4) it follows, that circuit integrals of the 1-forms E* around bound-
aries of 2-dimensional regions, can be used to define an intrinsic material Burgers vector.
Because of that the triad of exterior derivatives © = (t%a = 1,2,3) is an infinitesi-
mal counterpart of a system of Burgers vectors of a dislocated lattice [3] and is called
Burgers field [22]. The Burgers field is a measure of the long range distortion of the crys-
talline structure due to dislocations. Its representation with respect to the Bravais moving
coframe:

T = %rg’ch NE°, (3.8)

where A denotes the exterior product, is uniquely defined by the so-called object of an-
holonomity Cy.. € C*°(B,) of this coframe:

C = _(C¢ ’
T e (3.9)
[Eaa Eb] = Cabgca
where [E,, Eb] = E,0 Ey— Eyo E, is the commutator (bracket) of vector fields E, and E,
considered as first order differential operators (eq. (3.5)). It defines the tensorial measure
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S[@] of the dislocation density by [3]:
S[P] = E.®7% = §%.E.® E*® E°,

S |
Sabc = STabc .

(3.10)

Let us observe that the global rescaling of the internal length measurement defined
by

& — L = (EL%),

L= (1) € GL*(3) Le
does not change this tensorial measure [29]:
VLeGL*(3) S[#L) = S[9) (3.12)
and, therefore, we can assume without loss of generality that (see eq. (3.7)):
gx = 6apE* ® E° (3.13)

but, according to the continuized crystal concept, the group G ought to be still the general
point symmetries group.

The integral curves of base vectors E, are interpreted as lattice lines of the distorted
crystalline structure [3]. Note, that if the dislocations are absent, i.e. if

=0 (3.14)

then, up to a global deformation of the body, such defined lattice lines coincide with
geodesics of Euclidean parallelism (i.e. these are straight lines). But in general, lattice
lines are not geodesics of the parallelism defined by the integral length measurement (i.e.
these are not g,-geodesics). It can be shown [35] that lattice lines are g,.-geodesics iff the
base vectors E, are Killing vectors with respect to g, i.e. iff

L@agh’, = 07 (315)

where L denotes the Lie derivative operator (e.g. [6]). It is equivalent to the condition that
the moving frame ¢ = (E,) spans a three-dimensional real Lie algebra g[®] of ¢-parallel
vector fields:

g[?] = {v = v"E, : v" = const} (3.16)

isomorphic with the Lie algebra so(3) of three-dimensional rotations, i.e. having the fol-
lowing commutation rules (see Appendix):

[,\Ea) ,Eb] = €acb§c ) (317)

where €,% = 6%%eqp and egqpc 1S the permutation symbol. The lattice lines system defined
by the condition (3.17) possesses rotational symmetries only and thereby can be considered
as the one being a continual counterpart of discrete disclinations (on classification of
discrete line defects see [22]). Therefore, according to this definition, disclinations are
rather a type of a distribution of dislocations than a separate kind of line defects. It
should be stressed that the above definition of continuously distributed disclinations is not
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generally accepted in the literature (e.g. [4, 8]). More generally, a continuous distribution
of dislocations defined by

Cy, = const, i.e. S%,. = const (3.18)

is called uniformly dense [28]. From the theory of Lie algebras it then follows that there
exists a finite number of types of uniformly dense distributions of dislocations [28]; these
are labelled by types of non-isomorphic three-dimensional real Lie algebras (see e.g. [1]).
For example, it follows from this classification that there exists also another one orthogonal
type of uniformly dense distribution of dislocations, corresponding to the Lie algebra
SO(2,1) of the three-dimensional Lorentz rotations group SO(2,1). These are dislocations
of a shear type because a Lorentz rotation can be considered as the shear deformation
changing a square onto a rhomb (see [27] — Appendix). An Abelian Lie algebra (i.e.
with Cf., = 0) describes the case when dislocations are absent.

4. Geometrical gauging

In Section 3 it was shown that the translational discrepancy appearing in Kondo Gedan-
ken Experiment can be described, in terms of Kroner’s Gedanken Experiment, with the
help of a Bravais moving frame (&, G) (egs. (3.3)-(3.6)) and an internal length measure-
ment tensor g, associated with this moving frame (egs. (3.7) and (3.13)). Let us consider,
in order to describe the rotational discrepancy appearing in Kondo Gedanken Experiment,
infinitesimal relative rotations of local crystallographic directions appearing in Kroner’s
Gedanken experiment. These relative rotations can be described with the help of a Car-
tan connection V assigning to a fixed moving frame ¢ = (E,) a matrix of 1-forms w?,
with values in the Lie algebra so(3) of infinitesimal three-dimensional rotations (e.g. [33)).

Namely, if
VE, =w’ ® E,,
= =8 5 (4.1)
Wi = W E® = wa*pd X4,

then (see Appendix):

% = (wab) =’ ® zc € /\I(BK) ®SO(3),
c (4.2)
W =wadX4,  (76)% = €% = §%%.as,
where Al(B,) denotes the space of 1-forms on B,, Ya, (@ = 1,2,3) are infinitesimal
generators of the rotation group SO(3) and gy is the permutation symbol. It means that
W' = e%ew’ = —w'y,

(4.3)

(N G Q. b
WA b = E peW4y, We b = —We g

and w.*;, are the so-called Ricci coefficients of rotation describing the above mentioned
infinitesimal relative rotations. The antisymmetry condition (4.3); is equivalent to the
metric compatibility condition:

Vg =0 (4.4)
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stating that V is a Riemann-Cartan connection associated with g.. Note, that there

exist two kinds of such connections. Namely, these corresponding to the only ones non-

trivial Lie subgroups of SO(3): 3-parameters group G = SO(3) and 1-parameter abelian

group G = G(n) — the Lie group of all rotations about a fixed axis parallel to a versor

n =n"d, (see Appendix). A Cartan connection assigning to the moving frame ¢ = (£,)

a matrix w of 1-forms with values in the Lie algebra g(n) C so(3) of the group G(n) is
defined by egs. (4.1)—(4.3) with

w® = nw, W=w® Yn, w=wasdX4,

4.5

Un = e Sam®n® =1, n° = const. (45)

The elastic distortion B*, (Section 3) defines an elastic deformation of the Bravais
moving frame according to

FE(X) = B (XD EYX) = F* 5(X)dX2, (4.6)

where F* 4 denotes the total distortion defined by egs. (3.2) and (3.3),. Let us define

an isometry between material and configurational Euclidean spaces by (cf. egs. (2.5) and
(2.19)):

Ca = Lkaéka
Oap = Lkaleékl, LJ = (Lka) € 80(3)

For transformations z* — 2’ and £ — ¢® of Cartesian coordinates defined by egs. (2.7)
and (2.29) respectively, we have

(Ck i Lkaga, :l}lk s Lkaé-la (48)

4.7)

iff
R=T(Q)=LQL™", a=Lg. (4.9)
Therefore, if the elastic distortion covers with an isometry (i.e. if B*, = L*,), then the

Bravais moving coframe ($*, G) can be identified with its spatial representation (¢7,Gp,)
defined by

L= (ek)’ et = LkaEa,
GL =T(G) = LGL™' c SO(3).

The local rotational uncertainty transformation (3.6) takes then the form of the following
transformation of the moving coframe &7 :

e*(X) — ¥ (X) = R5(X)e' (X)),
R=(RY): B, — G, CSO(3).

Now, we can formulate, as the basic postulate of the proposed theory — the following
consistency condition of Kondo and Kroner’s Gedanken Experiments:

Consistency condition. The rotational discrepancy, appearing in the Kondo Gedanken
Experiment, can be represented by a spatial representation of Ricci coefficients of rotation

(4.10)

(4.11)



GEOMETRICAL GAUGING IN THE THEORY OF DISLOCATIONS 83

defined by (see eqs. (4.2)-(4.10)):

k=) =T(w)=w'® T, € \'(By)® g,

1 ; ! 4.12
Ia = 'ézaé—l = (Takl), K:kl s Taklwa, ( )

where g and g, = LgL~! are Lie algebras of Lie groups G' and G, respectively.
The relation of physical equivalence of triads of crystallographic directions defined by
(3.6) induces the following transformation of the connection 1-forms:

w = W% = Q%(wQp? + dQy°), (4.13)

where Q,° = (Q")’,, and induces, according to the representation (4.10), the following
uncertainty of the representation (4.12) of the rotational discrepancy:

k51 — k%) = R* (k" R™ + dR™), (4.14)

where R = (R*)) defines the transformation (4.11). Let (&1,Gr), &1, = ( er) denotes
the spatial representation of the Bravais moving frame (@, G) defined by eq. (4.10) and
the duality condition (e*, e;) = 6F, and let us consider the coordinate description (\¥) of
the localization )\ (eq. (2.3);) defined by the moving frame &;,:

A(X) = M (X) er(X). (4.15)
The transformation (4.11) induces then the following transformation:
A(X) - NE(X) = RE (XN (X) (4.16)

being a local version of the transformation (2.7) (with o' = 0). Therefore, the differentials
dA* of coordinates A* transform according to

dX* — d\'* = RF(dA! + R,'dR™,A™) . (4.17)

The above “contamination” of the deformation gradient F(cf. egs. (2.3) and (2.6)) by local
spatial rotations is a mathematical expression of the physical reasoning from Section 3,
stating that we cannot evaluate the stored elastic energy of a dislocated body by using that
local measure of deformations. Because of that we have to formulate such local description
of defosmations, that will compensate for those contaminating influence of local spatial
rotations. It means a replacement of the deformation gradient with a geometric object
h* 4 defining the total distortion F* ,:

F*4(X) = h* 4(X, N(X), M, 4 (X)) (4.18)
and transforming under the local action of the group G, according to following rule:
F*A(X) = F™* o(X) = R*(X)F' 4(X) (4.19)

being a local version of the deformation gradient transformation rule under spatial iso-
metries (see Section 2). For example, the 1-form F* of the total distortion (eq. (4.6))
defined as

F* = Ak = )k 4 gk )\ (4.20)
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transforms according to the rule (4.19) because from eqs. (4.14)—(4.17) it follows that
VAF = VNE = RE, WA, (4.21)

Note, that in this example, the deformation gradient F'is replaced for the tensor field Fa
of the form

Fa(X) = eu(X) ® VAK(X) = VA(X). (422)

Therefore, a compensation for the contaminating influence of local spatial rotations, can
be realized by means of the replacement of the Frechet derivative operation with the
Riemann—Cartan covariant differentiation.

Each Bravais moving frame determines an associated internal length measurement
tensor g,.: namely, the one in which this particular frame is orthonormal (eq. (3.13)). The
corresponding Riemann-Cartan connection (eq. (4.4)) defines both the curvature 2-form

2% = dw® + W’ Aw® = 1R%cpdX° AdXP (4.23)

and the torsion 2-form
T =d B> +wab/\Eb = %TchdXB NAXE (4.24)
= 11, . E* A E°. '

The matrix {2 of curvature 2-forms of the Riemann—Cartan connection has values in the
Lie algebra g C so(3):

2= (%) =R ®7.eN (B:)®g,
R® = dw® — Le%wb Aw® = 1R%cpdXC AdX P, (4.25)
R* = n%dw if G = G(n),

where A%(B,) denotes the space of 2-forms on B,.. From egs. (4.23) and (4.25) it follows
that

% = iR 6 -Riyen =8 s R ob (4.26)
The Riemann-Cartan torsion has the following representation:
T = dB* = e%u® KBS, (4.27)

The eqs. (4.25) and (4.27) are Cartan structure equations for the Riemann-Cartan ge-
ometry. The integrability conditions of these equations, called Bianchi identities, have the
following form:

VR®* =dR* +w’, AR’ =0,
; " (4.28)
VT* = dT®* +ws AT =8k AE
or, equivalently,
dR® = %pw’ A RE,

4.29
A% = %:60° AT® — BY A B )
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If G = G(n) Bianchi identities reduce to
dR* =0

" (4.30)
dT?* = e*pen’(dE° Aw — E° A dw) .

Note, that from one coframe ¢* = (E®) orthonormal with respect to g, we may obtain

others by applying a local rotation (eq. (3.6)) and under such transformation the connec-

tion 1-forms transform according to the rule (4.13), while the torsion and curvature are
tensorial:

%= QabTb)

2% = Q%.Qs*2%.

A preferred orthonormal coframe may be used also to define a new path independent

parallelism. The new parallel transport is defined by the condition that in a preferred

orthonormal frame, called orthoparallel [20], the new connection 1-forms A%, and its
curvature 2-forms A“, vanish:

(4.31)

My=0,. A%=20: (4.32)
Evidently, the new connection coefficients are generally nonvanishing (while the new
curvature vanishes) in any other orthonormal frame:

e, £ 0, e, =0, (4.33)

This is tied with the fact that the new parallel transport is path independent. Conversely,
if a parallel transport is path independent (it is the so called teleparallelism), the curvature
vanishes. There then exists a special orthonormal frame ¢ = (E,) in which the connection
1-forms w?;, vanish. This orthoparallel frame is uniquely determined up to global (con-
stant) rotations. Therefore, the new parallel transport is characterized by torsion and,
in the orthoparallel frame, the torsion 2-form is given by eqs. (3.4), (3.8) and (3.9) (cf.
eq. (4.24)). Note, that a teleparallel connection is uniquely defined by the condition of V
covariant constancy of the Bravais moving frame & (see eqs. (4.1) and (4.32)). Therefore,
in this case, the set g[®] of all & — parallel vector fields (eq. (3.16)) coincides with the
set of all V — covariantly constant vector fields, i.e. vector fields v tangent to B, and
fulfilling the condition
Vv =0. (4.34)
We see, that the tensorial measure S[®] of the dislocation density (eq. (3.10)) covers
with the torsion tensor corresponding to the path independent geometry defined by &.
This identification can be preserved in the case of a path dependent Riemann-Cartan
geometry. Namely, we can think the occurrence of such additional lattice defects in the
dislocated body, that its local homogeneity is not disturbed. For example, point defects
caused by intersection of dislocation lines and vacancies with self-interstitial atoms allow
their description by means on an internal length measurement tensor [17] and thereby
a Riemann-Cartan geometry associated with this metric tensor can be considered. Such
point defects can be called rotations generating because their occurrence can be described
by means of Ricci coefficients of rotation, vanishing (in an orthoparallel Bravais moving
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frame — eq. (4.32)) if dislocations are the only sort of defects appearing in the body.
Note, that the case T* =0, R* # 0 means that certain distributions of point defects can
annihilate dislocation densities [17].

5. Physical gauging

It follows from our description of dislocated crystalline solids that these can be con-
sidered as locally homogeneous bodies whose local material symmetries act in a twofold
manner. Firstly, their act in the-material space of the body as local transformations of
an distinguished moving frame (egs. (3.3)-(3.6)) — the Bravais moving frame carrying
informations about defects inherient in the body material structure. Secondly, their act
in the configurational space as local transformations of the elastically deformed Bravais
moving frame (eqs. (4.14)-(4.22) with R*;(X) defined by egs. (3.6); and (4.9)). It can
also be formulated in terms of the bundle geometry if we assume that the considered
material symmetries (of an homogeneous elastic solid — Section 2) form a Lie group
G C SO(3), i.e. that G = SO(3) (isotropic solids) or G = G(n) (tranversally isotropic
solids) (see Appendix). Then, the first manner of that action can be treated as the ac-
tion of the group G as a structure group of a principal bundle of moving frames on
the body (e.g. [7, 9, 28, 34]). This principal bundle is the set of all moving frames
carrying the same information about defects inherent in the material (see Section 3).
The second manner of that action can be viewed as the local action of the group G on
the space R*(z*) — the arithmetic space R*> whose points are by standart denoted by
z = (2%) = (2!, 2% 2%) and which is treated as the typical fibre of a vector bundle as-
sociated with the above principal bundle (e.g. [7, 34]). The Lie group G acts locally on
R3(z"*) to the right:

(g,Q)——»T(Q)g, Q:BNHG,
T(Qz) = T(Qha',  T(QX) = T(QX)),

where the representation T : G — SO(3) is defined by eq. (4.9) with local rotations
Q(X) appearing in the transformation rule (3.6) and B, is a reference configuration (with

general Lagrange coordinates X = (X4)) identified with the body itself (see Section 2).
Since the space R3(z*) can be identified with the configurational space (E?,z; E(3)),
where z : E* — R is a fixed Cartesian chart (eq. (2.5)) and E(3) denotes the group
of Euclidean transformations (2.7) of Cartesian coordinates, the considered associated
bundle can be taken as a configurational space of the dislocated body. It is the well
known geometric framework for the formulation of a gauge theory (e.g. [7]). We will con-
sider the gauge theory with matter fields represented by localizations ) of deformations
A: B, — E® (eq. (2.3)2) and with local gauges, defined by Bravais moving frames (2, G),
interpreted as physical fields describing a short-range ordering of the material structure
under consideration (Sections 3 and 4).

An evaluation of the stored elastic energy of a dislocated body ought to be formulated
in the form allowing us to describe interactions between Bravais moving frames and matter

(5.1)
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fields, and reducing to the elastic energy of a homogeneous crystalline solid (Section 2)
when lattice defects are absent, i.e., in terms of the geometrical gauging (Section 4),
if

I'“=0, R*=0. (5.2)
The condition (5.2) means the existence of a reference configuration & that coincides
with an undeformed state of a homogeneous crystalline elastic solid (Section 2), and the
existence of Cartesian Lagrange coordinates ¢ = (£%) on B (eq. (2.19)) such that, for

a coordinate description £* = n*(X) of the deformation n = Zo x~! : B, — Bz, the
following equations are valid (see eqs. (3.3), (4.26) and (4.32)):

*

w% =0, £%=0,

. @ (5.3)
E* =dn®, ie. es(X)=1n%4(X).

As a consequence, if A : B, — B, and A : B~ — B, are deformations, = = (z*) are

Cartesian Eulerian coordinates (eq. (2.5)) and z* = M\*(X), z* = X¥(¢) are coordinate
descriptions of these deformations, then (see egs. (4.6), (4.12) and (4.20)):

B S,
B%, (%) = X*,@lesvix)

and the decomposition (3.2) of the total distortion F* 4 reduces to a coordinate description
of the relation (2.4):

(5.4)

Mo, 4 (X) = Nk, (X)) 4 (X). (5.5)

The internal length measurement tensor (eq. (3.13)) reduces then to an Euclidean met-
ric tensor induced on the body by its embedding in E3 (eq. (2.18)). Moreover, G
= G C SO(3) and the undeformed state ® is a natural state (Section 3) of a homo-
geneous body. A Lagrangian of a homogeneous crystalline elastic solid has, with respect
to the undeformed state &, the following form (see eq. (2.24)):

1:(6) = La(O\%,0 (€))or AV (¢),

5.6
oz = const, dV(¢) = d€' A de? A de? =:6)
and the Lagrangian [; will be invariant with respect to global spatial rotations iff
Li(B*a) = —04(Cas),
= -2 - (5.7)

Cab = BkaBlbakla

where o is a function of the stored elastic energy. If By is the other reference configu-
ration, then

(X)) = 1a(©)le=n(x) = L(A*,4 (X))ou(X)dV (X)), (5-8)
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where eqs. (2.9), (2.12)—(2.14) and (5.5) were taken into account and it was denoted:
0x(X) = gre(X), e(X) = det(e4(X)). (5.9)

A physical gauging is based on an evaluation of the stored elastic energy of the dislo-
cated body by means of the so-called minimal replacement 1,, — 1,,, defined by

Ll = L(F* B X) = L, (FE(X), BPLX) AV
= Lo(VAN (X))dpn(X),

where F* (eqs. (4.6) and (4.18)) has the form (4.20), V is the Riemann—Cartan covariant
derivative (egs. (4.4) and (4.12)), 3-form dp,, is defined by egs. (2.13) and (5.9), and

L(F*4) = —04(Cag),

(5.10)

5 g (5.11)
kol -
Cap = F"aF' by = epepCap,
where the tensor Cy, is defined by (5.7), with
BE, =gk =N, (5.12)

The such defined Lagrangian [,,, has still the global spatial and material orthogonal invari-
ance (see Section 2) but it is not (in general) invariant with respect to the global (spatial
as well as material) translations. However, when rotations generating point defects (Sec-
tion 4) are absent, i.e. if

R°=0, T"#0, (5.13)

then the distribution of dislocations is described by a path independent geometry (Sec-
tion 4) and, in an orthoparallel moving frame (uniquely defined up to global rotations —
Section 4):
wh =0, T*=+%=dE*,
FE= gab,

The Lagrangian [, is then invariant under global spatial translations. Note, that in the
case (5.13), the Lagrangian I, considered for a general Bravais moving frame is invari-
ant under local covariantly constant spatial translations (eqs. (3.16) and (4.34) with E,
replaced for e;). If rotations generating point defects occur, the above translational in-
variance (global as well as local) is broken (see further on — Final remarks). The lack
of material translational invariance is due to heterogeneity of dislocated bodies. The lack
of spatial translational invariance is due to proper stresses produced by lattice defects
and interacting with matter fields. Moreover, [, is additionally invariant under local
(rotational) material symmetries, defining physically equivalent Bravais moving frames
(eq. (3.6)), and — under local spatial rotations defining energetically equivalent total dis-
tortions (eqs. (4.20), (4.21) and (5.11)). Therefore, the minimal replacement I, — I,
means a generalization of the frame indifference principle of classical elasticity theory
(Section 2) based on the treatment of the material symmetry group G C SO(3) as a gauge
group. This generalization, although similar to the one formulated by Utiyama [31] in

(5.14)
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order to describe a gravitational field, differs from it because here not all possible local
rotations have to be compensated (i.e. in general G;, # SO(3)) — eq. (4.10)). Only
isotropic materials (Section 2) are those for which the proposed gauge procedure is a
three-dimensional spatial analogy of the Utiyama approach; such full analogy has been
proposed by Turski [30] but without a clear statement that it is possible for isotropic
materials only.

Since in a fixed Bravais moving coframe the internal length measurement tensor is uni-
vocally determined (eq. (3.13)), we can assume, without loss of generality, that a first-order
local static theory of mutual interactions between continuously distributed dislocations and
matter fields is described by a Lagrange 3-form [ with (\*, E%,w®) as independent vari-
ables (see egs. (4.1)-(4.3), (4.12) and (4.20)) and depending additionally on their exterior
derivatives. The so-called minimal coupling construction for the gauge group G means
an assumption that the total Lagrangian [ can be written in the form of a sum of the
minimally replaced matter Lagrangian I, (eqgs. (2.13), (5.9)-(5.12)) and a G-invariant
Lagrangian [, of the gauge field (E¢,w®):

1 = 1.(VAY, E®) + 1,(E®, w*, dE*, dw®) . (5.15)
It follows from the Cartan structure equations (4.25), and (4.27) that the Lagrangian [,
can be assumed in the form
— a a a a
lg = L?(E s, % R*)dV (5.16)
=L (B*w*T* R*)du,

depending on the curvature (R®) and the torsion (7*) 2-forms, and more convenient to
physical interpretations. In a fixed Lagrange coordinate system X = (X 4) (see egs. (3.3),
(4.1), (4.3), (4.24), (4.25), and (5.10)):

T = Dni(7ad ) = Ll(V X b
. (Va A) a( aA )o (5.17)
Ly = Ly(ea;wa,T*an,R*48) = Li(€4,w4,T® a8, R® 4B)0x -

The variation &1 of the Lagrangian I with respect to field variables (VA*,w®, E*, T, R®)
is defined as (e.g. [24, 32]):

ol ol ol
= k G, - a
= BVX: A o+ 8B A g + B A o
rorap b spon 2L '
0T ORe "

The Cartan structure equations enable us to write & in terms of variables (\¥, B, w®):

ol ol ol
=r y== k a
1= st av(pl) +omn (v( ) + 1)

ol ol ol >

(5.19)

TN + dw A(’)R“ + 6B A 37

+ 6w A H, + d(é)\k A

where it was denoted
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90
al ol Al
V(awk) = d(awk> ~ e aam
a\ _ o . ol
V(aRa) ‘d<aRa> ~“a\ pRp
(5.20)
B g B oy B
ora ) ~ “\ora) ~ %" B0

ol ol ol ol
- k yn — g€ b
Hy = Ttk sy + 2 +V<aRa) e wE A o

It follows from eq. (5.19) that for every three-dimensional regular region P C B, (with a
regular closed boundary), variations 61, of the action integral I, (cf. eq. (2.11)):

SI(P; N, B w) = [ 8U(X) (5.21)
P

vanish for variations (6A\*,5E?, w?) vanishing on the boundary of P, iff the following

Euler-Lagrange equations are fulfilled:

ol
v(awk) =0,
ol ol
V(a:m) t g =0 (5.22)
H,=0 if G=S80(),
n*H, =0 if G=G(n).

The variations of the considered p-forms induced by infinitesimal rotations (Appendix
(A8)-(A12)) have the following form (see eqs. (3.6), (4.14) and (4.31)):

SE* = e%E", 6T%=g%T",

002% = €% 02°% — % 2%, (5.23)
Sui%y = Vet = de%y +00% 6% <%y
Since
(%) = €qc, i€ €% = €%c€°, (5.24)
we obtain that
SE® = % B, 6T® = %%, T°, |
(5.25)

OR® = %% RP, 6w® = Ve® = de® + w%e’

and (see eqs. (4.9), (4.16) and (4.21)):
F =gkl VAR = gt N,
m 1 (5.26)

ko k
N = —e'T,,.
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If G = G(n), then € = en® and formulas (5.25) take the form
6E® = en®c®, B, 6w® = n%de ,
6T* = ene®,,T®, 6R® = 0.

From egs. (5.19) and (5.25)-(5.27) it follows that the variation 6c! of the Lagrangian [
induced by infinitesimal rotations can be written in the following form:

(5.27)

bcl = e°(86l). + d<fc . )

dwe

(6cl)e = Ac + €% R A a

aRa if G = 80(3) )
ol ol
a b b : -
+e bc(T /\——aTa + E° A OE“) ifG=G(n).

The condition of the action functional invariance with respect to the gauge group G is
equivalent to the condition (e.g. [36]):

ogl =0, (5.29)
which in particular means that should be
a—al—a=0 if G = SO(3),
wBl (5.30)
n—&u—a=0 if G=G(n).

Let us introduce, in order to formulate the others invariance conditions, the following
designations: :

L=1L,+ Lg = (L,,- * L;)QN’

a 3 5.31
3%p =o0%p—L6%p, o= —p.ép 35" (520
6eA
and
oA = ?_L = eBEAB,
a eA a
mAB 5{: = o, 31;2 = —mBA,
@ T} p Tg 4 . (5.32)
ap o OL 0L _ o
d OR}p "ORYp a '
nAB = noyAB o _,.BA

and let us generalize the first (¢4;) and the second (S4B) Piola—Kirchhoff stress tensors
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and the Cauchy stress tensor (T*) (see egs. (2.20)-(2.22), (5.11) and (5.17)):

oL oL,
tAk O = =0k
OV 4Nk AP L
Jo
AB _ K _ aoBA
S T 20.‘\ aCAB e S ) (533)

T, = (g0 MoV a)*
Tkl = Tkméml ot (Qso o /\/Q,\-,)SABVA/\A‘VB/\I = le )
Then, from eqs. (5.28), (5.30) and from the symmetry of the Cauchy stress tensor

(eq. (5.33)4), it follows that the invariance condition (5.29) reduces to the following con-
ditions:

o =e"+N®=m" if G=S0(3),

€apc@¥n¢ = 0 if G = G(n), (8%
where A% = §P¢ A%, and it was denoted
Qb = N 4 Sab
3= ep et BBy = 0% — I, (5.35)

O s ABmb b rew 1o AB b
M, = T 4n; Na—'in RAB-

a

We can rewrite, taking into account conditions (5.30) and designations (5.32), (5.33),
the Euler-Lagrange equations (5.22) in the following form:

VAtAk =0,
VB mAB = O’A -
i - 5.36
Vehi® =4 ##G=8003), (5.36)
VeniB = j4  if G = G(n),
where it was denoted (see eqs. (4.1) and (4.12)):
Vathy = 04tk — ka'st?,
VBTAB =5 TAB _ wBba’,{,}AB, (5.37)
VpnAB = §5nAB _ wBba’gAB
and the following currents have been introduced:
jA = =T Rt + eCapbnmAB,
e ¢ (5.38)

jA=n“jA.
a



GEOMETRICAL GAUGING IN THE THEORY OF DISLOCATIONS 93

Note, that from eqs. (5.34), (5.37), and (5.38) it follows that if we will denote:
Vajt =08aj% —wabaj?, (5.39)
a a b

then the following balance equations:

Viaj4 =eu.N* if G=S0(3),
4 (5.40)
8452 =0 if G = G(n)

would be fulfilled. If G = SO(3) (dislocated isotropic solids) then there exist 21 indepen-
dent variables: 3 variables of the matter field A\*, 9 independent connection coefficients

w4 (see eq. (4.3)) and 9 components ¢ 4 of the Bravais moving coframe. The 21 Euler-
Lagrange equations (5.36); are constrained by 3 invariance conditions (5.40); and consti-
tute 18 independent field equations. As a result, a complete specification of the geometric
structure of the dislocated isotropic continuum needs 3 more equations. In other words,
there remain 3 degrees of freedom to be gauged. The freedom is called gauge freedom
and it is specified by gauge conditions. For example, the continuity equations

v P (5.41)

can be taken as such conditions. If G = G(n) (dislocated tranversally isotropic solids)
then the number of independent connection coefficients reduces to 3 coefficients w4 (see
eq. (4.5)) and so the number of independent variables is 15. The 13 Euler-Lagrange
equations are here constrained by the condition (5.40),. Therefore, we have also 3 gauge
degrees of freedom and (5.41) can be also taken as gauge conditions.

Since (see eq. (4.1)):

Valt?y = gAvb(ﬁAtak) = Vat® + wo%st% (5.42)

where it was denoted
Vit = 0% — K,alkta[ (5.43)
and components 7% of the torsion 2-form 7 have the form (see egs. (3.4), (3.8), (3.9)
and (4.24)):
T = wa’b — wW°a — Cap

wals = Q= S8 = 0

so, we can rewrite eq. (5.36); in the following equivalent form: N
.
Vat's + g =0, qe =T (T as"Co a)t k . (5.45)

The equation (5.45) is an equilibrium condition of the elastic body with defects of the
dislocation type; the force g is called the inhomogeneity force. The form (5.45) of the
equilibrium condition, suitable for examining the proper stresses produced by disloca-
tions, was first obtained by Turski [30] and next by Noll [21]. The equations (5.36), and
(5.41) describe the self-interaction of dislocations with g"* — self-balancing currents and

(5.44)
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mAB_— field momenta of self-interacting dislocations. Note, that in general M # Mbe
a

(see eq. (5.35)). This suggest that we interpret M4® as the tensor of internal couple stresses,

i.e. a quantity analogous to the tensor of couple stresses considered in the theory of polar

continua but caused by the self-interaction of dislocations [29]. Namely, in this theory the

(asymmetric) couple stresses are a consequence of assuming that the mechanical action

of one part of a body on another across a surface is equivalent to a force and moment

distribution. The source terms j# in eq. (5.36); (or the term j4 in eq. (5.36)4) are due
a

to momentum moments produced by force stresses ¢4, (defined by the elastic reaction
of the body) and by field momenta mA2 (defined by the self-interaction of dislocations).

a
The corresponding field momenta n4? describe the influence of the curvature tensor and
a

thus — the influence of rotations generating point defects. Therefore, N%° (see eq. (5.35))
can be interpreted as the tensor of internal double forces stresses, equivalent to a distri-
bution of double forces with moments (see e.g. [13]). If G = SO(3) then these internal
stresses are sources of momentum moments currents j4 (eq. (5.40),). If G = G(n) then

we are able to compute the field momenta nZ and the momentum moment current ;%
in the n-direction only; moreover, in this case the current 44 is a self balancing quantity

(eq. (5.40),).

6. Final remarks

In Section 5 it was shown that if rotations generating point defects are absent (the
condition (5.13)), then the proposed gauge procedure is consistent with the frame indif-
ference principle (see Section 2) globally (eqgs. (5.10); and (5.14);) as well as locally (see
remarks following eq. (5.14)). Moreover, in this case connection coefficients are univo-
cally defined by the Bravais moving frame (Section 4). In a consequence, the Lagrangian
l, of the free gauge field (eq. (5.16)) can be assumed in the following form (see egs. (3.4)
and (5.14)):

lg = [4[P] = Ly(E*, 7%)dV . (6.1)
The gloval invariance (3.12) means that homogeneous deformations of a body with disloca-
tions do not influence their tensorial density $[®] (eq. (3.10)) — the fundamental physical
field describing the distortion of a crystalline structure due to dislocations. Particularly,
the tensorial density $[®] is invariant under unimodular homogeneous deformations of
the body, preserving its mass density. Therefore, we can anticipate the same invariance
of Euler-Lagrange equations describing a static and self-equilibrium distribution of dis-
locations [29]. This means that the functional dependence & — 1,[®] should be invariant
under the unimodular group SL(3): (see eq. (3.11)):

VLESLE), 1[@L] = 1,[]. (6.2)

The Lagrange function L, fulfilling the condition (6.2) can be taken in the following form
(see eqs. (2.9) and (5.9)):

Ly(E*7%) = f(Ea®T% 0x)- (6.3)
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If the interaction of matter fields with rotations generating point defects is taken
into accounts, then the translational invariance (global as well as local) of the matter
Lagrangian [,, is losed (Section 5). It can be formally removed in the following way
(e.g. [8], [18]). The Kondo Gedanken Experiment (Section 3) suggests an expression
of the total distortion as a sum of an deformation gradient and infinitesimal rigid body
motions:

F* =d)F 4 AXE, AN =g + b5, (6.4)

where the term x*;\! describes the influence of infinitesimal relative rotations and the
term b* describes the influence of translations on the deformation gradient. Translations b*
may be assumed, according to the proposed representation of the translational discrepancy
(Section 3), in the form of spatial representations e* of covector fields E® belonging to
the Bravais moving coframe (%, G) (eq. (4.10)). Then, the total distortion 1-form F* can
be written in the following form:

Fk i Bklel ’

6.5
B¥, = D))* = 7, 0F + 6%, (&5)

The affine covariant derivative D;\* (e.g. [3, 9]) is invariant with respect to the local
Euclidean transformations

M X)) =A% (X)) = RF(ONEX) +4(X) (6.6)

of the coordinate description (A*) of the localization ) of a deformation (eq. (4.15)).
Thereby, we are able to define a physical equivalence relation of total distortion 1-forms,
based on their form (6.5) and the transformation (6.6) (cf. eq. (5.10)). In a consequence,
the minimal replacement I, — [l,,, based on the affine covariant derivative application,
is consistent with the frame indifference principle. However, with such defined gauge
group, the local material structure of a continuously dislocated body is characterized (see
eq. (4.9)) not only by its local material symmetries (rotations belonging to the group G)
but also by local translations which are not material symmetries of a continuized crystal
(Section 3). Because of that, basing a gauge theory of dislocated bodies on the Euclidean
gauge group seems to be a physically incorrect application of the gauge procedure. Note,
that if rotations generating point defects occur but the body is undeformed, i.e. if R* # 0
and ¢4}, = 0, then the proposed field equations (5.36) can be accepted as those describing
a free gauge field.

We know that three-dimensional Lie algebras classify all geometrically permitted types
of uniformly dense distributions of dislocations (Section 3). This fact and the invariance
condition (6.2) suggest the consideration of such theory of free gauge fields that permits an
uniformly dense distribution of dislocations, say of the Lie algebra g C sl(3) type (sl(3) —
the Lie algebra of the Lie group SL(3)), as a particular solution of field equations [29]. Let
us consider, for example, a distribution of dislocations that would not be uniformly dense,
but locally, would be everywhere of the type g [28]. Such distribution of dislocations can
be described with the help of a Cartan connection V assigning to a fixed moving frame a
matrix of connection 1-forms w*, with values in g (egs. (4.1) and (4.2) with so(3) replaced
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" by g). Then, in general

Vg =a#0 (6.7)
and the coefficients w.%, defined by

w = w B (6.8)

can be interpreted as those describing infinitesimal relative unimodular deformations of
local crystallographic directions of a continuized crystal (cf. Kroner’s Gedanken Experi-
ment — Section 3). For example, the so-called point stacking faults [17] can be considered
as point defects producing such relative deformations. Note, that the application here of
the Kondo cutting-relaxation procedure reveals an unimodular discrepancy in place of
the rotational discrepancy considered in Section 3. Moreover, local rotational uncertainty
defined by eq. (3.6) will be preserved only if the considered gauge group (being a Lie
subgroup of SL(3)) will contain a material symmetry group (i.e. SO(3) or G(n)) as its
subgroup.

Appendix

Let us consider the group SO(3) as a 3-parameter Lie group of matrices preserving
the metric tensor 8,, of the Euclidean space R3, Let 7,4, a = 1,2,3, be infinitesimal

generators of SO(3), i.e. base vectors of the Lie algebra so(3) of the Lie group SO(3),
with commutation rules

[Yas 78] = Yab e (A1)
For example, if
(7e)% = €c% = 6%%cap (A.2)

where &5 is the permutation symbol equals to 1 if (a,b,c) is an even permutation of
(1,2,3), equal to —1 if it is odd, and 0 otherwise, then [6]:

15y = 5y = 6%€ava - (A.3)
A rotation 9 = Q(}g) with the rotation vector k = k%84, 60 = (6%; b = 1,2,2), can be
represented as
Q(k) = exp(k” 7a)
Qk) = Q=k), Qo) =J=(6%).
The tensor Q(E) represents a rotation about an axis parallel to kand k = (Bapk®kb)1/2,

0 < k < « is the angle of that rotation. The Lie group G(n) of all rotations about a fixed
axis parallel to a versor n. = n®g, is a l-parameter Lie group with elements represented

as Q(E) = Q(kg) = Q,} (k), where

(A4)

Qs (k) = exp(kn ),
(A.5)

G b iz s
bapn®n’ =1, Yp =1 7Ya-

~
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The group is abelian:
Qn (k1) Qn (k2) = Qn (k1 + k2) = Qp (k2) @y (k1) (A.6)

and, under the action of an internal automorphism L of the group SO(3), the rotation
matrix Q(k) transforms according to:

LQUE)L™ = QLK) (A7)

The matrices Q = (Q%) of infinitesimal rotations, i.e. belonging to the Lie algebra
s0(3) of the group SO(3), and their inverses have the form:

Q% = 6% + €%, (Q—I)Gb = 5% =%, (A8)
where
é‘ab = kc(zc)ab = kcé‘cab = -—€ba. (A9)

Since the matrices of spatial rotations induced by the group G of material rotations have
the form (see egs. (4.9), (A.4) and (A.7)):

T(Q) = exp(k“Ta),
by = L‘Z“L’_l o (Takl)’ Takl = ch(,é‘—l)dlgacd

~

(A.10)

the corresponding matrices R = (R*;) of infinitesimal spatial rotations and their inverses
have the form:

R* =65 + 9,  (BHF =6 —n",

: : : (A.11)
1t = =k T* = —LF (L) e
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